# Copyright (c) 2019 Cisco and/or its affiliates. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Algorithms to generate plots. """ import re import logging from collections import OrderedDict from copy import deepcopy import hdrh.histogram import hdrh.codec import pandas as pd import plotly.offline as ploff import plotly.graph_objs as plgo from plotly.subplots import make_subplots from plotly.exceptions import PlotlyError from pal_utils import mean, stdev COLORS = [u"SkyBlue", u"Olive", u"Purple", u"Coral", u"Indigo", u"Pink", u"Chocolate", u"Brown", u"Magenta", u"Cyan", u"Orange", u"Black", u"Violet", u"Blue", u"Yellow", u"BurlyWood", u"CadetBlue", u"Crimson", u"DarkBlue", u"DarkCyan", u"DarkGreen", u"Green", u"GoldenRod", u"LightGreen", u"LightSeaGreen", u"LightSkyBlue", u"Maroon", u"MediumSeaGreen", u"SeaGreen", u"LightSlateGrey"] REGEX_NIC = re.compile(r'\d*ge\dp\d\D*\d*-') def generate_plots(spec, data): """Generate all plots specified in the specification file. :param spec: Specification read from the specification file. :param data: Data to process. :type spec: Specification :type data: InputData """ generator = { u"plot_nf_reconf_box_name": plot_nf_reconf_box_name, u"plot_perf_box_name": plot_perf_box_name, u"plot_lat_err_bars_name": plot_lat_err_bars_name, u"plot_tsa_name": plot_tsa_name, u"plot_http_server_perf_box": plot_http_server_perf_box, u"plot_nf_heatmap": plot_nf_heatmap, u"plot_lat_hdrh_bar_name": plot_lat_hdrh_bar_name, u"plot_lat_hdrh_percentile": plot_lat_hdrh_percentile } logging.info(u"Generating the plots ...") for index, plot in enumerate(spec.plots): try: logging.info(f" Plot nr {index + 1}: {plot.get(u'title', u'')}") plot[u"limits"] = spec.configuration[u"limits"] generator[plot[u"algorithm"]](plot, data) logging.info(u" Done.") except NameError as err: logging.error( f"Probably algorithm {plot[u'algorithm']} is not defined: " f"{repr(err)}" ) logging.info(u"Done.") def plot_lat_hdrh_percentile(plot, input_data): """Generate the plot(s) with algorithm: plot_lat_hdrh_percentile specified in the specification file. :param plot: Plot to generate. :param input_data: Data to process. :type plot: pandas.Series :type input_data: InputData """ # Transform the data plot_title = plot.get(u"title", u"") logging.info( f" Creating the data set for the {plot.get(u'type', u'')} " f"{plot_title}." ) data = input_data.filter_tests_by_name( plot, params=[u"latency", u"parent", u"tags", u"type"]) if data is None or len(data[0][0]) == 0: logging.error(u"No data.") return fig = plgo.Figure() # Prepare the data for the plot directions = [u"W-E", u"E-W"] for test in data[0][0]: try: if test[u"type"] in (u"NDRPDR",): if u"-pdr" in plot_title.lower(): ttype = u"PDR" elif u"-ndr" in plot_title.lower(): ttype = u"NDR" else: logging.warning(f"Invalid test type: {test[u'type']}") continue name = re.sub(REGEX_NIC, u"", test[u"parent"]. replace(u'-ndrpdr', u''). replace(u'2n1l-', u''). replace(u'avf-', u'')) for idx, direction in enumerate( (u"direction1", u"direction2", )): try: hdr_lat = test[u"latency"][ttype][direction][u"hdrh"] # TODO: Workaround, HDRH data must be aligned to 4 # bytes, remove when not needed. hdr_lat += u"=" * (len(hdr_lat) % 4) xaxis = list() yaxis = list() hovertext = list() decoded = hdrh.histogram.HdrHistogram.decode(hdr_lat) for item in decoded.get_recorded_iterator(): percentile = item.percentile_level_iterated_to if percentile != 100.0: xaxis.append(100.0 / (100.0 - percentile)) yaxis.append(item.value_iterated_to) hovertext.append( f"Test: {name}<br>" f"Direction: {directions[idx]}<br>" f"Percentile: {percentile:.5f}<br>%" f"Latency: {item.value_iterated_to}uSec" ) fig.add_trace( plgo.Scatter( x=xaxis, y=yaxis, name=name, mode=u"lines", hovertext=hovertext, hoverinfo=u"text" ) ) except hdrh.codec.HdrLengthException as err: logging.warning( f"No or invalid data for HDRHistogram for the test " f"{name}\n{err}" ) continue else: logging.warning(f"Invalid test type: {test[u'type']}") continue except (ValueError, KeyError) as err: logging.warning(repr(err)) layout = deepcopy(plot[u"layout"]) layout[u"title"][u"text"] = \ f"<b>Latency:</b> {plot.get(u'graph-title', u'')}" fig[u"layout"].update(layout) # Create