# Copyright (c) 2024 Cisco and/or its affiliates. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of graphs for trending data. """ import logging import plotly.graph_objects as go import pandas as pd from numpy import nan from ..utils.constants import Constants as C from ..utils.utils import get_color, get_hdrh_latencies from ..utils.anomalies import classify_anomalies def select_trending_data(data: pd.DataFrame, itm: dict) -> pd.DataFrame: """Select the data for graphs from the provided data frame. :param data: Data frame with data for graphs. :param itm: Item (in this case job name) which data will be selected from the input data frame. :type data: pandas.DataFrame :type itm: dict :returns: A data frame with selected data. :rtype: pandas.DataFrame """ phy = itm["phy"].rsplit("-", maxsplit=2) if len(phy) == 3: topo_arch, nic, drv = phy if drv == "dpdk": drv = "" else: drv += "-" drv = drv.replace("_", "-") else: return None if itm["testtype"] in ("ndr", "pdr"): test_type = "ndrpdr" elif itm["testtype"] == "mrr": test_type = "mrr" elif itm["testtype"] == "soak": test_type = "soak" elif itm["area"] == "hoststack": test_type = "hoststack" df = data.loc[( (data["test_type"] == test_type) & (data["passed"] == True) )] df = df[df.job.str.endswith(topo_arch)] core = str() if itm["dut"] == "trex" else itm["core"] ttype = "ndrpdr" if itm["testtype"] in ("ndr", "pdr") else itm["testtype"] df = df[df.test_id.str.contains( f"^.*[.|-]{nic}.*{itm['framesize']}-{core}-{drv}{itm['test']}-{ttype}$", regex=True )].sort_values(by="start_time", ignore_index=True) return df def graph_trending( data: pd.DataFrame, sel: dict, layout: dict, normalize: bool=False, trials: bool=False ) -> tuple: """Generate the trending graph(s) - MRR, NDR, PDR and for PDR also Latences (result_latency_forward_pdr_50_avg). :param data: Data frame with test results. :param sel: Selected tests. :param layout: Layout of plot.ly graph. :param normalize: If True, the data is normalized to CPU frquency Constants.NORM_FREQUENCY. :param trials: If True, MRR trials are displayed in the trending graph. :type data: pandas.DataFrame :type sel: dict :type layout: dict :type normalize: bool :type: trials: bool :returns: Trending graph(s) :rtype: tuple(plotly.graph_objects.Figure, plotly.graph_objects.Figure) """ if not sel: return None, None def _generate_trending_traces( ttype: str, name: str, df: pd.DataFrame, color: str, nf: float ) -> list: """Generate the trending traces for the trending graph. :param ttype: Test type (MRR, NDR, PDR). :param name: The test name to be displayed as the graph title. :param df: Data frame with test data. :param color: The color of the trace (samples and trend line). :param nf: The factor used for normalization of the results to CPU frequency set to Constants.NORM_FREQUENCY. :type ttype: str :type name: str :type df: pandas.DataFrame :type color: str :type nf: float :returns: Traces (samples, trending line, anomalies) :rtype: list """ df = df.dropna(subset=[C.VALUE[ttype], ]) if df.empty: return list(), list() hover = list() customdata = list() customdata_samples = list() name_lst = name.split("-") for _, row in df.iterrows(): h_tput, h_band, h_lat, h_tput_trials, h_band_trials = \ str(), str(), str(), str(), str() if ttype in ("mrr", "mrr-bandwidth"): h_tput = ( f"tput avg [{row['result_receive_rate_rate_unit']}]: " f"{row['result_receive_rate_rate_avg'] * nf:,.0f}
" f"tput stdev [{row['result_receive_rate_rate_unit']}]: " f"{row['result_receive_rate_rate_stdev'] * nf:,.0f}
