# Copyright (c) 2022 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
"""
import logging
import plotly.graph_objects as go
import pandas as pd
import hdrh.histogram
import hdrh.codec
from datetime import datetime
from numpy import isnan
from ..jumpavg import classify
_NORM_FREQUENCY = 2.0 # [GHz]
_FREQURENCY = { # [GHz]
"2n-aws": 1.000,
"2n-dnv": 2.000,
"2n-clx": 2.300,
"2n-icx": 2.600,
"2n-skx": 2.500,
"2n-tx2": 2.500,
"2n-zn2": 2.900,
"3n-alt": 3.000,
"3n-aws": 1.000,
"3n-dnv": 2.000,
"3n-icx": 2.600,
"3n-skx": 2.500,
"3n-tsh": 2.200
}
_ANOMALY_COLOR = {
"regression": 0.0,
"normal": 0.5,
"progression": 1.0
}
_COLORSCALE_TPUT = [
[0.00, "red"],
[0.33, "red"],
[0.33, "white"],
[0.66, "white"],
[0.66, "green"],
[1.00, "green"]
]
_TICK_TEXT_TPUT = ["Regression", "Normal", "Progression"]
_COLORSCALE_LAT = [
[0.00, "green"],
[0.33, "green"],
[0.33, "white"],
[0.66, "white"],
[0.66, "red"],
[1.00, "red"]
]
_TICK_TEXT_LAT = ["Progression", "Normal", "Regression"]
_VALUE = {
"mrr": "result_receive_rate_rate_avg",
"ndr": "result_ndr_lower_rate_value",
"pdr": "result_pdr_lower_rate_value",
"pdr-lat": "result_latency_forward_pdr_50_avg"
}
_UNIT = {
"mrr": "result_receive_rate_rate_unit",
"ndr": "result_ndr_lower_rate_unit",
"pdr": "result_pdr_lower_rate_unit",
"pdr-lat": "result_latency_forward_pdr_50_unit"
}
_LAT_HDRH = ( # Do not change the order
"result_latency_forward_pdr_0_hdrh",
"result_latency_reverse_pdr_0_hdrh",
"result_latency_forward_pdr_10_hdrh",
"result_latency_reverse_pdr_10_hdrh",
"result_latency_forward_pdr_50_hdrh",
"result_latency_reverse_pdr_50_hdrh",
"result_latency_forward_pdr_90_hdrh",
"result_latency_reverse_pdr_90_hdrh",
)
# This value depends on latency stream rate (9001 pps) and duration (5s).
# Keep it slightly higher to ensure rounding errors to not remove tick mark.
PERCENTILE_MAX = 99.999501
_GRAPH_LAT_HDRH_DESC = {
"result_latency_forward_pdr_0_hdrh": "No-load.",
"result_latency_reverse_pdr_0_hdrh": "No-load.",
"result_latency_forward_pdr_10_hdrh": "Low-load, 10% PDR.",
"result_latency_reverse_pdr_10_hdrh": "Low-load, 10% PDR.",
"result_latency_forward_pdr_50_hdrh": "Mid-load, 50% PDR.",
"result_latency_reverse_pdr_50_hdrh": "Mid-load, 50% PDR.",
"result_latency_forward_pdr_90_hdrh": "High-load, 90% PDR.",
"result_latency_reverse_pdr_90_hdrh": "High-load, 90% PDR."
}
def _get_color(idx: int) -> str:
"""
"""
_COLORS = (
"#1A1110", "#DA2647", "#214FC6", "#01786F", "#BD8260", "#FFD12A",
"#A6E7FF", "#738276", "#C95A49", "#FC5A8D", "#CEC8EF", "#391285",
"#6F2DA8", "#FF878D", "#45A27D", "#FFD0B9", "#FD5240", "#DB91EF",
"#44D7A8", "#4F86F7", "#84DE02", "#FFCFF1", "#614051"
)
return _COLORS[idx % len(_COLORS)]
def _get_hdrh_latencies(row: pd.Series, name: str) -> dict:
"""
"""
latencies = {"name": name}
for key in _LAT_HDRH:
try:
latencies[key] = row[key]
except KeyError:
return None
return latencies
def _classify_anomalies(data):
"""Process the data and return anomalies and trending values.
Gather data into groups with average as trend value.
Decorate values within groups to be normal,
the first value of changed average as a regression, or a progression.
:param data: Full data set with unavailable samples replaced by nan.
