#!/usr/bin/env python3 # Copyright (c) 2023 Cisco and/or its affiliates. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ETL script running on top of the s3://""" from datetime import datetime, timedelta from json import load from os import environ from pytz import utc import awswrangler as wr from awswrangler.exceptions import EmptyDataFrame from awsglue.context import GlueContext from boto3 import session from pyspark.context import SparkContext from pyspark.sql.functions import lit from pyspark.sql.types import StructType S3_LOGS_BUCKET=environ.get("S3_LOGS_BUCKET", "fdio-logs-s3-cloudfront-index") S3_DOCS_BUCKET=environ.get("S3_DOCS_BUCKET", "fdio-docs-s3-cloudfront-index") PATH=f"s3://{S3_LOGS_BUCKET}/vex-yul-rot-jenkins-1/csit-*-perf-*" SUFFIX="suite.info.json.gz" IGNORE_SUFFIX=[] LAST_MODIFIED_END=utc.localize( datetime.strptime( f"{datetime.now().year}-{datetime.now().month}-{datetime.now().day}", "%Y-%m-%d" ) ) LAST_MODIFIED_BEGIN=LAST_MODIFIED_END - timedelta(1) def process_json_to_dataframe(schema_name, paths): """Processes JSON to Spark DataFrame. :param schema_name: Schema name. :type schema_name: string :param paths: S3 paths to process. :type paths: list :returns: Spark DataFrame. :rtype: DataFrame """ drop_subset = [ "duration", "version" ] # load schemas with open(f"stats_{schema_name}.json", "r", encoding="UTF-8") as f_schema: schema = StructType.fromJson(load(f_schema)) # create empty DF out of schemas sdf = spark.createDataFrame([], schema) # filter list filtered = [path for path in paths if "tests/suite.info.json.gz" in path] # select for path in filtered: print(path) sdf_loaded = spark \ .read \ .option("multiline", "true") \ .schema(schema) \ .json(path) \ .withColumn("job", lit(path.split("/")[4])) \ .withColumn("build", lit(path.split("/")[5])) \ .withColumn("stats_type", lit(schema_name)) sdf = sdf.unionByName(sdf_loaded, allowMissingColumns=True) # drop rows with all nulls and drop rows with null in critical frames sdf = sdf.na.drop(how="all") sdf = sdf.na.drop(how="any", thresh=None, subset=drop_subset) return sdf # create SparkContext and GlueContext spark_context = SparkContext.getOrCreate() spark_context.setLogLevel("WARN") glue_context = GlueContext(spark_context) spark = glue_context.spark_session # files of interest paths = wr.s3.list_objects( path=PATH, suffix=SUFFIX, last_modified_begin=LAST_MODIFIED_BEGIN, last_modified_end=LAST_MODIFIED_END, ignore_suffix=IGNORE_SUFFIX, ignore_empty=True ) for schema_name in ["sra"]: out_sdf = process_json_to_dataframe(schema_name, paths) out_sdf.printSchema() out_sdf = out_sdf \ .withColumn("year", lit(datetime.now().year)) \ .withColumn("month", lit(datetime.now().month)) \ .withColumn("day", lit(datetime.now().day)) \ .repartition(1) try: boto3_session = session.Session( aws_access_key_id=environ["OUT_AWS_ACCESS_KEY_ID"], aws_secret_access_key=environ["OUT_AWS_SECRET_ACCESS_KEY"], region_name=environ["OUT_AWS_DEFAULT_REGION"] ) except KeyError: boto3_session = session.Session() ) try: wr.s3.to_parquet( df=out_sdf.toPandas(), path=f"s3://{S3_DOCS_BUCKET}/csit/parquet/stats", dataset=True, partition_cols=["stats_type", "year", "month", "day"], compression="snappy", use_threads=True, mode="overwrite_partitions", boto3_session=boto3_session ) except EmptyDataFrame: pass