plot file_type = plot.get(u"output-file-type", u".html") logging.info(f" Writing file {plot[u'output-file']}{file_type}.") try: # Export Plot ploff.plot(fig, show_link=False, auto_open=False, filename=f"{plot[u'output-file']}{file_type}") except PlotlyError as err: logging.error(f" Finished with error: {repr(err)}") def plot_lat_hdrh_bar_name(plot, input_data): """Generate the plot(s) with algorithm: plot_lat_hdrh_bar_name specified in the specification file. :param plot: Plot to generate. :param input_data: Data to process. :type plot: pandas.Series :type input_data: InputData """ # Transform the data plot_title = plot.get(u"title", u"") logging.info( f" Creating the data set for the {plot.get(u'type', u'')} " f"{plot_title}." ) data = input_data.filter_tests_by_name( plot, params=[u"latency", u"parent", u"tags", u"type"]) if data is None or len(data[0][0]) == 0: logging.error(u"No data.") return # Prepare the data for the plot directions = [u"W-E", u"E-W"] tests = list() traces = list() for idx_row, test in enumerate(data[0][0]): try: if test[u"type"] in (u"NDRPDR",): if u"-pdr" in plot_title.lower(): ttype = u"PDR" elif u"-ndr" in plot_title.lower(): ttype = u"NDR" else: logging.warning(f"Invalid test type: {test[u'type']}") continue name = re.sub(REGEX_NIC, u"", test[u"parent"]. replace(u'-ndrpdr', u''). replace(u'2n1l-', u'')) histograms = list() for idx_col, direction in enumerate( (u"direction1", u"direction2", )): try: hdr_lat = test[u"latency"][ttype][direction][u"hdrh"] # TODO: Workaround, HDRH data must be aligned to 4 # bytes, remove when not needed. hdr_lat += u"=" * (len(hdr_lat) % 4) xaxis = list() yaxis = list() hovertext = list() decoded = hdrh.histogram.HdrHistogram.decode(hdr_lat) total_count = decoded.get_total_count() for item in decoded.get_recorded_iterator(): xaxis.append(item.value_iterated_to) prob = float(item.count_added_in_this_iter_step) / \ total_count * 100 yaxis.append(prob) hovertext.append( f"Test: {name}<br>" f"Direction: {directions[idx_col]}<br>" f"Latency: {item.value_iterated_to}uSec<br>" f"Probability: {prob:.2f}%<br>" f"Percentile: " f"{item.percentile_level_iterated_to:.2f}" ) marker_color = [COLORS[idx_row], ] * len(yaxis) marker_color[xaxis.index( decoded.get_value_at_percentile(50.0))] = u"red" marker_color[xaxis.index( decoded.get_value_at_percentile(90.0))] = u"red" marker_color[xaxis.index( decoded.get_value_at_percentile(95.0))] = u"red" histograms.append( plgo.Bar( x=xaxis, y=yaxis, showlegend=False, name=name, marker={u"color": marker_color}, hovertext=hovertext, hoverinfo=u"text" ) ) except hdrh.codec.HdrLengthException as err: logging.warning( f"No or invalid data for HDRHistogram for the test " f"{name}\n{err}" ) continue if len(histograms) == 2: traces.append(histograms) tests.append(name) else: logging.warning(f"Invalid test type: {test[u'type']}") continue except (ValueError, KeyError) as err: logging.warning(repr(err)) if not tests: logging.warning(f"No data for {plot_title}.") return fig = make_subplots( rows=len(tests), cols=2, specs=[ [{u"type": u"bar"}, {u"type": u"bar"}] for _ in range(len(tests)) ] ) layout_axes = dict( gridcolor=u"rgb(220, 220, 220)", linecolor=u"rgb(220, 220, 220)", linewidth=1, showgrid=True, showline=True, showticklabels=True, tickcolor=u"rgb(220, 220, 220)", ) for idx_row, test in enumerate(tests): for idx_col in range(2): fig.add_trace( traces[idx_row][idx_col], row=idx_row + 1, col=idx_col + 1 ) fig.update_xaxes( row=idx_row + 1, col=idx_col + 1, **layout_axes ) fig.update_yaxes( row=idx_row + 1, col=idx_col + 1, **layout_axes ) layout = deepcopy(plot[u"layout"]) layout[u"title"][u"text"] = \ f"<b>Latency:</b> {plot.get(u'graph-title', u'')}" layout[u"height"] = 250 * len(tests) + 130 layout[u"annotations"][2][u"y"] = 1.06 - 0.008 * len(tests) layout[u"annotations"][3][u"y"] = 1.06 - 0.008 * len(tests) for idx, test in enumerate(tests): layout[u"annotations"].append({ u"font": { u"size": 14 }, u"showarrow": False, u"text": f"<b>{test}</b>", u"textangle": 0, u"x": 0.5, u"xanchor": u"center", u"xref": u"paper", u"y": 1.0 - float(idx) * 1.06 / len(tests), u"yanchor": u"bottom", u"yref": u"paper" }) fig[u"layout"].update(layout) # Create