# Copyright (c) 2022 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
"""
import re
import plotly.graph_objects as go
import pandas as pd
from copy import deepcopy
import hdrh.histogram
import hdrh.codec
_VALUE = {
"mrr": "result_receive_rate_rate_values",
"ndr": "result_ndr_lower_rate_value",
"pdr": "result_pdr_lower_rate_value",
"pdr-lat": "result_latency_forward_pdr_50_avg"
}
_UNIT = {
"mrr": "result_receive_rate_rate_unit",
"ndr": "result_ndr_lower_rate_unit",
"pdr": "result_pdr_lower_rate_unit",
"pdr-lat": "result_latency_forward_pdr_50_unit"
}
_LAT_HDRH = ( # Do not change the order
"result_latency_forward_pdr_0_hdrh",
"result_latency_reverse_pdr_0_hdrh",
"result_latency_forward_pdr_10_hdrh",
"result_latency_reverse_pdr_10_hdrh",
"result_latency_forward_pdr_50_hdrh",
"result_latency_reverse_pdr_50_hdrh",
"result_latency_forward_pdr_90_hdrh",
"result_latency_reverse_pdr_90_hdrh",
)
# This value depends on latency stream rate (9001 pps) and duration (5s).
# Keep it slightly higher to ensure rounding errors to not remove tick mark.
PERCENTILE_MAX = 99.999501
_GRAPH_LAT_HDRH_DESC = {
"result_latency_forward_pdr_0_hdrh": "No-load.",
"result_latency_reverse_pdr_0_hdrh": "No-load.",
"result_latency_forward_pdr_10_hdrh": "Low-load, 10% PDR.",
"result_latency_reverse_pdr_10_hdrh": "Low-load, 10% PDR.",
"result_latency_forward_pdr_50_hdrh": "Mid-load, 50% PDR.",
"result_latency_reverse_pdr_50_hdrh": "Mid-load, 50% PDR.",
"result_latency_forward_pdr_90_hdrh": "High-load, 90% PDR.",
"result_latency_reverse_pdr_90_hdrh": "High-load, 90% PDR."
}
def _get_color(idx: int) -> str:
"""
"""
_COLORS = (
"#1A1110", "#DA2647", "#214FC6", "#01786F", "#BD8260", "#FFD12A",
"#A6E7FF", "#738276", "#C95A49", "#FC5A8D", "#CEC8EF", "#391285",
"#6F2DA8", "#FF878D", "#45A27D", "#FFD0B9", "#FD5240", "#DB91EF",
"#44D7A8", "#4F86F7", "#84DE02", "#FFCFF1", "#614051"
)
return _COLORS[idx % len(_COLORS)]
def get_short_version(version: str, dut_type: str="vpp") -> str:
"""
"""
if dut_type in ("trex", "dpdk"):
return version
s_version = str()
groups = re.search(
pattern=re.compile(r"^(\d{2}).(\d{2})-(rc0|rc1|rc2|release$)"),
string=version
)
if groups:
try:
s_version = \
f"{groups.group(1)}.{groups.group(2)}.{groups.group(3)}".\
replace("release", "rls")
except IndexError:
pass
return s_version
def select_iterative_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame:
"""
"""
phy = itm["phy"].split("-")
if len(phy) == 4:
topo, arch, nic, drv = phy
if drv == "dpdk":
drv = ""
else:
drv += "-"
drv = drv.replace("_", "-")
else:
return None
core = str() if itm["dut"] == "trex" else f"{itm['core']}"
ttype = "ndrpdr" if itm["testtype"] in ("ndr", "pdr") else itm["testtype"]
dut_v100 = "none" if itm["dut"] == "trex" else itm["dut"]
dut_v101 = itm["dut"]
df = data.loc[(
(data["release"] == itm["rls"]) &
(
(
(data["version"] == "1.0.0") &
(data["dut_type"].str.lower() == dut_v100)
) |
(
(data["version"] == "1.0.1") &
(data["dut_type"].str.lower() == dut_v101)
)
) &
(data["test_type"] == ttype) &
(data["passed"] == True)
)]
regex_test = \
f"^.*[.|-]{nic}.*{itm['framesize']}-{core}-{drv}{itm['test']}-{ttype}$"
df = df[
(df.job.str.endswith(f"{topo}-{arch}")) &
(df.dut_version.str.contains(itm["dutver"].replace(".r", "-r").\
replace("rls", "release"))) &
(df.test_id.str.contains(regex_test, regex=True))
]
return df
def graph_iterative(data: pd.DataFrame, sel:dict, layout: dict) -> tuple:
"""
"""
fig_tput = None
fig_lat = None
tput_traces = list()
y_tput_max = 0
lat_traces = list()
y_lat_max = 0
x_lat = list()
show_latency = False
show_tput = False
for idx, itm in enumerate(sel):
itm_data = select_iterative_data(data, itm)
if itm_data.empty:
continue
if itm["testtype"] == "mrr":
y_data = itm_data[_VALUE[itm["testtype"]]].to_list()[0]
if y_data.size > 0:
y_tput_max = \
max(y_data) if max(y_data) > y_tput_max else y_tput_max
else:
y_data = itm_data[_VALUE[itm["testtype"]]].to_list()
if y_data:
y_tput_max = \