:type data: OrderedDict
:returns: Classification and trend values
:rtype: 3-tuple, list of strings, list of floats and list of floats
"""
# NaN means something went wrong.
# Use 0.0 to cause that being reported as a severe regression.
bare_data = [0.0 if isnan(sample) else sample for sample in data.values()]
# TODO: Make BitCountingGroupList a subclass of list again?
group_list = classify(bare_data).group_list
group_list.reverse() # Just to use .pop() for FIFO.
classification = list()
avgs = list()
stdevs = list()
active_group = None
values_left = 0
avg = 0.0
stdv = 0.0
for sample in data.values():
if isnan(sample):
classification.append("outlier")
avgs.append(sample)
stdevs.append(sample)
continue
if values_left < 1 or active_group is None:
values_left = 0
while values_left < 1: # Ignore empty groups (should not happen).
active_group = group_list.pop()
values_left = len(active_group.run_list)
avg = active_group.stats.avg
stdv = active_group.stats.stdev
classification.append(active_group.comment)
avgs.append(avg)
stdevs.append(stdv)
values_left -= 1
continue
classification.append("normal")
avgs.append(avg)
stdevs.append(stdv)
values_left -= 1
return classification, avgs, stdevs
def select_trending_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame:
"""
"""
phy = itm["phy"].split("-")
if len(phy) == 4:
topo, arch, nic, drv = phy
if drv == "dpdk":
drv = ""
else:
drv += "-"
drv = drv.replace("_", "-")
else:
return None
core = str() if itm["dut"] == "trex" else f"{itm['core']}"
ttype = "ndrpdr" if itm["testtype"] in ("ndr", "pdr") else itm["testtype"]
dut_v100 = "none" if itm["dut"] == "trex" else itm["dut"]
dut_v101 = itm["dut"]
df = data.loc[(
(
(
(data["version"] == "1.0.0") &
(data["dut_type"].str.lower() == dut_v100)
) |
(
(data["version"] == "1.0.1") &
(data["dut_type"].str.lower() == dut_v101)
)
) &
(data["test_type"] == ttype) &
(data["passed"] == True)
)]
df = df[df.job.str.endswith(f"{topo}-{arch}")]
df = df[df.test_id.str.contains(
f"^.*[.|-]{nic}.*{itm['framesize']}-{core}-{drv}{itm['test']}-{ttype}$",
regex=True
)].sort_values(by="start_time", ignore_index=True)
return df
def _generate_trending_traces(ttype: str, name: str, df: pd.DataFrame,
start: datetime, end: datetime, color: str, norm_factor: float) -> list:
"""
"""
df = df.dropna(subset=[_VALUE[ttype], ])
if df.empty:
return list()
df = df.loc[((df["start_time"] >= start) & (df["start_time"] <= end))]
if df.empty:
return list()
x_axis = df["start_time"].tolist()
y_data = [itm * norm_factor for itm in df[_VALUE[ttype]].tolist()]
anomalies, trend_avg, trend_stdev = _classify_anomalies(
{k: v for k, v in zip(x_axis, y_data)}
)
hover = list()
customdata = list()
for _, row in df.iterrows():
d_type = "trex" if row["dut_type"] == "none" else row["dut_type"]
hover_itm = (
f"date: {row['start_time'].strftime('%Y-%m-%d %H:%M:%S')}
"
f" [{row[_UNIT[ttype]]}]: {row[_VALUE[ttype]]:,.0f}
"
f""
f"{d_type}-ref: {row['dut_version']}
"
f"csit-ref: {row['job']}/{row['build']}
"
f"hosts: {', '.join(row['hosts'])}"
)
if ttype == "mrr":
stdev = (
f"stdev [{row['result_receive_rate_rate_unit']}]: "
f"{row['result_receive_rate_rate_stdev']:,.0f}
"
)
else:
stdev = ""
hover_itm = hover_itm.replace(
"", "latency" if ttype == "pdr-lat" else "average"
).replace("", stdev)
hover.append(hover_itm)
if ttype == "pdr-lat":
customdata.append(_get_hdrh_latencies(row, name))
hover_trend = list()
for avg, stdev, (_, row) in zip(trend_avg, trend_stdev, df.iterrows()):
d_type = "trex" if row["dut_type"] == "none" else row["dut_type"]
hover_itm = (
f"date: {row['start_time'].strftime('%Y-%m-%d %H:%M:%S')}
"
f"trend [pps]: {avg:,.0f}
"
f"stdev [pps]: {stdev:,.0f}
"
f"{d_type}-ref: {row['dut_version']}
"
f"csit-ref: {row['job']}/{row['build']}
"
f"hosts: {', '.join(row['hosts'])}"
)
if ttype == "pdr-lat":
hover_itm = hover_itm.replace("[pps]", "[us]")
hover_trend.append(hover_itm)
traces = [
go.Scatter( # Samples
x=x_axis,
y=y_data,
name=name,
mode="markers",
marker={
"size": 5,
"color": color,
"symbol": "circle",
},
text=hover,
hoverinfo="text+name",
showlegend=True,
legendgroup=name,
customdata=customdata
),
go.Scatter( # Trend line
x=x_axis,
y=trend_avg,
