# Copyright (c) 2020 Cisco and/or its affiliates. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Algorithms to generate plots. """ import re import logging from collections import OrderedDict from copy import deepcopy import hdrh.histogram import hdrh.codec import pandas as pd import plotly.offline as ploff import plotly.graph_objs as plgo from plotly.exceptions import PlotlyError from pal_utils import mean, stdev COLORS = ( u"#1A1110", u"#DA2647", u"#214FC6", u"#01786F", u"#BD8260", u"#FFD12A", u"#A6E7FF", u"#738276", u"#C95A49", u"#FC5A8D", u"#CEC8EF", u"#391285", u"#6F2DA8", u"#FF878D", u"#45A27D", u"#FFD0B9", u"#FD5240", u"#DB91EF", u"#44D7A8", u"#4F86F7", u"#84DE02", u"#FFCFF1", u"#614051" ) REGEX_NIC = re.compile(r'(\d*ge\dp\d\D*\d*[a-z]*)-') def generate_plots(spec, data): """Generate all plots specified in the specification file. :param spec: Specification read from the specification file. :param data: Data to process. :type spec: Specification :type data: InputData """ generator = { u"plot_nf_reconf_box_name": plot_nf_reconf_box_name, u"plot_perf_box_name": plot_perf_box_name, u"plot_tsa_name": plot_tsa_name, u"plot_http_server_perf_box": plot_http_server_perf_box, u"plot_nf_heatmap": plot_nf_heatmap, u"plot_hdrh_lat_by_percentile": plot_hdrh_lat_by_percentile } logging.info(u"Generating the plots ...") for index, plot in enumerate(spec.plots): try: logging.info(f" Plot nr {index + 1}: {plot.get(u'title', u'')}") plot[u"limits"] = spec.configuration[u"limits"] generator[plot[u"algorithm"]](plot, data) logging.info(u" Done.") except NameError as err: logging.error( f"Probably algorithm {plot[u'algorithm']} is not defined: " f"{repr(err)}" ) logging.info(u"Done.") def plot_hdrh_lat_by_percentile(plot, input_data): """Generate the plot(s) with algorithm: plot_hdrh_lat_by_percentile specified in the specification file. :param plot: Plot to generate. :param input_data: Data to process. :type plot: pandas.Series :type input_data: InputData """ # Transform the data logging.info( f" Creating the data set for the {plot.get(u'type', u'')} " f"{plot.get(u'title', u'')}." ) if plot.get(u"include", None): data = input_data.filter_tests_by_name( plot, params=[u"name", u"latency", u"parent", u"tags", u"type"] )[0][0] elif plot.get(u"filter", None): data = input_data.filter_data( plot, params=[u"name", u"latency", u"parent", u"tags", u"type"], continue_on_error=True )[0][0] else: job = list(plot[u"data"].keys())[0] build = str(plot[u"data"][job][0]) data = input_data.tests(job, build) if data is None or len(data) == 0: logging.error(u"No data.") return desc = { u"LAT0": u"No-load.", u"PDR10": u"Low-load, 10% PDR.", u"PDR50": u"Mid-load, 50% PDR.", u"PDR90": u"High-load, 90% PDR.", u"PDR": u"Full-load, 100% PDR.", u"NDR10": u"Low-load, 10% NDR.", u"NDR50": u"Mid-load, 50% NDR.", u"NDR90": u"High-load, 90% NDR.", u"NDR": u"Full-load, 100% NDR." } graphs = [ u"LAT0", u"PDR10", u"PDR50", u"PDR90" ] file_links = plot.get(u"output-file-links", None) target_links = plot.get(u"target-links", None) for test in data: try: if test[u"type"] not in (u"NDRPDR",): logging.warning(f"Invalid test type: {test[u'type']}") continue name = re.sub(REGEX_NIC, u"", test[u"parent"]. replace(u'-ndrpdr', u'').replace(u'2n1l-', u'')) try: nic = re.search(REGEX_NIC, test[u"parent"]).group(1) except (IndexError, AttributeError, KeyError, ValueError): nic = u"" name_link = f"{nic}-{test[u'name']}".replace(u'-ndrpdr', u'') logging.info(f" Generating the graph: {name_link}") fig = plgo.Figure() layout = deepcopy(plot[u"layout"]) for color, graph in enumerate(graphs): for idx, direction in enumerate((u"direction1", u"direction2")): xaxis = [0.0, ] yaxis = [0.0, ] hovertext = [ f"<b>{desc[graph]}</b><br>" f"Direction: {(u'W-E', u'E-W')[idx % 2]}<br>" f"Percentile: 0.0%<br>" f"Latency: 0.0uSec" ] decoded = hdrh.histogram.HdrHistogram.decode( test[u"latency"][graph][direction][u"hdrh"] ) for item in decoded.get_recorded_iterator(): percentile = item.percentile_level_iterated_to if percentile > 99.9: continue xaxis.append(percentile) yaxis.append(item.value_iterated_to) hovertext.append( f"<b>{desc[graph]}</b><br>" f"Direction: {(u'W-E', u'E-W')[idx % 2]}<br>" f"Percentile: {percentile:.5f}%<br>" f"Latency: {item.value_iterated_to}uSec" ) fig.add_trace( plgo.Scatter( x=xaxis, y=yaxis, name=desc[graph], mode=u"lines", legendgroup=desc[graph], showlegend=bool(idx), line=dict( color=COLORS[color], dash=u"solid" if idx % 2 else u"dash" ), hovertext=hovertext, hoverinfo=u"text" ) ) layout[u"title"][u"text"] = f"<b>Latency:</b> {name}" fig.update_layout(layout) # Create plot file_name = f"{plot[u'output-file']}-{name_link}.html" logging.info(f" Writing file {file_name}") try: # Export Plot ploff.plot(fig, show_link=False, auto_open=False, filename=file_name) # Add link to the file: if file_links and target_links: with open(file_links, u"a") as file_handler: file_handler.write( f"- `{name_link} " f"<{target_links}/{file_name.split(u'/')[-1]}>`_\n" ) except FileNotFoundError as err: logging.error( f"Not possible to write the link to the file " f"{file_links}\n{err}" ) except PlotlyError as err: logging.error(f" Finished with error: {repr(err)}") except hdrh.codec.HdrLengthException as err: logging.warning(repr(err)) continue except (ValueError, KeyError) as err: logging.warning(repr(err)) continue def plot_nf_reconf_box_name(plot, input_data): """Generate the plot(s) with algorithm: plot_nf_reconf_box_name specified in the specification file. :param plot: Plot to generate. :param input_data: Data to process. :type plot: pandas.Series :type input_data: InputData """ # Transform the data logging.info( f" Creating the data set for the {plot.get(u'type', u'')} " f"{plot.get(u'title', u'')}." ) data = input_data.filter_tests_by_name( plot, params=[u"result", u"parent", u"tags", u"type"] ) if data is None: logging.error(u"No data.") return # Prepare the data for the plot y_vals = OrderedDict() loss = dict() for job in data: for build in job: for test in build: if y_vals.get(test[u"parent"], None) is None: y_vals[test[u"parent"]] = list() loss[test[u"parent"]] = list() try: y_vals[test[u"parent"]].append(test[u"result"][u"time"]) loss[test[u"parent"]].append(test[u"result"][u"loss"]) except (KeyError, TypeError): y_vals[test[u"parent"]].append(None) # Add None to the lists with missing data max_len = 0 nr_of_samples = list() for val in y_vals.values(): if len(val) > max_len: max_len = len(val) nr_of_samples.append(len(val)) for val in y_vals.values(): if len(val) < max_len: val.extend([None for _ in range(max_len - len(val))]) # Add plot traces traces = list() df_y = pd.DataFrame(y_vals) df_y.head() for i, col in enumerate(df_y.columns): tst_name = re.sub(REGEX_NIC, u"", col.lower().replace(u'-ndrpdr', u''). replace(u'2n1l-', u'')) traces.append(plgo.Box( x=[str(i + 1) + u'.'] * len(df_y[col]), y=[y if y else None for y in df_y[col]], name=( f"{i + 1}. " f"({nr_of_samples[i]:02d} " f"run{u's' if nr_of_samples[i] > 1 else u''}, " f"packets lost average: {mean(loss[col]):.1f}) " f"{u'-'.join(tst_name.split(u'-')[3:-2])}" ), hoverinfo=u"y+name" )) try: # Create plot layout = deepcopy(plot[u"layout"]) layout[u"title"] = f"<b>Time Lost:</b> {layout[u'title']}" layout[u"yaxis"][u"title"] = u"<b>Implied Time Lost [s]</b>" layout[u"legend"][u"font"][u"size"] = 14 layout[u"yaxis"].pop(u"range") plpl = plgo.Figure(data=traces, layout=layout) # Export Plot file_type = plot.get(u"output-file-type", u".html") logging.info(f" Writing file {plot[u'output-file']}{file_type}.") ploff.plot( plpl, show_link=False, auto_open=False, filename=f"{plot[u'output-file']}{file_type}" ) except PlotlyError as err: logging.error( f" Finished with error: {repr(err)}".replace(u"\n", u" ") ) return def plot_perf_box_name(plot, input_data): """Generate the plot(s) with algorithm: plot_perf_box_name specified in the specification file. :param plot: Plot to generate. :param input_data: Data to process. :type plot: pandas.Series :type input_data: InputData """ # Transform the data logging.info( f" Creating data set for the {plot.get(u'type', u'')} " f"{plot.get(u'title', u'')}." ) data = input_data.filter_tests_by_name( plot, params=[u"throughput", u"result", u"parent", u"tags", u"type"]) if data is None: logging.error(u"No data.") return # Prepare the data for the plot y_vals = OrderedDict() test_type = u"" for job in data: for build in job: for test in build: if y_vals.get(test[u"parent"], None) is None: y_vals[test[u"parent"]] = list() try: if (test[u"type"] in (u"NDRPDR", ) and u"-pdr" in plot.get(u"title", u"").lower()): y_vals[test[u"parent"]].\ append(test[u"throughput"][u"PDR"][u"LOWER"]) test_type = u"NDRPDR" elif (test[u"type"] in (u"NDRPDR", ) and u"-ndr" in plot.get(u"title", u"").lower()): y_vals[test[u"parent"]]. \ append(test[u"throughput"][u"NDR"][u"LOWER"]) test_type = u"NDRPDR" elif test[u"type"] in (u"SOAK", ): y_vals[test[u"parent"]].\ append(test[u"throughput"][u"LOWER"]) test_type = u"SOAK" elif test[u"type"] in (u"HOSTSTACK", ): if u"LDPRELOAD" in test[u"tags"]: y_vals[test[u"parent"]].append( float(test[u"result"][u"bits_per_second"]) / 1e3 ) elif u"VPPECHO" in test[u"tags"]: y_vals[test[u"parent"]].append( (float(test[u"result"][u"client"][u"tx_data"]) * 8 / 1e3) / ((float(test[u"result"][u"client"][u"time"]) + float(test[u"result"][u"server"][u"time"])) / 2) ) test_type = u"HOSTSTACK" else: continue except (KeyError, TypeError): y_vals[test[u"parent"]].append(None) # Add None to the lists with missing data max_len = 0 nr_of_samples = list() for val in y_vals.values(): if len(val) > max_len: max_len = len(val) nr_of_samples.append(len(val)) for val in y_vals.values(): if len(val) < max_len: val.extend([None for _ in range(max_len - len(val))]) # Add plot traces traces = list() df_y = pd.DataFrame(y_vals) df_y.head() y_max = list() for i, col in enumerate(df_y.columns): tst_name = re.sub(REGEX_NIC, u"", col.lower().replace(u'-ndrpdr', u''). replace(u'2n1l-', u'')) kwargs = dict( x=[str(i + 1) + u'.'] * len(df_y[col]), y=[y / 1e6 if y else None for y in df_y[col]], name=( f"{i + 1}. " f"({nr_of_samples[i]:02d} " f"run{u's' if nr_of_samples[i] > 1 else u''}) " f"{tst_name}" ), hoverinfo=u"y+name" ) if test_type in (u"SOAK", ): kwargs[u"boxpoints"] = u"all" traces.append(plgo.Box(**kwargs)) try: val_max = max(df_y[col]) if val_max: y_max.append(int(val_max / 1e6) + 2) except (ValueError, TypeError) as err: logging.error(repr(err)) continue try: # Create plot layout = deepcopy(plot[u"layout"]) if layout.get(u"title", None): if test_type in (u"HOSTSTACK", ): layout[u"title"] = f"<b>Bandwidth:</b> {layout[u'title']}" else: layout[u"title"] = f"<b>Throughput:</b> {layout[u'title']}" if y_max: layout[u"yaxis"][u"range"] = [0, max(y_max)] plpl = plgo.Figure(data=traces, layout=layout) # Export Plot logging.info(f" Writing file {plot[u'output-file']}.html.") ploff.plot( plpl, show_link=False, auto_open=False, filename=f"{plot[u'output-file']}.html" ) except PlotlyError as err: logging.error( f" Finished with error: {repr(err)}".replace(u"\n", u" ") ) return def plot_tsa_name(plot, input_data): """Generate the plot(s) with algorithm: plot_tsa_name specified in the specification file. :param plot: Plot to generate. :param input_data: Data to process. :type plot: pandas.Series :type input_data: InputData """ # Transform the data plot_title = plot.get(u"title", u"") logging.info( f" Creating data set for the {plot.get(u'type', u'')} {plot_title}." ) data = input_data.filter_tests_by_name( plot, params=[u"throughput", u"parent", u"tags", u"type"]) if data is None: logging.error(u"No data.") return y_vals = OrderedDict() for job in data: for build in job: for test in build: if y_vals.get(test[u"parent"], None) is None: y_vals[test[u"parent"]] = { u"1": list(), u"2": list(), u"4": list() } try: if test[u"type"] not in (u"NDRPDR",): continue if u"-pdr" in plot_title.lower(): ttype = u"PDR" elif u"-ndr" in plot_title.lower(): ttype = u"NDR" else: continue if u"1C" in test[u"tags"]: y_vals[test[u"parent"]][u"1"]. \ append(test[u"throughput"][ttype][u"LOWER"]) elif u"2C" in test[u"tags"]: y_vals[test[u"parent"]][u"2"]. \ append(test[u"throughput"][ttype][u"LOWER"]) elif u"4C" in test[u"tags"]: y_vals[test[u"parent"]][u"4"]. \ append(test[u"throughput"][ttype][u"LOWER"]) except (KeyError, TypeError): pass if not y_vals: logging.warning(f"No data for the plot {plot.get(u'title', u'')}") return y_1c_max = dict() for test_name, test_vals in y_vals.items(): for key, test_val in test_vals.items(): if test_val: avg_val = sum(test_val) / len(test_val) y_vals[test_name][key] = [avg_val, len(test_val)] ideal = avg_val / (int(key) * 1e6) if test_name not in y_1c_max or ideal > y_1c_max[test_name]: y_1c_max[test_name] = ideal vals = OrderedDict() y_max = list() nic_limit = 0 lnk_limit = 0 pci_limit = plot[u"limits"][u"pci"][u"pci-g3-x8"] for test_name, test_vals in y_vals.items(): try: if test_vals[u"1"][1]: name = re.sub( REGEX_NIC, u"", test_name.replace(u'-ndrpdr', u'').replace(u'2n1l-', u'') ) vals[name] = OrderedDict() y_val_1 = test_vals[u"1"][0] / 1e6 y_val_2 = test_vals[u"2"][0] / 1e6 if test_vals[u"2"][0] \ else None