" ) if pd.notna(row["result_receive_rate_bandwidth_avg"]): h_band = ( f"bandwidth avg " f"[{row['result_receive_rate_bandwidth_unit']}]: " f"{row['result_receive_rate_bandwidth_avg'] * nf:,.0f}" "
" f"bandwidth stdev " f"[{row['result_receive_rate_bandwidth_unit']}]: " f"{row['result_receive_rate_bandwidth_stdev']* nf:,.0f}" "
" ) if trials: h_tput_trials = ( f"tput trials " f"[{row['result_receive_rate_rate_unit']}]: " ) for itm in row["result_receive_rate_rate_values"]: h_tput_trials += f"{itm * nf:,.0f}; " h_tput_trials = h_tput_trials[:-2] + "
" if pd.notna(row["result_receive_rate_bandwidth_avg"]): h_band_trials = ( f"bandwidth trials " f"[{row['result_receive_rate_bandwidth_unit']}]: " ) for itm in row["result_receive_rate_bandwidth_values"]: h_band_trials += f"{itm * nf:,.0f}; " h_band_trials = h_band_trials[:-2] + "
" elif ttype in ("ndr", "ndr-bandwidth"): h_tput = ( f"tput [{row['result_ndr_lower_rate_unit']}]: " f"{row['result_ndr_lower_rate_value'] * nf:,.0f}
" ) if pd.notna(row["result_ndr_lower_bandwidth_value"]): h_band = ( f"bandwidth [{row['result_ndr_lower_bandwidth_unit']}]:" f" {row['result_ndr_lower_bandwidth_value'] * nf:,.0f}" "
" ) elif ttype in ("pdr", "pdr-bandwidth", "latency"): h_tput = ( f"tput [{row['result_pdr_lower_rate_unit']}]: " f"{row['result_pdr_lower_rate_value'] * nf:,.0f}
" ) if pd.notna(row["result_pdr_lower_bandwidth_value"]): h_band = ( f"bandwidth [{row['result_pdr_lower_bandwidth_unit']}]:" f" {row['result_pdr_lower_bandwidth_value'] * nf:,.0f}" "
" ) if pd.notna(row["result_latency_forward_pdr_50_avg"]): h_lat = ( f"latency " f"[{row['result_latency_forward_pdr_50_unit']}]: " f"{row['result_latency_forward_pdr_50_avg'] / nf:,.0f}" "
" ) elif ttype in ("hoststack-cps", "hoststack-rps", "hoststack-cps-bandwidth", "hoststack-rps-bandwidth", "hoststack-latency"): h_tput = ( f"tput [{row['result_rate_unit']}]: " f"{row['result_rate_value'] * nf:,.0f}
" ) h_band = ( f"bandwidth [{row['result_bandwidth_unit']}]: " f"{row['result_bandwidth_value'] * nf:,.0f}
" ) h_lat = ( f"latency [{row['result_latency_unit']}]: " f"{row['result_latency_value'] / nf:,.0f}
" ) elif ttype in ("hoststack-bps", ): h_band = ( f"bandwidth [{row['result_bandwidth_unit']}]: " f"{row['result_bandwidth_value'] * nf:,.0f}
" ) elif ttype in ("soak", "soak-bandwidth"): h_tput = ( f"tput [{row['result_critical_rate_lower_rate_unit']}]: " f"{row['result_critical_rate_lower_rate_value'] * nf:,.0f}" "
" ) if pd.notna(row["result_critical_rate_lower_bandwidth_value"]): bv = row['result_critical_rate_lower_bandwidth_value'] h_band = ( "bandwidth " f"[{row['result_critical_rate_lower_bandwidth_unit']}]:" f" {bv * nf:,.0f}" "
" ) try: hosts = f"
hosts: {', '.join(row['hosts'])}" except (KeyError, TypeError): hosts = str() hover_itm = ( f"dut: {name_lst[0]}
" f"infra: {'-'.join(name_lst[1:5])}
" f"test: {'-'.join(name_lst[5:])}
" f"date: {row['start_time'].strftime('%Y-%m-%d %H:%M:%S')}
" f"{h_tput}{h_tput_trials}{h_band}{h_band_trials}{h_lat}" f"{row['dut_type']}-ref: {row['dut_version']}
" f"csit-ref: {row['job']}/{row['build']}" f"{hosts}" ) hover.append(hover_itm) if ttype == "latency": customdata_samples.append(get_hdrh_latencies(row, name)) customdata.append({"name": name}) else: customdata_samples.append( {"name": name, "show_telemetry": True} ) customdata.append({"name": name}) x_axis = df["start_time"].tolist() if "latency" in ttype: y_data = [(v / nf) for v in df[C.VALUE[ttype]].tolist()] else: y_data = [(v * nf) for v in df[C.VALUE[ttype]].tolist()] units = df[C.UNIT[ttype]].unique().tolist() try: anomalies, trend_avg, trend_stdev = classify_anomalies( {k: v for k, v in zip(x_axis, y_data)} ) except ValueError as err: logging.error(err) return list(), list() hover_trend = list() for avg, stdev, (_, row) in zip(trend_avg, trend_stdev, df.iterrows()): try: hosts = f"