plot file_type = plot.get(u"output-file-type", u".html") logging.info(f" Writing file {plot[u'output-file']}{file_type}.") try: # Export Plot ploff.plot(fig, show_link=False, auto_open=False, filename=f"{plot[u'output-file']}{file_type}") except PlotlyError as err: logging.error(f" Finished with error: {repr(err)}") def plot_nf_reconf_box_name(plot, input_data): """Generate the plot(s) with algorithm: plot_nf_reconf_box_name specified in the specification file. :param plot: Plot to generate. :param input_data: Data to process. :type plot: pandas.Series :type input_data: InputData """ # Transform the data logging.info( f" Creating the data set for the {plot.get(u'type', u'')} " f"{plot.get(u'title', u'')}." ) data = input_data.filter_tests_by_name( plot, params=[u"result", u"parent", u"tags", u"type"] ) if data is None: logging.error(u"No data.") return # Prepare the data for the plot y_vals = OrderedDict() loss = dict() for job in data: for build in job: for test in build: if y_vals.get(test[u"parent"], None) is None: y_vals[test[u"parent"]] = list() loss[test[u"parent"]] = list() try: y_vals[test[u"parent"]].append(test[u"result"][u"time"]) loss[test[u"parent"]].append(test[u"result"][u"loss"]) except (KeyError, TypeError): y_vals[test[u"parent"]].append(None) # Add None to the lists with missing data max_len = 0 nr_of_samples = list() for val in y_vals.values(): if len(val) > max_len: max_len = len(val) nr_of_samples.append(len(val)) for val in y_vals.values(): if len(val) < max_len: val.extend([None for _ in range(max_len - len(val))]) # Add plot traces traces = list() df_y = pd.DataFrame(y_vals) df_y.head() for i, col in enumerate(df_y.columns): tst_name = re.sub(REGEX_NIC, u"", col.lower().replace(u'-ndrpdr', u''). replace(u'2n1l-', u'')) traces.append(plgo.Box( x=[str(i + 1) + u'.'] * len(df_y[col]), y=[y if y else None for y in df_y[col]], name=( f"{i + 1}. " f"({nr_of_samples[i]:02d} " f"run{u's' if nr_of_samples[i] > 1 else u''}, " f"packets lost average: {mean(loss[col]):.1f}) " f"{u'-'.join(tst_name.split(u'-')[3:-2])}" ), hoverinfo=u"y+name" )) try: # Create plot layout = deepcopy(plot[u"layout"]) layout[u"title"] = f"<b>Time Lost:</b> {layout[u'title']}" layout[u"yaxis"][u"title"] = u"<b>Implied Time Lost [s]</b>" layout[u"legend"][u"font"][u"size"] = 14 layout[u"yaxis"].pop(u"range") plpl = plgo.Figure(data=traces, layout=layout) # Export Plot file_type = plot.get(u"output-file-type", u".html") logging.info(f" Writing file {plot[u'output-file']}{file_type}.") ploff.plot( plpl, show_link=False, auto_open=False, filename=f"{plot[u'output-file']}{file_type}" ) except PlotlyError as err: logging.error( f" Finished with error: {repr(err)}".replace(u"\n", u" ") ) return def plot_perf_box_name(plot, input_data): """Generate the plot(s) with algorithm: plot_perf_box_name specified in the specification file. :param plot: Plot to generate. :param input_data: Data to process. :type plot: pandas.Series :type input_data: InputData """ # Transform the data logging.info( f" Creating data set for the {plot.get(u'type', u'')} " f"{plot.get(u'title', u'')}." ) data = input_data.filter_tests_by_name( plot, params=[u"throughput", u"parent", u"tags", u"type"]) if data is None: logging.error(u"No data.") return # Prepare the data for the plot y_vals = OrderedDict() for job in data: for build in job: for test in build: if y_vals.get(test[u"parent"], None) is None: y_vals[test[u"parent"]] = list() try: if (test[u"type"] in (u"NDRPDR", ) and u"-pdr" in plot.get(u"title", u"").lower()): y_vals[test[u"parent"]].\ append(test[u"throughput"][u"PDR"][u"LOWER"]) elif (test[u"type"] in (u"NDRPDR", ) and u"-ndr" in plot.get(u"title", u"").lower()): y_vals[test[u"parent"]]. \ append(test[u"throughput"][u"NDR"][u"LOWER"]) elif test[u"type"] in (u"SOAK", ): y_vals[test[u"parent"]].