y_val_4 = test_vals[u"4"][0] / 1e6 if test_vals[u"4"][0] \ else None vals[name][u"val"] = [y_val_1, y_val_2, y_val_4] vals[name][u"rel"] = [1.0, None, None] vals[name][u"ideal"] = [ y_1c_max[test_name], y_1c_max[test_name] * 2, y_1c_max[test_name] * 4 ] vals[name][u"diff"] = [ (y_val_1 - y_1c_max[test_name]) * 100 / y_val_1, None, None ] vals[name][u"count"] = [ test_vals[u"1"][1], test_vals[u"2"][1], test_vals[u"4"][1] ] try: val_max = max(vals[name][u"val"]) except ValueError as err: logging.error(repr(err)) continue if val_max: y_max.append(val_max) if y_val_2: vals[name][u"rel"][1] = round(y_val_2 / y_val_1, 2) vals[name][u"diff"][1] = \ (y_val_2 - vals[name][u"ideal"][1]) * 100 / y_val_2 if y_val_4: vals[name][u"rel"][2] = round(y_val_4 / y_val_1, 2) vals[name][u"diff"][2] = \ (y_val_4 - vals[name][u"ideal"][2]) * 100 / y_val_4 except IndexError as err: logging.warning(f"No data for {test_name}") logging.warning(repr(err)) # Limits: if u"x520" in test_name: limit = plot[u"limits"][u"nic"][u"x520"] elif u"x710" in test_name: limit = plot[u"limits"][u"nic"][u"x710"] elif u"xxv710" in test_name: limit = plot[u"limits"][u"nic"][u"xxv710"] elif u"xl710" in test_name: limit = plot[u"limits"][u"nic"][u"xl710"] elif u"x553" in test_name: limit = plot[u"limits"][u"nic"][u"x553"] elif u"cx556a" in test_name: limit = plot[u"limits"][u"nic"][u"cx556a"] else: limit = 0 if limit > nic_limit: nic_limit = limit mul = 2 if u"ge2p" in test_name else 1 if u"10ge" in test_name: limit = plot[u"limits"][u"link"][u"10ge"] * mul elif u"25ge" in test_name: limit = plot[u"limits"][u"link"][u"25ge"] * mul elif u"40ge" in test_name: limit = plot[u"limits"][u"link"][u"40ge"] * mul elif u"100ge" in test_name: limit = plot[u"limits"][u"link"][u"100ge"] * mul else: limit = 0 if limit > lnk_limit: lnk_limit = limit traces = list() annotations = list() x_vals = [1, 2, 4] # Limits: try: threshold = 1.1 * max(y_max) # 10% except ValueError as err: logging.error(err) return nic_limit /= 1e6 traces.append(plgo.Scatter( x=x_vals, y=[nic_limit, ] * len(x_vals), name=f"NIC: {nic_limit:.2f}Mpps", showlegend=False, mode=u"lines", line=dict( dash=u"dot", color=COLORS[-1], width=1), hoverinfo=u"none" )) annotations.append(dict( x=1, y=nic_limit, xref=u"x", yref=u"y", xanchor=u"left", yanchor=u"bottom", text=f"NIC: {nic_limit:.2f}Mpps", font=dict( size=14, color=COLORS[-1], ), align=u"left", showarrow=False )) y_max.append(nic_limit) lnk_limit /= 1e6 if lnk_limit < threshold: traces.append(plgo.Scatter( x=x_vals, y=[lnk_limit, ] * len(x_vals), name=f"Link: {lnk_limit:.2f}Mpps", showlegend=False, mode=u"lines", line=dict( dash=u"dot", color=COLORS[-2], width=1), hoverinfo=u"none" )) annotations.append(dict( x=1, y=lnk_limit, xref=u"x", yref=u"y", xanchor=u"left", yanchor=u"bottom", text=f"Link: {lnk_limit:.2f}Mpps", font=dict( size=14, color=COLORS[-2], ), align=u"left", showarrow=False )) y_max.append(lnk_limit) pci_limit /= 1e6 if (pci_limit < threshold and (pci_limit < lnk_limit * 0.95 or lnk_limit > lnk_limit * 1.05)): traces.append(plgo.Scatter( x=x_vals, y=[pci_limit, ] * len(x_vals), name=f"PCIe: {pci_limit:.2f}Mpps", showlegend=False, mode=u"lines", line=dict( dash=u"dot", color=COLORS[-3], width=1), hoverinfo=u"none" )) annotations.append(dict( x=1, y=pci_limit, xref=u"x", yref=u"y", xanchor=u"left", yanchor=u"bottom", text=f"PCIe: {pci_limit:.2f}Mpps", font=dict( size=14, color=COLORS[-3], ), align=u"left", showarrow=False )) y_max.append(pci_limit) # Perfect and measured: cidx = 0 for name, val in vals.items(): hovertext = list() try: for idx in range(len(val[u"val"])): htext = "" if isinstance(val[u"val"][idx], float): htext += ( f"No. of Runs: {val[u'count'][idx]}<br>" f"Mean: {val[u'val'][idx]:.2f}Mpps<br>" ) if isinstance(val[u"diff"][idx], float): htext += f"Diff: {round(val[u'diff'][idx]):.0f}%<br>" if isinstance(val[u"rel"][idx], float): htext += f"Speedup: {val[u'rel'][idx]:.2f}" hovertext.append(htext) traces.append( plgo.Scatter( x=x_vals, y=val[u"val"], name=name, legendgroup=name, mode=u"lines+markers", line=dict( color=COLORS[cidx], width=2), marker=dict( symbol=u"circle", size=10 ), text=hovertext, hoverinfo=u"text+name" ) ) traces.append( plgo.Scatter( x=x_vals, y=val[u"ideal"], name=f"{name} perfect", legendgroup=name, showlegend=False, mode=u"lines", line=dict( color=COLORS[cidx], width=2, dash=u"dash"), text=[f"Perfect: {y:.2f}Mpps" for y in val[u"ideal"]], hoverinfo=u"text" ) ) cidx += 1 except (IndexError, ValueError, KeyError) as err: logging.warning(f"No data for {name}\n{repr(err)}") try: # Create plot file_type = plot.get(u"output-file-type", u".html") logging.info(f" Writing file {plot[u'output-file']}{file_type}.") layout = deepcopy(plot[u"layout"]) if layout.get(u"title", None): layout[u"title"] = f"<b>Speedup Multi-core:</b> {layout[u'title']}" layout[u"yaxis"][u"range"] = [0, int(max(y_max) * 1.1)] layout[u"annotations"].extend(annotations) plpl = plgo.Figure(data=traces, layout=layout) # Export Plot ploff.plot( plpl, show_link=False, auto_open=False, filename=f"{plot[u'output-file']}{file_type}" ) except PlotlyError as err: logging.error( f" Finished with error: {repr(err)}".replace(u"\n", u" ") ) return def plot_http_server_perf_box(plot, input_data): """Generate the plot(s) with algorithm: plot_http_server_perf_box specified in the specification file. :param plot: Plot to generate. :param input_data: Data to process. :type plot: pandas.Series :type input_data: InputData """ # Transform the data logging.info( f" Creating the data set for the {plot.get(u'type', u'')} " f"{plot.get(u'title', u'')}." ) data = input_data.filter_data(plot) if data is None: logging.error(u"No data.") return # Prepare the data for the plot y_vals = dict() for job in data: for build in job: for test in build: if y_vals.get(test[u"name"], None) is None: y_vals[test[u"name"]] = list() try: y_vals[test[u"name"]].append(test[u"result"]) except (KeyError, TypeError): y_vals[test[u"name"]].append(None) # Add None to the lists with missing data max_len = 0 nr_of_samples = list() for val in y_vals.values(): if len(val) > max_len: max_len = len(val) nr_of_samples.append(len(val)) for val in y_vals.values(): if len(val) < max_len: val.extend([None for _ in range(max_len - len(val))]) # Add plot traces traces = list() df_y = pd.DataFrame(y_vals) df_y.head() for i, col in enumerate(df_y.columns): name = \ f"{i + 1}. " \ f"({nr_of_samples[i]:02d} " \ f"run{u's' if nr_of_samples[i] > 1 else u''}) " \ f"{col.lower().replace(u'-ndrpdr', u'')}" if len(name) > 50: name_lst = name.split(u'-') name = u"" split_name = True for segment in name_lst: if (len(name) + len(segment) + 1) > 50 and split_name: name += u"<br> " split_name = False name += segment + u'-' name = name[:-1] traces.append(plgo.Box(x=[str(i + 1) + u'.'] * len(df_y[col]), y=df_y[col], name=name, **plot[u"traces"])) try: # Create plot plpl = plgo.Figure(data=traces, layout=plot[u"layout"]) # Export Plot logging.info( f" Writing file {plot[u'output-file']}" f"{plot[u'output-file-type']}." ) ploff.plot( plpl, show_link=False, auto_open=False, filename=f"{plot[u'output-file']}{plot[u'output-file-type']}" ) except PlotlyError as err: logging.error( f" Finished with error: {repr(err)}".replace(u"\n", u" ") ) return def plot_nf_heatmap(plot, input_data): """Generate the plot(s) with algorithm: plot_nf_heatmap specified in the specification file. :param plot: Plot to generate. :param input_data: Data to process. :type plot: pandas.Series :type input_data: InputData """ regex_cn = re.compile(r'^(\d*)R(\d*)C$') regex_test_name = re.compile(r'^.*-(\d+ch|\d+pl)-' r'(\d+mif|\d+vh)-' r'(\d+vm\d+t|\d+dcr\d+t|\d+dcr\d+c).*$') vals = dict() # Transform the data logging.info( f" Creating the data set for the {plot.get(u'type', u'')} " f"{plot.get(u'title', u'')}." ) data = input_data.filter_data(plot, continue_on_error=True) if data is None or data.empty: logging.error(u"No data.") return for job in data: for build in job: for test in build: for tag in test[u"tags"]: groups = re.search(regex_cn, tag) if groups: chain = str(groups.group(1)) node = str(groups.group(2)) break else: continue groups = re.search(regex_test_name, test[u"name"]) if groups and len(groups.groups()) == 3: hover_name = ( f"{str(groups.group(1))}-" f"{str(groups.group(2))}-" f"{str(groups.group(3))}" ) else: hover_name = u"" if vals.get(chain, None) is None: vals[chain] = dict() if vals[chain].get(node, None) is None: vals[chain][node] = dict( name=hover_name, vals=list(), nr=None, mean=None, stdev=None ) try: if plot[u"include-tests"] == u"MRR": result = test[u"result"][u"receive-rate"] elif plot[u"include-tests"] == u"PDR": result = test[u"throughput"][u"PDR"][u"LOWER"] elif plot[u"include-tests"] == u"NDR": result = test[u"throughput"][u"NDR"][u"LOWER"] else: result = None except TypeError: result = None if result: vals[chain][node][u"vals"].append(result) if not vals: logging.error(u"No data.") return txt_chains = list() txt_nodes = list() for key_c in vals: txt_chains.append(key_c) for key_n in vals[key_c].keys(): txt_nodes.append(key_n) if vals[key_c][key_n][u"vals"]: vals[key_c][key_n][u"nr"] = len(vals[key_c][key_n][u"vals"]) vals[key_c][key_n][u"mean"] = \ round(mean(vals[key_c][key_n][u"vals"]) / 1000000, 1) vals[key_c][key_n][u"stdev"] = \ round(stdev(vals[key_c][key_n][u"vals"]) / 1000000, 1) txt_nodes = list(set(txt_nodes)) def sort_by_int(value): """Makes possible to sort a list of strings which represent integers. :param value: Integer as a string. :type value: str :returns: Integer representation of input parameter 'value'. :rtype: int """ return int(value) txt_chains = sorted(txt_chains, key=sort_by_int) txt_nodes = sorted(txt_nodes, key=sort_by_int) chains = [i + 1 for i in range(len(txt_chains))] nodes = [i + 1 for i in range(len(txt_nodes))] data = [list() for _ in range(len(chains))] for chain in chains: for node in nodes: try: val = vals[txt_chains[chain - 1]][txt_nodes[node - 1]][u"mean"] except (KeyError, IndexError): val = None data[chain - 1].append(val) # Color scales: my_green = [[0.0, u"rgb(235, 249, 242)"], [1.0, u"rgb(45, 134, 89)"]] my_blue = [[0.0, u"rgb(236, 242, 248)"], [1.0, u"rgb(57, 115, 172)"]] my_grey = [[0.0, u"rgb(230, 230, 230)"], [1.0, u"rgb(102, 102, 102)"]] hovertext = list() annotations = list() text = (u"Test: {name}<br>" u"Runs: {nr}<br>" u"Thput: {val}<br>" u"StDev: {stdev}") for chain, _ in enumerate(txt_chains): hover_line = list() for node, _ in enumerate(txt_nodes): if data[chain][node] is not None: annotations.append( dict( x=node+1, y=chain+1, xref=u"x", yref=u"y", xanchor=u"center", yanchor=u"middle", text=str(data[chain][node]), font=dict( size=14, ), align=u"center", showarrow=False ) ) hover_line.append(text.format( name=vals[txt_chains[chain]][txt_nodes[node]][u"name"], nr=vals[txt_chains[chain]][txt_nodes[node]][u"nr"], val=data[chain][node], stdev=vals[txt_chains[chain]][txt_nodes[node]][u"stdev"])) hovertext.append(hover_line) traces = [ plgo.Heatmap( x=nodes, y=chains, z=data, colorbar=dict( title=plot.get(u"z-axis", u""), titleside=u"right", titlefont=dict( size=16 ), tickfont=dict( size=16, ), tickformat=u".1f", yanchor=u"bottom", y=-0.02, len=0.925, ), showscale=True, colorscale=my_green, text=hovertext, hoverinfo=u"text" ) ] for idx, item in enumerate(txt_nodes): # X-axis, numbers: annotations.append( dict( x=idx+1, y=0.05, xref=u"x", yref=u"y", xanchor=u"center", yanchor=u"top", text=item, font=dict( size=16, ), align=u"center", showarrow=False ) ) for idx, item in enumerate(txt_chains): # Y-axis, numbers: annotations.append( dict( x=0.35, y=idx+1, xref=u"x", yref=u"y", xanchor=u"right", yanchor=u"middle", text=item, font=dict( size=16, ), align=u"center", showarrow=False ) ) # X-axis, title: annotations.append( dict( x=0.55, y=-0.15, xref=u"paper", yref=u"y", xanchor=u"center", yanchor=u"bottom", text=plot.get(u"x-axis", u""), font=dict( size=16, ), align=u"center", showarrow=False ) ) # Y-axis, title: annotations.append( dict( x=-0.1, y=0.5, xref=u"x", yref=u"paper", xanchor=u"center", yanchor=u"middle", text=plot.get(u"y-axis", u""), font=dict( size=16, ), align=u"center", textangle=270, showarrow=False ) ) updatemenus = list([ dict( x=1.0, y=0.0, xanchor=u"right", yanchor=u"bottom", direction=u"up", buttons=list([ dict( args=[ { u"colorscale": [my_green, ], u"reversescale": False } ], label=u"Green", method=u"update" ), dict( args=[ { u"colorscale": [my_blue, ], u"reversescale": False } ], label=u"Blue", method=u"update" ), dict( args=[ { u"colorscale": [my_grey, ], u"reversescale": False } ], label=u"Grey", method=u"update" ) ]) ) ]) try: layout = deepcopy(plot[u"layout"]) except KeyError as err: logging.error(f"Finished with error: No layout defined\n{repr(err)}") return layout[u"annotations"] = annotations layout[u'updatemenus'] = updatemenus try: # Create plot plpl = plgo.Figure(data=traces, layout=layout) # Export Plot logging.info(f" Writing file {plot[u'output-file']}.html") ploff.plot( plpl, show_link=False, auto_open=False, filename=f"{plot[u'output-file']}.html" ) except PlotlyError as err: logging.error( f" Finished with error: {repr(err)}".replace(u"\n", u" ") ) return