hosts: {', '.join(row['hosts'])}" except (KeyError, TypeError): hosts = str() hover_itm = ( f"dut: {name_lst[0]}
" f"infra: {'-'.join(name_lst[1:5])}
" f"test: {'-'.join(name_lst[5:])}
" f"date: {row['start_time'].strftime('%Y-%m-%d %H:%M:%S')}
" f"trend [{row[C.UNIT[ttype]]}]: {avg:,.0f}
" f"stdev [{row[C.UNIT[ttype]]}]: {stdev:,.0f}
" f"{row['dut_type']}-ref: {row['dut_version']}
" f"csit-ref: {row['job']}/{row['build']}" f"{hosts}" ) if ttype == "latency": hover_itm = hover_itm.replace("[pps]", "[us]") hover_trend.append(hover_itm) traces = [ go.Scatter( # Samples x=x_axis, y=y_data, name=name, mode="markers", marker={ "size": 5, "color": color, "symbol": "circle" }, text=hover, hoverinfo="text", showlegend=True, legendgroup=name, customdata=customdata_samples ), go.Scatter( # Trend line x=x_axis, y=trend_avg, name=name, mode="lines", line={ "shape": "linear", "width": 1, "color": color, }, text=hover_trend, hoverinfo="text", showlegend=False, legendgroup=name, customdata=customdata ) ] if anomalies: anomaly_x = list() anomaly_y = list() anomaly_color = list() hover = list() for idx, anomaly in enumerate(anomalies): if anomaly in ("regression", "progression"): anomaly_x.append(x_axis[idx]) anomaly_y.append(trend_avg[idx]) anomaly_color.append(C.ANOMALY_COLOR[anomaly]) hover_itm = ( f"dut: {name_lst[0]}
" f"infra: {'-'.join(name_lst[1:5])}
" f"test: {'-'.join(name_lst[5:])}
" f"date: {x_axis[idx].strftime('%Y-%m-%d %H:%M:%S')}
" f"trend [pps]: {trend_avg[idx]:,.0f}
" f"classification: {anomaly}" ) if ttype == "latency": hover_itm = hover_itm.replace("[pps]", "[us]") hover.append(hover_itm) anomaly_color.extend([0.0, 0.5, 1.0]) traces.append( go.Scatter( x=anomaly_x, y=anomaly_y, mode="markers", text=hover, hoverinfo="text", showlegend=False, legendgroup=name, name=name, customdata=customdata, marker={ "size": 15, "symbol": "circle-open", "color": anomaly_color, "colorscale": C.COLORSCALE_LAT \ if ttype == "latency" else C.COLORSCALE_TPUT, "showscale": True, "line": { "width": 2 }, "colorbar": { "y": 0.5, "len": 0.8, "title": "Circles Marking Data Classification", "titleside": "right", "tickmode": "array", "tickvals": [0.167, 0.500, 0.833], "ticktext": C.TICK_TEXT_LAT \ if ttype == "latency" else C.TICK_TEXT_TPUT, "ticks": "", "ticklen": 0, "tickangle": -90, "thickness": 10 } } ) ) return traces, units def _add_mrr_trials_traces( ttype: str, name: str, df: pd.DataFrame, color: str, nf: float ) -> list: """Add the traces with mrr trials. :param ttype: Test type (mrr, mrr-bandwidth). :param name: The test name to be displayed in hover. :param df: Data frame with test data. :param color: The color of the trace. :param nf: The factor used for normalization of the results to CPU frequency set to Constants.NORM_FREQUENCY. :type ttype: str :type name: str :type df: pandas.DataFrame :type color: str :type nf: float :returns: list of Traces :rtype: list """ traces = list() x_axis = df["start_time"].tolist() y_data = df[C.VALUE[ttype].replace("avg", "values")].tolist() for idx_trial in range(10): y_axis = list() for idx_run in range(len(x_axis)): try: y_axis.append(y_data[idx_run][idx_trial] * nf) except (IndexError, TypeError, ValueError): y_axis.append(nan) traces.append(go.Scatter( x=x_axis, y=y_axis, name=name, mode="markers", marker={ "size": 