# Copyright (c) 2022 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
"""
import plotly.graph_objects as go
import pandas as pd
import re
from datetime import datetime
from numpy import isnan
from ..jumpavg import classify
_COLORS = (
u"#1A1110",
u"#DA2647",
u"#214FC6",
u"#01786F",
u"#BD8260",
u"#FFD12A",
u"#A6E7FF",
u"#738276",
u"#C95A49",
u"#FC5A8D",
u"#CEC8EF",
u"#391285",
u"#6F2DA8",
u"#FF878D",
u"#45A27D",
u"#FFD0B9",
u"#FD5240",
u"#DB91EF",
u"#44D7A8",
u"#4F86F7",
u"#84DE02",
u"#FFCFF1",
u"#614051"
)
_ANOMALY_COLOR = {
u"regression": 0.0,
u"normal": 0.5,
u"progression": 1.0
}
_COLORSCALE_TPUT = [
[0.00, u"red"],
[0.33, u"red"],
[0.33, u"white"],
[0.66, u"white"],
[0.66, u"green"],
[1.00, u"green"]
]
_TICK_TEXT_TPUT = [u"Regression", u"Normal", u"Progression"]
_COLORSCALE_LAT = [
[0.00, u"green"],
[0.33, u"green"],
[0.33, u"white"],
[0.66, u"white"],
[0.66, u"red"],
[1.00, u"red"]
]
_TICK_TEXT_LAT = [u"Progression", u"Normal", u"Regression"]
_VALUE = {
"mrr": "result_receive_rate_rate_avg",
"ndr": "result_ndr_lower_rate_value",
"pdr": "result_pdr_lower_rate_value",
"pdr-lat": "result_latency_forward_pdr_50_avg"
}
_UNIT = {
"mrr": "result_receive_rate_rate_unit",
"ndr": "result_ndr_lower_rate_unit",
"pdr": "result_pdr_lower_rate_unit",
"pdr-lat": "result_latency_forward_pdr_50_unit"
}
def _classify_anomalies(data):
"""Process the data and return anomalies and trending values.
Gather data into groups with average as trend value.
Decorate values within groups to be normal,
the first value of changed average as a regression, or a progression.
:param data: Full data set with unavailable samples replaced by nan.
:type data: OrderedDict
:returns: Classification and trend values
:rtype: 3-tuple, list of strings, list of floats and list of floats
"""
# NaN means something went wrong.
# Use 0.0 to cause that being reported as a severe regression.
bare_data = [0.0 if isnan(sample) else sample for sample in data.values()]
# TODO: Make BitCountingGroupList a subclass of list again?
group_list = classify(bare_data).group_list
group_list.reverse() # Just to use .pop() for FIFO.
classification = list()
avgs = list()
stdevs = list()
active_group = None
values_left = 0
avg = 0.0
stdv = 0.0
for sample in data.values():
if isnan(sample):
classification.append(u"outlier")
avgs.append(sample)
stdevs.append(sample)
continue
if values_left < 1 or active_group is None:
values_left = 0
while values_left < 1: # Ignore empty groups (should not happen).
active_group = group_list.pop()
values_left = len(active_group.run_list)
avg = active_group.stats.avg
stdv = active_group.stats.stdev
classification.append(active_group.comment)
avgs.append(avg)
stdevs.append(stdv)
values_left -= 1
continue
classification.append(u"normal")
avgs.append(avg)
stdevs.append(stdv)
values_left -= 1
return classification, avgs, stdevs
def trending_tput(data: pd.DataFrame, sel:dict, layout: dict, start: datetime,
end: datetime):
"""
"""
if not sel:
return None, None
def _generate_traces(ttype: str, name: str, df: pd.DataFrame,
start: datetime, end: datetime, color: str):
df = df.dropna(subset=[_VALUE[ttype], ])
if df.empty:
return list()
x_axis = [d for d in df["start_time"] if d >= start and d <= end]
anomalies, trend_avg, trend_stdev = _classify_anomalies(
{k: v for k, v in zip(x_axis, df[_VALUE[ttype]])}
)
hover = list()
for _, row in df.iterrows():
hover_itm = (
f"date: {row['start_time'].strftime('%d-%m-%Y %H:%M:%S')}
"
f" [{row[_UNIT[ttype]]}]: {row[_VALUE[ttype]]}
"
f""