\ append(test[u"throughput"][u"LOWER"]) else: continue except (KeyError, TypeError): y_vals[test[u"parent"]].append(None) # Add None to the lists with missing data max_len = 0 nr_of_samples = list() for val in y_vals.values(): if len(val) > max_len: max_len = len(val) nr_of_samples.append(len(val)) for val in y_vals.values(): if len(val) < max_len: val.extend([None for _ in range(max_len - len(val))]) # Add plot traces traces = list() df_y = pd.DataFrame(y_vals) df_y.head() y_max = list() for i, col in enumerate(df_y.columns): tst_name = re.sub(REGEX_NIC, u"", col.lower().replace(u'-ndrpdr', u''). replace(u'2n1l-', u'')) traces.append( plgo.Box( x=[str(i + 1) + u'.'] * len(df_y[col]), y=[y / 1000000 if y else None for y in df_y[col]], name=( f"{i + 1}. " f"({nr_of_samples[i]:02d} " f"run{u's' if nr_of_samples[i] > 1 else u''}) " f"{tst_name}" ), hoverinfo=u"y+name" ) ) try: val_max = max(df_y[col]) if val_max: y_max.append(int(val_max / 1000000) + 2) except (ValueError, TypeError) as err: logging.error(repr(err)) continue try: # Create plot layout = deepcopy(plot[u"layout"]) if layout.get(u"title", None): layout[u"title"] = f"<b>Throughput:</b> {layout[u'title']}" if y_max: layout[u"yaxis"][u"range"] = [0, max(y_max)] plpl = plgo.Figure(data=traces, layout=layout) # Export Plot logging.info(f" Writing file {plot[u'output-file']}.html.") ploff.plot( plpl, show_link=False, auto_open=False, filename=f"{plot[u'output-file']}.html" ) except PlotlyError as err: logging.error( f" Finished with error: {repr(err)}".replace(u"\n", u" ") ) return def plot_lat_err_bars_name(plot, input_data): """Generate the plot(s) with algorithm: plot_lat_err_bars_name specified in the specification file. :param plot: Plot to generate. :param input_data: Data to process. :type plot: pandas.Series :type input_data: InputData """ # Transform the data plot_title = plot.get(u"title", u"") logging.info( f" Creating data set for the {plot.get(u'type', u'')} {plot_title}." ) data = input_data.filter_tests_by_name( plot, params=[u"latency", u"parent", u"tags", u"type"]) if data is None: logging.error(u"No data.") return # Prepare the data for the plot y_tmp_vals = OrderedDict() for job in data: for build in job: for test in build: try: logging.debug(f"test[u'latency']: {test[u'latency']}\n") except ValueError as err: logging.warning(repr(err)) if y_tmp_vals.get(test[u"parent"], None) is None: y_tmp_vals[test[u"parent"]] = [ list(), # direction1, min list(), # direction1, avg list(), # direction1, max list(), # direction2, min list(), # direction2, avg list() # direction2, max ] try: if test[u"type"] not in (u"NDRPDR", ): logging.warning(f"Invalid test type: {test[u'type']}") continue if u"-pdr" in plot_title.lower(): ttype = u"PDR" elif u"-ndr" in plot_title.lower(): ttype = u"NDR" else: logging.warning( f"Invalid test type: {test[u'type']}" ) continue y_tmp_vals[test[u"parent"]][0].append( test[u"latency"][ttype][u"direction1"][u"min"]) y_tmp_vals[test[u"parent"]][1].append( test[u"latency"][ttype][u"direction1"][u"avg"]) y_tmp_vals[test[u"parent"]][2].append( test[u"latency"][ttype][u"direction1"][u"max"]) y_tmp_vals[test[u"parent"]][3].append( test[u"latency"][ttype][u"direction2"][u"min"]) y_tmp_vals[test[u"parent"]][4].append( test[u"latency"][ttype][u"direction2"][u"avg"]) y_tmp_vals[test[u"parent"]][5].append( test[u"latency"][ttype][u"direction2"][u"max"]) except (KeyError, TypeError) as err: logging.warning(repr(err)) x_vals = list() y_vals = list() y_mins = list() y_maxs = list() nr_of_samples = list() for key, val in y_tmp_vals.items(): name = re.sub(REGEX_NIC, u"", key.replace(u'-ndrpdr', u''). replace(u'2n1l-', u'')) x_vals.append(name) # dir 1 y_vals.append(mean(val[1]) if val[1] else None) y_mins.append(mean(val[0]) if val[0] else None) y_maxs.append(mean(val[2]) if val[2] else None) nr_of_samples.append(len(val[1]) if val[1] else 0) x_vals.append(name) # dir 2 y_vals.append(mean(val[4]) if val[4] else None) y_mins.append(mean(val[3]) if val[3] else None) y_maxs.append(mean(val[5]) if val[5] else None) nr_of_samples.append(len(val[3]) if val[3] else 0) traces = list() annotations = list() for idx, _ in enumerate(x_vals): if not bool(int(idx % 2)): direction = u"West-East" else: direction = u"East-West" hovertext = ( f"No. of Runs: {nr_of_samples[idx]}<br>" f"Test: {x_vals[idx]}<br>" f"Direction: {direction}<br>" ) if isinstance(y_maxs[idx], float): hovertext += f"Max: {y_maxs[idx]:.2f}uSec<br>" if isinstance(y_vals[idx], float): hovertext += f"Mean: {y_vals[idx]:.2f}uSec<br>" if isinstance(y_mins[idx], float): hovertext += f"Min: {y_mins[idx]:.2f}uSec" if isinstance(y_maxs[idx], float) and isinstance(y_vals[idx], float): array = [y_maxs[idx] - y_vals[idx], ] else: array = [None, ] if isinstance(y_mins[idx], float) and isinstance(y_vals[idx], float): arrayminus = [y_vals[idx] - y_mins[idx], ] else: arrayminus = [None, ] traces.append(plgo.Scatter( x=[idx, ], y=[y_vals[idx], ], name=x_vals[idx], legendgroup=x_vals[idx], showlegend=bool(int(idx % 2)), mode=u"markers", error_y=dict( type=u"data", symmetric=False, array=array, arrayminus=arrayminus, color=COLORS[int(idx / 2)] ), marker=dict( size=10, color=COLORS[int(idx / 2)], ), text=hovertext, hoverinfo=u"text", )) annotations.append(dict( x=idx, y=0, xref=u"x", yref=u"y", xanchor=u"center", yanchor=u"top", text=u"E-W" if bool(int(idx % 2)) else u"W-E", font=dict( size=16, ), align=u"center", showarrow=False )) try: # Create plot file_type = plot.get(u"output-file-type", u".html") logging.info(f" Writing file {plot[u'output-file']}{file_type}.") layout = deepcopy(plot[u"layout"]) if layout.get(u"title", None): layout[u"title"] = f"<b>Latency:</b> {layout[u'title']}" layout[u"annotations"] = annotations plpl = plgo.Figure(data=traces, layout=layout) # Export Plot ploff.plot( plpl, show_link=False, auto_open=False, filename=f"{plot[u'output-file']}{file_type}" ) except PlotlyError as err: logging.error( f" Finished with error: {repr(err)}".replace(u"\n", u" ") ) return def plot_tsa_name(plot, input_data): """Generate the plot(s) with algorithm: plot_tsa_name specified in the specification file. :param plot: Plot to generate. :param input_data: Data to process. :type plot: pandas.Series :type input_data: InputData """ # Transform the data plot_title = plot.get(u"title", u"") logging.info( f" Creating data set for the {plot.get(u'type', u'')} {plot_title}." ) data = input_data.filter_tests_by_name( plot, params=[u"throughput", u"parent", u"tags", u"type"]) if data is None: logging.error(u"No data.") return y_vals = OrderedDict() for job in data: for build in job: for test in build: if y_vals.get(test[u"parent"], None) is None: y_vals[test[u"parent"]] = { u"1": list(), u"2": list(), u"4": list() } try: if test[u"type"] not in (u"NDRPDR",): continue if u"-pdr" in plot_title.lower(): ttype = u"PDR" elif u"-ndr" in plot_title.lower(): ttype = u"NDR" else: continue if u"1C" in test[u"tags"]: y_vals[test[u"parent"]][u"1"]. \ append(test[u"throughput"][ttype][u"LOWER"]) elif u"2C" in test[u"tags"]: y_vals[test[u"parent"]][u"2"]. \ append(test[u"throughput"][ttype][u"LOWER"]) elif u"4C" in test[u"tags"]: y_vals[test[u"parent"]][u"4"]. \ append(test[u"throughput"][ttype][u"LOWER"]) except (KeyError, TypeError): pass if not y_vals: logging.warning(f"No data for the plot {plot.get(u'title', u'')}") return y_1c_max = dict() for test_name, test_vals in y_vals.items(): for key, test_val in test_vals.items(): if test_val: avg_val = sum(test_val) / len(test_val) y_vals[test_name][key] = [avg_val, len(test_val)] ideal = avg_val / (int(key) * 1000000.0) if test_name not in y_1c_max or ideal > y_1c_max[test_name]: y_1c_max[test_name] = ideal vals = OrderedDict() y_max = list() nic_limit = 0 lnk_limit = 0 pci_limit = plot[u"limits"][u"pci"][u"pci-g3-x8"] for test_name, test_vals in y_vals.items(): try: if test_vals[u"1"][1]: name = re.sub( REGEX_NIC, u"", test_name.replace(u'-ndrpdr', u'').replace(u'2n1l-', u'') ) vals[name] = OrderedDict() y_val_1 = test_vals[u"1"][0] / 1000000.0 y_val_2 = test_vals[u"2"][0] / 1000000.0 if test_vals[u"2"][0] \ else None y_val_4 = test_vals[u"4"][0] / 1000000.0 if test_vals[u"4"][0] \ else None vals[name][u"val"] = [y_val_1, y_val_2, y_val_4] vals[name][u"rel"] = [1.0, None, None] vals[name][u"ideal"] = [ y_1c_max[test_name], y_1c_max[test_name] * 2, y_1c_max[test_name] * 4 ] vals[name][u"diff"] = [ (y_val_1 - y_1c_max[test_name]) * 100 / y_val_1, None, None ] vals[name][u"count"] = [ test_vals[u"1"][1], test_vals[u"2"][1], test_vals[u"4"][1] ] try: val_max = max(vals[name][u"val"]) except ValueError as err: logging.error(repr(err)) continue if val_max: y_max.append(val_max) if y_val_2: vals[name][u"rel"][1] = round(y_val_2 / y_val_1, 2) vals[name][u"diff"][1] = \ (y_val_2 - vals[name][u"ideal"][1]) * 100 / y_val_2 if y_val_4: vals[name][u"rel"][2] = round(y_val_4 / y_val_1, 2) vals[name][u"diff"][2] = \ (y_val_4 - vals[name][u"ideal"][2]) * 100 / y_val_4 except IndexError as err: logging.warning(f"No data for {test_name}") logging.warning(repr(err)) # Limits: if u"x520" in test_name: limit = plot[u"limits"][u"nic"][u"x520"] elif u"x710" in test_name: limit = plot[u"limits"][u"nic"][u"x710"] elif u"xxv710" in test_name: limit = plot[u"limits"][u"nic"][u"xxv710"] elif u"xl710" in test_name: limit = plot[u"limits"][u"nic"][u"xl710"] elif u"x553" in test_name: limit = plot[u"limits"][u"nic"][u"x553"] else: limit = 0 if limit > nic_limit: nic_limit = limit mul = 2 if u"ge2p" in test_name else 1 if u"10ge" in test_name: limit = plot[u"limits"][u"link"][u"10ge"] * mul elif u"25ge" in test_name: limit = plot[u"limits"][u"link"][u"25ge"] * mul elif u"40ge" in test_name: limit = plot[u"limits"][u"link"][u"40ge"] * mul elif u"100ge" in test_name: limit = plot[u"limits"][u"link"][u"100ge"] * mul else: limit = 0 if limit > lnk_limit: lnk_limit = limit traces = list() annotations = list() x_vals = [1, 2, 4] # Limits: try: threshold = 1.1 * max(y_max) # 10% except ValueError as err: logging.error(err) return nic_limit /= 1000000.0 traces.append(plgo.Scatter( x=x_vals, y=[nic_limit, ] * len(x_vals), name=f"NIC: {nic_limit:.2f}Mpps", showlegend=False, mode=u"lines", line=dict( dash=u"dot", color=COLORS[-1], width=1), hoverinfo=u"none" )) annotations.append(dict( x=1, y=nic_limit, xref=u"x", yref=u"y", xanchor=u"left", yanchor=u"bottom", text=f"NIC: {nic_limit:.2f}Mpps", font=dict( size=14, color=COLORS[-1], ), align=u"left", showarrow=False )) y_max.append(nic_limit) lnk_limit /= 1000000.0 if lnk_limit < threshold: traces.append(plgo.Scatter( x=x_vals, y=[lnk_limit, ] * len(x_vals), name=f"Link: {lnk_limit:.2f}Mpps", showlegend=False, mode=u"lines", line=dict( dash=u"dot", color=COLORS[-2], width=1), hoverinfo=u"none" )) annotations.append(dict( x=1, y=lnk_limit, xref=u"x", yref=u"y", xanchor=u"left", yanchor=u"bottom", text=f"Link: {lnk_limit:.2f}Mpps", font=dict( size=14, color=COLORS[-2], ), align=u"left", showarrow=False )) y_max.append(lnk_limit) pci_limit /= 1000000.0 if (pci_limit < threshold and (pci_limit < lnk_limit * 0.95 or lnk_limit > lnk_limit * 1.05)): traces.append(plgo.Scatter( x=x_vals, y=[pci_limit, ] * len(x_vals), name=f"PCIe: {pci_limit:.2f}Mpps", showlegend=False, mode=u"lines", line=dict( dash=u"dot", color=COLORS[-3], width=1), hoverinfo=u"none" )) annotations.append(dict( x=1, y=pci_limit, xref=u"x", yref=u"y", xanchor=u"left", yanchor=u"bottom", text=f"PCIe: {pci_limit:.2f}Mpps", font=dict( size=14, color=COLORS[-3], ), align=u"left", showarrow=False )) y_max.append(pci_limit) # Perfect and measured: cidx = 0 for name, val in vals.items(): hovertext = list() try: for idx in range(len(val[u"val"])): htext = "" if isinstance(val[u"val"][idx], float): htext += ( f"No. of Runs: {val[u'count'][idx]}<br>" f"Mean: {val[u'val'][idx]:.2f}Mpps<br>" ) if isinstance(val[u"diff"][idx], float): htext += f"Diff: {round(val[u'diff'][idx]):.0f}%<br>" if isinstance(val[u"rel"][idx], float): htext += f"Speedup: {val[u'rel'][idx]:.2f}" hovertext.append(htext) traces.append( plgo.Scatter( x=x_vals, y=val[u"val"], name=name, legendgroup=name, mode=u"lines+markers", line=dict( color=COLORS[cidx], width=2), marker=dict( symbol=u"circle", size=10 ), text=hovertext, hoverinfo=u"text+name" ) ) traces.append( plgo.Scatter( x=x_vals, y=val[u"ideal"], name=f"{name} perfect", legendgroup=name, showlegend=False, mode=u"lines", line=dict( color=COLORS[cidx], width=2, dash=u"dash"), text=[f"Perfect: {y:.2f}Mpps" for y in val[u"ideal"]], hoverinfo=u"text" ) ) cidx += 1 except (IndexError, ValueError, KeyError) as err: logging.warning(f"No data for {name}\n{repr(err)}") try: # Create plot file_type = plot.get(u"output-file-type", u".html") logging.info(f" Writing file {plot[u'output-file']}{file_type}.") layout = deepcopy(plot[u"layout"]) if layout.get(u"title", None): layout[u"title"] = f"<b>Speedup