2, "color": color, "symbol": "circle" }, showlegend=True, legendgroup=name, hoverinfo="skip" )) return traces fig_tput = None fig_lat = None fig_band = None y_units = set() for idx, itm in enumerate(sel): df = select_trending_data(data, itm) if df is None or df.empty: continue if normalize: phy = itm["phy"].rsplit("-", maxsplit=2) topo_arch = phy[0] if len(phy) == 3 else str() norm_factor = (C.NORM_FREQUENCY / C.FREQUENCY.get(topo_arch, 1.0)) \ if topo_arch else 1.0 else: norm_factor = 1.0 if itm["area"] == "hoststack": ttype = f"hoststack-{itm['testtype']}" else: ttype = itm["testtype"] traces, units = _generate_trending_traces( ttype, itm["id"], df, get_color(idx), norm_factor ) if traces: if not fig_tput: fig_tput = go.Figure() if trials and "mrr" in ttype: traces.extend(_add_mrr_trials_traces( ttype, itm["id"], df, get_color(idx), norm_factor )) fig_tput.add_traces(traces) if ttype in C.TESTS_WITH_BANDWIDTH: traces, _ = _generate_trending_traces( f"{ttype}-bandwidth", itm["id"], df, get_color(idx), norm_factor ) if traces: if not fig_band: fig_band = go.Figure() if trials and "mrr" in ttype: traces.extend(_add_mrr_trials_traces( f"{ttype}-bandwidth", itm["id"], df, get_color(idx), norm_factor )) fig_band.add_traces(traces) if ttype in C.TESTS_WITH_LATENCY: traces, _ = _generate_trending_traces( "latency" if ttype == "pdr" else "hoststack-latency", itm["id"], df, get_color(idx), norm_factor ) if traces: if not fig_lat: fig_lat = go.Figure() fig_lat.add_traces(traces) y_units.update(units) if fig_tput: fig_layout = layout.get("plot-trending-tput", dict()) fig_layout["yaxis"]["title"] = \ f"Throughput [{'|'.join(sorted(y_units))}]" fig_tput.update_layout(fig_layout) if fig_band: fig_band.update_layout(layout.get("plot-trending-bandwidth", dict())) if fig_lat: fig_lat.update_layout(layout.get("plot-trending-lat", dict())) return fig_tput, fig_band, fig_lat def graph_tm_trending( data: pd.DataFrame, layout: dict, all_in_one: bool=False ) -> list: """Generates one trending graph per test, each graph includes all selected metrics. :param data: Data frame with telemetry data. :param layout: Layout of plot.ly graph. :param all_in_one: If True, all telemetry traces are placed in one graph, otherwise they are split to separate graphs grouped by test ID. :type data: pandas.DataFrame :type layout: dict :type all_in_one: bool :returns: List of generated graphs together with test names. list(tuple(plotly.graph_objects.Figure(), str()), tuple(...), ...) :rtype: list """ if data.empty: return list() def _generate_traces( data: pd.DataFrame, test: str, all_in_one: bool, color_index: int ) -> list: """Generates a trending graph for given test with all metrics. :param data: Data frame with telemetry data for the given test. :param test: The name of the test. :param all_in_one: If True, all telemetry traces are placed in one graph, otherwise they are split to separate graphs grouped by test ID. :param color_index: The index of the test used if all_in_one is True. :type data: pandas.DataFrame :type test: str :type all_in_one: bool :type color_index: int :returns: List of traces. :rtype: list """ traces = list() metrics = data.tm_metric.unique().tolist() for idx, metric in enumerate(metrics): if "-pdr" in test and "='pdr'" not in metric: continue if "-ndr" in test and "='ndr'" not in metric: continue df = data.loc[(data["tm_metric"] == metric)] x_axis = df["start_time"].tolist() y_data = [float(itm) for itm in df["tm_value"].tolist()] hover = list() for i, (_, row) in enumerate(df.iterrows()): if row["test_type"] == "mrr": rate = ( f"mrr avg [{row[C.UNIT['mrr']]}]: " f"{row[C.VALUE['mrr']]:,.0f}