f"{row['dut_type']}-ref: {row['dut_version']}
"
f"csit-ref: {row['job']}/{row['build']}"
)
if ttype == "mrr":
stdev = (
f"stdev [{row['result_receive_rate_rate_unit']}]: "
f"{row['result_receive_rate_rate_stdev']}
"
)
else:
stdev = ""
hover_itm = hover_itm.replace(
"", "latency" if ttype == "pdr-lat" else "average"
).replace("", stdev)
hover.append(hover_itm)
hover_trend = list()
for avg, stdev in zip(trend_avg, trend_stdev):
if ttype == "pdr-lat":
hover_trend.append(
f"trend [us]: {avg}
"
f"stdev [us]: {stdev}"
)
else:
hover_trend.append(
f"trend [pps]: {avg}
"
f"stdev [pps]: {stdev}"
)
traces = [
go.Scatter( # Samples
x=x_axis,
y=df[_VALUE[ttype]],
name=name,
mode="markers",
marker={
u"size": 5,
u"color": color,
u"symbol": u"circle",
},
text=hover,
hoverinfo=u"text+name",
showlegend=True,
legendgroup=name,
),
go.Scatter( # Trend line
x=x_axis,
y=trend_avg,
name=name,
mode="lines",
line={
u"shape": u"linear",
u"width": 1,
u"color": color,
},
text=hover_trend,
hoverinfo=u"text+name",
showlegend=False,
legendgroup=name,
)
]
if anomalies:
anomaly_x = list()
anomaly_y = list()
anomaly_color = list()
for idx, anomaly in enumerate(anomalies):
if anomaly in (u"regression", u"progression"):
anomaly_x.append(x_axis[idx])
anomaly_y.append(trend_avg[idx])
anomaly_color.append(_ANOMALY_COLOR[anomaly])
anomaly_color.extend([0.0, 0.5, 1.0])
traces.append(
go.Scatter(
x=anomaly_x,
y=anomaly_y,
mode=u"markers",
hoverinfo=u"none",
showlegend=False,
legendgroup=name,
name=f"{name}-anomalies",
marker={
u"size": 15,
u"symbol": u"circle-open",
u"color": anomaly_color,
u"colorscale": _COLORSCALE_LAT \
if ttype == "pdr-lat" else _COLORSCALE_TPUT,
u"showscale": True,
u"line": {
u"width": 2
},
u"colorbar": {
u"y": 0.5,
u"len": 0.8,
u"title": u"Circles Marking Data Classification",
u"titleside": u"right",
u"titlefont": {
u"size": 14
},
u"tickmode": u"array",
u"tickvals": [0.167, 0.500, 0.833],
u"ticktext": _TICK_TEXT_LAT \
if ttype == "pdr-lat" else _TICK_TEXT_TPUT,
u"ticks": u"",
u"ticklen": 0,
u"tickangle": -90,
u"thickness": 10
}
}
)
)
return traces
# Generate graph:
fig_tput = None
fig_lat = None
for idx, itm in enumerate(sel):
phy = itm["phy"].split("-")
if len(phy) == 4:
topo, arch, nic, drv = phy
if drv in ("dpdk", "ixgbe"):
drv = ""
else:
drv += "-"
drv = drv.replace("_", "-")
else:
continue
cadence = \
"weekly" if (arch == "aws" or itm["testtype"] != "mrr") else "daily"
sel_topo_arch = (
f"csit-vpp-perf-"
f"{itm['testtype'] if itm['testtype'] == 'mrr' else 'ndrpdr'}-"
f"{cadence}-master-{topo}-{arch}"
)
df_sel = data.loc[(data["job"] == sel_topo_arch)]
regex = (
f"^.*{nic}.*\.{itm['framesize']}-{itm['core']}-{drv}{itm['test']}-"
f"{'mrr' if itm['testtype'] == 'mrr' else 'ndrpdr'}$"
)
df = df_sel.loc[
df_sel["test_id"].apply(
lambda x: True if re.search(regex, x) else False
)
].sort_values(by="start_time", ignore_index=True)
name = (
f"{itm['phy']}-{itm['framesize']}-{itm['core']}-"
f"{itm['test']}-{itm['testtype']}"
)
traces = _generate_traces(
itm["testtype"], name, df, start, end, _COLORS[idx % len(_COLORS)]
)
if traces:
if not fig_tput:
fig_tput = go.Figure()
for trace in traces:
fig_tput.add_trace(trace)
if itm["testtype"] == "pdr":
traces = _generate_traces(
"pdr-lat", name, df, start, end, _COLORS[idx % len(_COLORS)]
)
if traces:
if not fig_lat:
fig_lat = go.Figure()
for trace in traces:
fig_lat.add_trace(trace)
if fig_tput:
fig_tput.update_layout(layout.get("plot-trending-tput", dict()))
if fig_lat:
fig_lat.update_layout(layout.get("plot-trending-lat", dict()))
return fig_tput, fig_lat