Multi-core:</b> {layout[u'title']}" layout[u"yaxis"][u"range"] = [0, int(max(y_max) * 1.1)] layout[u"annotations"].extend(annotations) plpl = plgo.Figure(data=traces, layout=layout) # Export Plot ploff.plot( plpl, show_link=False, auto_open=False, filename=f"{plot[u'output-file']}{file_type}" ) except PlotlyError as err: logging.error( f" Finished with error: {repr(err)}".replace(u"\n", u" ") ) return def plot_http_server_perf_box(plot, input_data): """Generate the plot(s) with algorithm: plot_http_server_perf_box specified in the specification file. :param plot: Plot to generate. :param input_data: Data to process. :type plot: pandas.Series :type input_data: InputData """ # Transform the data logging.info( f" Creating the data set for the {plot.get(u'type', u'')} " f"{plot.get(u'title', u'')}." ) data = input_data.filter_data(plot) if data is None: logging.error(u"No data.") return # Prepare the data for the plot y_vals = dict() for job in data: for build in job: for test in build: if y_vals.get(test[u"name"], None) is None: y_vals[test[u"name"]] = list() try: y_vals[test[u"name"]].append(test[u"result"]) except (KeyError, TypeError): y_vals[test[u"name"]].append(None) # Add None to the lists with missing data max_len = 0 nr_of_samples = list() for val in y_vals.values(): if len(val) > max_len: max_len = len(val) nr_of_samples.append(len(val)) for val in y_vals.values(): if len(val) < max_len: val.extend([None for _ in range(max_len - len(val))]) # Add plot traces traces = list() df_y = pd.DataFrame(y_vals) df_y.head() for i, col in enumerate(df_y.columns): name = \ f"{i + 1}. " \ f"({nr_of_samples[i]:02d} " \ f"run{u's' if nr_of_samples[i] > 1 else u''}) " \ f"{col.lower().replace(u'-ndrpdr', u'')}" if len(name) > 50: name_lst = name.split(u'-') name = u"" split_name = True for segment in name_lst: if (len(name) + len(segment) + 1) > 50 and split_name: name += u"<br> " split_name = False name += segment + u'-' name = name[:-1] traces.append(plgo.Box(x=[str(i + 1) + u'.'] * len(df_y[col]), y=df_y[col], name=name, **plot[u"traces"])) try: # Create plot plpl = plgo.Figure(data=traces, layout=plot[u"layout"]) # Export Plot logging.info( f" Writing file {plot[u'output-file']}" f"{plot[u'output-file-type']}." ) ploff.plot( plpl, show_link=False, auto_open=False, filename=f"{plot[u'output-file']}{plot[u'output-file-type']}" ) except PlotlyError as err: logging.error( f" Finished with error: {repr(err)}".replace(u"\n", u" ") ) return def plot_nf_heatmap(plot, input_data): """Generate the plot(s) with algorithm: plot_nf_heatmap specified in the specification file. :param plot: Plot to generate. :param input_data: Data to process. :type plot: pandas.Series :type input_data: InputData """ regex_cn = re.compile(r'^(\d*)R(\d*)C$') regex_test_name = re.compile(r'^.*-(\d+ch|\d+pl)-' r'(\d+mif|\d+vh)-' r'(\d+vm\d+t|\d+dcr\d+t).*$') vals = dict() # Transform the data logging.info( f" Creating the data set for the {plot.get(u'type', u'')} " f"{plot.get(u'title', u'')}." ) data = input_data.filter_data(plot, continue_on_error=True) if data is None or data.empty: logging.error(u"No data.") return for job in data: for build in job: for test in build: for tag in test[u"tags"]: groups = re.search(regex_cn, tag) if groups: chain = str(groups.group(1)) node = str(groups.group(2)) break else: continue groups = re.search(regex_test_name, test[u"name"]) if groups and len(groups.groups()) == 3: hover_name = ( f"{str(groups.group(1))}-" f"{str(groups.group(2))}-" f"{str(groups.group(3))}" ) else: hover_name = u"" if vals.get(chain, None) is None: vals[chain] = dict() if vals[chain].get(node, None) is None: vals[chain][node] = dict( name=hover_name, vals=list(), nr=None, mean=None, stdev=None ) try: if plot[u"include-tests"] == u"MRR": result = test[u"result"][u"receive-rate"] elif plot[u"include-tests"] == u"PDR": result = test[u"throughput"][u"PDR"][u"LOWER"] elif plot[u"include-tests"] == u"NDR": result = test[u"throughput"][u"NDR"][u"LOWER"] else: result = None except TypeError: result = None if result: vals[chain][node][u"vals"].append(result) if not vals: logging.error(u"No data.") return txt_chains = list() txt_nodes = list() for key_c in vals: txt_chains.append(key_c) for