max(y_data) if max(y_data) > y_tput_max else y_tput_max
nr_of_samples = len(y_data)
tput_kwargs = dict(
y=y_data,
name=(
f"{idx + 1}. "
f"({nr_of_samples:02d} "
f"run{'s' if nr_of_samples > 1 else ''}) "
f"{itm['id']}"
),
hoverinfo=u"y+name",
boxpoints="all",
jitter=0.3,
marker=dict(color=_get_color(idx))
)
tput_traces.append(go.Box(**tput_kwargs))
show_tput = True
if itm["testtype"] == "pdr":
y_lat = itm_data[_VALUE["pdr-lat"]].to_list()
if y_lat:
y_lat_max = max(y_lat) if max(y_lat) > y_lat_max else y_lat_max
nr_of_samples = len(y_lat)
lat_kwargs = dict(
y=y_lat,
name=(
f"{idx + 1}. "
f"({nr_of_samples:02d} "
f"run{u's' if nr_of_samples > 1 else u''}) "
f"{itm['id']}"
),
hoverinfo="all",
boxpoints="all",
jitter=0.3,
)
x_lat.append(idx + 1)
lat_traces.append(go.Box(**lat_kwargs))
show_latency = True
else:
lat_traces.append(go.Box())
if show_tput:
pl_tput = deepcopy(layout["plot-throughput"])
pl_tput["xaxis"]["tickvals"] = [i for i in range(len(sel))]
pl_tput["xaxis"]["ticktext"] = [str(i + 1) for i in range(len(sel))]
if y_tput_max:
pl_tput["yaxis"]["range"] = [0, (int(y_tput_max / 1e6) + 1) * 1e6]
fig_tput = go.Figure(data=tput_traces, layout=pl_tput)
if show_latency:
pl_lat = deepcopy(layout["plot-latency"])
pl_lat["xaxis"]["tickvals"] = [i for i in range(len(x_lat))]
pl_lat["xaxis"]["ticktext"] = x_lat
if y_lat_max:
pl_lat["yaxis"]["range"] = [0, (int(y_lat_max / 10) + 1) * 10]
fig_lat = go.Figure(data=lat_traces, layout=pl_lat)
return fig_tput, fig_lat
def table_comparison(data: pd.DataFrame, sel:dict) -> pd.DataFrame:
"""
"""
table = pd.DataFrame(
{
"Test Case": [
"64b-2t1c-avf-eth-l2xcbase-eth-2memif-1dcr",
"64b-2t1c-avf-eth-l2xcbase-eth-2vhostvr1024-1vm-vppl2xc",
"64b-2t1c-avf-ethip4udp-ip4base-iacl50sl-10kflows",
"78b-2t1c-avf-ethip6-ip6scale2m-rnd "],
"2106.0-8": [
"14.45 +- 0.08",
"9.63 +- 0.05",
"9.7 +- 0.02",
"8.95 +- 0.06"],
"2110.0-8": [
"14.45 +- 0.08",
"9.63 +- 0.05",
"9.7 +- 0.02",
"8.95 +- 0.06"],
"2110.0-9": [
"14.45 +- 0.08",
"9.63 +- 0.05",
"9.7 +- 0.02",
"8.95 +- 0.06"],
"2202.0-9": [
"14.45 +- 0.08",
"9.63 +- 0.05",
"9.7 +- 0.02",
"8.95 +- 0.06"],
"2110.0-9 vs 2110.0-8": [
"-0.23 +- 0.62",
"-1.37 +- 1.3",
"+0.08 +- 0.2",
"-2.16 +- 0.83"],
"2202.0-9 vs 2110.0-9": [
"+6.95 +- 0.72",
"+5.35 +- 1.26",
"+4.48 +- 1.48",
"+4.09 +- 0.95"]
}
)
return pd.DataFrame() #table
def graph_hdrh_latency(data: dict, layout: dict) -> go.Figure:
"""
"""
fig = None
traces = list()
for idx, (lat_name, lat_hdrh) in enumerate(data.items()):
try:
decoded = hdrh.histogram.HdrHistogram.decode(lat_hdrh)
except (hdrh.codec.HdrLengthException, TypeError) as err:
continue
previous_x = 0.0
prev_perc = 0.0
xaxis = list()
yaxis = list()
hovertext = list()
for item in decoded.get_recorded_iterator():
# The real value is "percentile".
# For 100%, we cut that down to "x_perc" to avoid
# infinity.
percentile = item.percentile_level_iterated_to
x_perc = min(percentile, PERCENTILE_MAX)
xaxis.append(previous_x)
yaxis.append(item.value_iterated_to)
hovertext.append(
f"{_GRAPH_LAT_HDRH_DESC[lat_name]}
"
f"Direction: {('W-E', 'E-W')[idx % 2]}
"
f"Percentile: {prev_perc:.5f}-{percentile:.5f}%
"
f"Latency: {item.value_iterated_to}uSec"
)
next_x = 100.0 / (100.0 - x_perc)
xaxis.append(next_x)
yaxis.append(item.value_iterated_to)
hovertext.append(
f"{_GRAPH_LAT_HDRH_DESC[lat_name]}
"
f"Direction: {('W-E', 'E-W')[idx % 2]}
"
f"Percentile: {prev_perc:.5f}-{percentile:.5f}%
"
f"Latency: {item.value_iterated_to}uSec"
)
previous_x = next_x
prev_perc = percentile
traces.append(
go.Scatter(
x=xaxis,
y=yaxis,
name=_GRAPH_LAT_HDRH_DESC[lat_name],
mode="lines",
legendgroup=_GRAPH_LAT_HDRH_DESC[lat_name],
showlegend=bool(idx % 2),
line=dict(
color=_get_color(int(idx/2)),
dash="solid",
width=1 if idx % 2 else 2
),
hovertext=hovertext,
hoverinfo="text"
)
)
if traces:
fig = go.Figure()
fig.add_traces(traces)
layout_hdrh = layout.get("plot-hdrh-latency", None)
if lat_hdrh:
fig.update_layout(layout_hdrh)
return fig