name=name,
mode="lines",
line={
"shape": "linear",
"width": 1,
"color": color,
},
text=hover_trend,
hoverinfo="text+name",
showlegend=False,
legendgroup=name,
)
]
if anomalies:
anomaly_x = list()
anomaly_y = list()
anomaly_color = list()
hover = list()
for idx, anomaly in enumerate(anomalies):
if anomaly in ("regression", "progression"):
anomaly_x.append(x_axis[idx])
anomaly_y.append(trend_avg[idx])
anomaly_color.append(_ANOMALY_COLOR[anomaly])
hover_itm = (
f"date: {x_axis[idx].strftime('%Y-%m-%d %H:%M:%S')}
"
f"trend [pps]: {trend_avg[idx]:,.0f}
"
f"classification: {anomaly}"
)
if ttype == "pdr-lat":
hover_itm = hover_itm.replace("[pps]", "[us]")
hover.append(hover_itm)
anomaly_color.extend([0.0, 0.5, 1.0])
traces.append(
go.Scatter(
x=anomaly_x,
y=anomaly_y,
mode="markers",
text=hover,
hoverinfo="text+name",
showlegend=False,
legendgroup=name,
name=name,
marker={
"size": 15,
"symbol": "circle-open",
"color": anomaly_color,
"colorscale": _COLORSCALE_LAT \
if ttype == "pdr-lat" else _COLORSCALE_TPUT,
"showscale": True,
"line": {
"width": 2
},
"colorbar": {
"y": 0.5,
"len": 0.8,
"title": "Circles Marking Data Classification",
"titleside": "right",
"tickmode": "array",
"tickvals": [0.167, 0.500, 0.833],
"ticktext": _TICK_TEXT_LAT \
if ttype == "pdr-lat" else _TICK_TEXT_TPUT,
"ticks": "",
"ticklen": 0,
"tickangle": -90,
"thickness": 10
}
}
)
)
return traces
def graph_trending(data: pd.DataFrame, sel:dict, layout: dict,
start: datetime, end: datetime, normalize: bool) -> tuple:
"""
"""
if not sel:
return None, None
fig_tput = None
fig_lat = None
for idx, itm in enumerate(sel):
df = select_trending_data(data, itm)
if df is None or df.empty:
continue
name = "-".join((itm["dut"], itm["phy"], itm["framesize"], itm["core"],
itm["test"], itm["testtype"], ))
if normalize:
phy = itm["phy"].split("-")
topo_arch = f"{phy[0]}-{phy[1]}" if len(phy) == 4 else str()
norm_factor = (_NORM_FREQUENCY / _FREQURENCY[topo_arch]) \
if topo_arch else 1.0
else:
norm_factor = 1.0
traces = _generate_trending_traces(
itm["testtype"], name, df, start, end, _get_color(idx), norm_factor
)
if traces:
if not fig_tput:
fig_tput = go.Figure()
fig_tput.add_traces(traces)
if itm["testtype"] == "pdr":
traces = _generate_trending_traces(
"pdr-lat", name, df, start, end, _get_color(idx), norm_factor
)
if traces:
if not fig_lat:
fig_lat = go.Figure()
fig_lat.add_traces(traces)
if fig_tput:
fig_tput.update_layout(layout.get("plot-trending-tput", dict()))
if fig_lat:
fig_lat.update_layout(layout.get("plot-trending-lat", dict()))
return fig_tput, fig_lat
def graph_hdrh_latency(data: dict, layout: dict) -> go.Figure:
"""
"""
fig = None
traces = list()
for idx, (lat_name, lat_hdrh) in enumerate(data.items()):
try:
decoded = hdrh.histogram.HdrHistogram.decode(lat_hdrh)
except (hdrh.codec.HdrLengthException, TypeError) as err:
continue
previous_x = 0.0
prev_perc = 0.0
xaxis = list()
yaxis = list()
hovertext = list()
for item in decoded.get_recorded_iterator():
# The real value is "percentile".
# For 100%, we cut that down to "x_perc" to avoid
# infinity.
percentile = item.percentile_level_iterated_to
x_perc = min(percentile, PERCENTILE_MAX)
xaxis.append(previous_x)
yaxis.append(item.value_iterated_to)
hovertext.append(
f"{_GRAPH_LAT_HDRH_DESC[lat_name]}
"
f"Direction: {('W-E', 'E-W')[idx % 2]}
"
f"Percentile: {prev_perc:.5f}-{percentile:.5f}%
"
f"Latency: {item.value_iterated_to}uSec"
)
next_x = 100.0 / (100.0 - x_perc)
xaxis.append(next_x)
yaxis.append(item.value_iterated_to)
hovertext.append(
f"{_GRAPH_LAT_HDRH_DESC[lat_name]}
"
f"Direction: {('W-E', 'E-W')[idx % 2]}
"
f"Percentile: {prev_perc:.5f}-{percentile:.5f}%
"
f"Latency: {item.value_iterated_to}uSec"
)
previous_x = next_x
prev_perc = percentile
traces.append(
go.Scatter(
x=xaxis,
y=yaxis,
name=_GRAPH_LAT_HDRH_DESC[lat_name],
mode="lines",
legendgroup=_GRAPH_LAT_HDRH_DESC[lat_name],
showlegend=bool(idx % 2),
line=dict(
color=_get_color(int(idx/2)),
dash="solid",
width=1 if idx % 2 else 2
),
hovertext=hovertext,
hoverinfo="text"
)
)
if traces:
fig = go.Figure()
fig.add_traces(traces)
layout_hdrh = layout.get("plot-hdrh-latency", None)
if lat_hdrh:
fig.update_layout(layout_hdrh)
return fig