key_n in vals[key_c].keys(): txt_nodes.append(key_n) if vals[key_c][key_n][u"vals"]: vals[key_c][key_n][u"nr"] = len(vals[key_c][key_n][u"vals"]) vals[key_c][key_n][u"mean"] = \ round(mean(vals[key_c][key_n][u"vals"]) / 1000000, 1) vals[key_c][key_n][u"stdev"] = \ round(stdev(vals[key_c][key_n][u"vals"]) / 1000000, 1) txt_nodes = list(set(txt_nodes)) def sort_by_int(value): """Makes possible to sort a list of strings which represent integers. :param value: Integer as a string. :type value: str :returns: Integer representation of input parameter 'value'. :rtype: int """ return int(value) txt_chains = sorted(txt_chains, key=sort_by_int) txt_nodes = sorted(txt_nodes, key=sort_by_int) chains = [i + 1 for i in range(len(txt_chains))] nodes = [i + 1 for i in range(len(txt_nodes))] data = [list() for _ in range(len(chains))] for chain in chains: for node in nodes: try: val = vals[txt_chains[chain - 1]][txt_nodes[node - 1]][u"mean"] except (KeyError, IndexError): val = None data[chain - 1].append(val) # Color scales: my_green = [[0.0, u"rgb(235, 249, 242)"], [1.0, u"rgb(45, 134, 89)"]] my_blue = [[0.0, u"rgb(236, 242, 248)"], [1.0, u"rgb(57, 115, 172)"]] my_grey = [[0.0, u"rgb(230, 230, 230)"], [1.0, u"rgb(102, 102, 102)"]] hovertext = list() annotations = list() text = (u"Test: {name}<br>" u"Runs: {nr}<br>" u"Thput: {val}<br>" u"StDev: {stdev}") for chain, _ in enumerate(txt_chains): hover_line = list() for node, _ in enumerate(txt_nodes): if data[chain][node] is not None: annotations.append( dict( x=node+1, y=chain+1, xref=u"x", yref=u"y", xanchor=u"center", yanchor=u"middle", text=str(data[chain][node]), font=dict( size=14, ), align=u"center", showarrow=False ) ) hover_line.append(text.format( name=vals[txt_chains[chain]][txt_nodes[node]][u"name"], nr=vals[txt_chains[chain]][txt_nodes[node]][u"nr"], val=data[chain][node], stdev=vals[txt_chains[chain]][txt_nodes[node]][u"stdev"])) hovertext.append(hover_line) traces = [ plgo.Heatmap( x=nodes, y=chains, z=data, colorbar=dict( title=plot.get(u"z-axis", u""), titleside=u"right", titlefont=dict( size=16 ), tickfont=dict( size=16, ), tickformat=u".1f", yanchor=u"bottom", y=-0.02, len=0.925, ), showscale=True, colorscale=my_green, text=hovertext, hoverinfo=u"text" ) ] for idx, item in enumerate(txt_nodes): # X-axis, numbers: annotations.append( dict( x=idx+1, y=0.05, xref=u"x", yref=u"y", xanchor=u"center", yanchor=u"top", text=item, font=dict( size=16, ), align=u"center", showarrow=False ) ) for idx, item in enumerate(txt_chains): # Y-axis, numbers: annotations.append( dict( x=0.35, y=idx+1, xref=u"x", yref=u"y", xanchor=u"right", yanchor=u"middle", text=item, font=dict( size=16, ), align=u"center", showarrow=False ) ) # X-axis, title: annotations.append( dict( x=0.55, y=-0.15, xref=u"paper", yref=u"y", xanchor=u"center", yanchor=u"bottom", text=plot.get(u"x-axis", u""), font=dict( size=16, ), align=u"center", showarrow=False ) ) # Y-axis, title: annotations.append( dict( x=-0.1, y=0.5, xref=u"x", yref=u"paper", xanchor=u"center", yanchor=u"middle", text=plot.get(u"y-axis", u""), font=dict( size=16, ), align=u"center", textangle=270, showarrow=False ) ) updatemenus = list([ dict( x=1.0, y=0.0, xanchor=u"right", yanchor=u"bottom", direction=u"up", buttons=list([ dict( args=[ { u"colorscale": [my_green, ], u"reversescale": False } ], label=u"Green", method=u"update" ), dict( args=[ { u"colorscale": [my_blue, ], u"reversescale": False } ], label=u"Blue", method=u"update" ), dict( args=[ { u"colorscale": [my_grey, ], u"reversescale": False } ], label=u"Grey", method=u"update" ) ]) ) ]) try: layout = deepcopy(plot[u"layout"]) except KeyError as err: logging.error(f"Finished with error: No layout defined\n{repr(err)}") return layout[u"annotations"] = annotations layout[u'updatemenus'] = updatemenus try: # Create plot plpl = plgo.Figure(data=traces, layout=layout) # Export Plot logging.info( f" Writing file {plot[u'output-file']}" f"{plot[u'output-file-type']}." ) ploff.plot( plpl, show_link=False, auto_open=False, filename=f"{plot[u'output-file']}{plot[u'output-file-type']}" ) except PlotlyError as err: logging.error( f" Finished with error: {repr(err)}".replace(u"\n", u" ") ) return