" f"mrr stdev [{row[C.UNIT['mrr']]}]: " f"{row['result_receive_rate_rate_stdev']:,.0f}
" ) elif row["test_type"] == "ndrpdr": if "-pdr" in test: rate = ( f"pdr [{row[C.UNIT['pdr']]}]: " f"{row[C.VALUE['pdr']]:,.0f}
" ) elif "-ndr" in test: rate = ( f"ndr [{row[C.UNIT['ndr']]}]: " f"{row[C.VALUE['ndr']]:,.0f}
" ) else: rate = str() else: rate = str() hover.append( f"date: " f"{row['start_time'].strftime('%Y-%m-%d %H:%M:%S')}
" f"value: {y_data[i]:,.2f}
" f"{rate}" f"{row['dut_type']}-ref: {row['dut_version']}
" f"csit-ref: {row['job']}/{row['build']}
" ) if any(y_data): anomalies, trend_avg, trend_stdev = classify_anomalies( {k: v for k, v in zip(x_axis, y_data)} ) hover_trend = list() for avg, stdev, (_, row) in \ zip(trend_avg, trend_stdev, df.iterrows()): hover_trend.append( f"date: " f"{row['start_time'].strftime('%Y-%m-%d %H:%M:%S')}
" f"trend: {avg:,.2f}
" f"stdev: {stdev:,.2f}
" f"{row['dut_type']}-ref: {row['dut_version']}
" f"csit-ref: {row['job']}/{row['build']}" ) else: anomalies = None if all_in_one: color = get_color(color_index * len(metrics) + idx) metric_name = f"{test}
{metric}" else: color = get_color(idx) metric_name = metric traces.append( go.Scatter( # Samples x=x_axis, y=y_data, name=metric_name, mode="markers", marker={ "size": 5, "color": color, "symbol": "circle", }, text=hover, hoverinfo="text+name", showlegend=True, legendgroup=metric_name ) ) if anomalies: traces.append( go.Scatter( # Trend line x=x_axis, y=trend_avg, name=metric_name, mode="lines", line={ "shape": "linear", "width": 1, "color": color, }, text=hover_trend, hoverinfo="text+name", showlegend=False, legendgroup=metric_name ) ) anomaly_x = list() anomaly_y = list() anomaly_color = list() hover = list() for idx, anomaly in enumerate(anomalies): if anomaly in ("regression", "progression"): anomaly_x.append(x_axis[idx]) anomaly_y.append(trend_avg[idx]) anomaly_color.append(C.ANOMALY_COLOR[anomaly]) hover_itm = ( f"date: {x_axis[idx].strftime('%Y-%m-%d %H:%M:%S')}" f"
trend: {trend_avg[idx]:,.2f}" f"
classification: {anomaly}" ) hover.append(hover_itm) anomaly_color.extend([0.0, 0.5, 1.0]) traces.append( go.Scatter( x=anomaly_x, y=anomaly_y, mode="markers", text=hover, hoverinfo="text+name", showlegend=False, legendgroup=metric_name, name=metric_name, marker={ "size": 15, "symbol": "circle-open", "color": anomaly_color, "colorscale": C.COLORSCALE_TPUT, "showscale": True, "line": { "width": 2 }, "colorbar": { "y": 0.5, "len": 0.8, "title": "Circles Marking Data Classification", "titleside": "right", "tickmode": "array", "tickvals": [0.167, 0.500, 0.833], "ticktext": C.TICK_TEXT_TPUT, "ticks": "", "ticklen": 0, "tickangle": -90, "thickness": 10 } } ) ) unique_metrics = set() for itm in metrics: unique_metrics.add(itm.split("{", 1)[0]) return traces, unique_metrics tm_trending_graphs = list() graph_layout = layout.get("plot-trending-telemetry", dict()) if all_in_one: all_traces = list() all_metrics = set() all_tests = list() for idx, test in enumerate(data.test_name.unique()): df = data.loc[(data["test_name"] == test)] traces, metrics = _generate_traces(df, test, all_in_one, idx) if traces: all_metrics.update(metrics) if all_in_one: all_traces.extend(traces) all_tests.append(test) else: graph = go.Figure() graph.add_traces(traces) graph.update_layout(graph_layout) tm_trending_graphs.append((graph, [test, ], )) if all_in_one: graph = go.Figure() graph.add_traces(all_traces) graph.update_layout(graph_layout) tm_trending_graphs.append((graph, all_tests, )) return tm_trending_graphs, list(all_metrics)