# Copyright (c) 2018 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Algorithms to generate plots.
"""
import logging
import pandas as pd
import plotly.offline as ploff
import plotly.graph_objs as plgo
from plotly.exceptions import PlotlyError
from collections import OrderedDict
from copy import deepcopy
from utils import mean
COLORS = ["SkyBlue", "Olive", "Purple", "Coral", "Indigo", "Pink",
"Chocolate", "Brown", "Magenta", "Cyan", "Orange", "Black",
"Violet", "Blue", "Yellow", "BurlyWood", "CadetBlue", "Crimson",
"DarkBlue", "DarkCyan", "DarkGreen", "Green", "GoldenRod",
"LightGreen", "LightSeaGreen", "LightSkyBlue", "Maroon",
"MediumSeaGreen", "SeaGreen", "LightSlateGrey"]
def generate_plots(spec, data):
"""Generate all plots specified in the specification file.
:param spec: Specification read from the specification file.
:param data: Data to process.
:type spec: Specification
:type data: InputData
"""
logging.info("Generating the plots ...")
for index, plot in enumerate(spec.plots):
try:
logging.info(" Plot nr {0}: {1}".format(index + 1,
plot.get("title", "")))
plot["limits"] = spec.configuration["limits"]
eval(plot["algorithm"])(plot, data)
logging.info(" Done.")
except NameError as err:
logging.error("Probably algorithm '{alg}' is not defined: {err}".
format(alg=plot["algorithm"], err=repr(err)))
logging.info("Done.")
def plot_performance_box(plot, input_data):
"""Generate the plot(s) with algorithm: plot_performance_box
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
plot_title = plot.get("title", "")
logging.info(" Creating the data set for the {0} '{1}'.".
format(plot.get("type", ""), plot_title))
data = input_data.filter_data(plot)
if data is None:
logging.error("No data.")
return
# Prepare the data for the plot
y_vals = dict()
y_tags = dict()
for job in data:
for build in job:
for test in build:
if y_vals.get(test["parent"], None) is None:
y_vals[test["parent"]] = list()
y_tags[test["parent"]] = test.get("tags", None)
try:
if test["type"] in ("NDRPDR", ):
if "-pdr" in plot_title.lower():
y_vals[test["parent"]].\
append(test["throughput"]["PDR"]["LOWER"])
elif "-ndr" in plot_title.lower():
y_vals[test["parent"]]. \
append(test["throughput"]["NDR"]["LOWER"])
else:
continue
else:
continue
except (KeyError, TypeError):
y_vals[test["parent"]].append(None)
# Sort the tests
order = plot.get("sort", None)
if order and y_tags:
y_sorted = OrderedDict()
y_tags_l = {s: [t.lower() for t in ts] for s, ts in y_tags.items()}
for tag in order:
logging.info(tag)
for suite, tags in y_tags_l.items():
if "not " in tag:
tag = tag.split(" ")[-1]
if tag.lower() in tags:
continue
else:
if tag.lower() not in tags:
continue
try:
y_sorted[suite] = y_vals.pop(suite)
y_tags_l.pop(suite)
logging.info(suite)
except KeyError as err:
logging.error("Not found: {0}".format(err))
finally:
break
else:
y_sorted = y_vals
# Add None to the lists with missing data
max_len = 0
for val in y_sorted.values():
if len(val) > max_len:
max_len = len(val)
for key, val in y_sorted.items():
if len(val) < max_len:
val.extend([None for _ in range(max_len - len(val))])
# Add plot traces
traces = list()
df = pd.DataFrame(y_sorted)
df.head()
y_max = list()
for i, col in enumerate(df.columns):
name = "{0}. {1}".format(i + 1, col.lower().replace('-ndrpdrdisc', '').
replace('-ndrpdr', ''))
logging.info(name)
traces.append(plgo.Box(x=[str(i + 1) + '.'] * len(df[col]),
y=[y / 1000000 if y else None for y in df[col]],
name=name,
**plot["traces"]))
val_max = max(df[col])
if val_max:
y_max.append(int(val_max / 1000000) + 1)
try:
# Create plot
layout = deepcopy(plot["layout"])
if layout.get("title", None):
layout["title"] = "Packet Throughput: {0}". \
format(layout["title"])
if y_max:
layout["yaxis"]["range"] = [0, max(y_max)]
plpl = plgo.Figure(data=traces, layout=layout)
# Export Plot
logging.info(" Writing file '{0}{1}'.".
format(plot["output-file"], plot["output-file-type"]))
ploff.plot(plpl, show_link=False, auto_open=False,
filename='{0}{1}'.format(plot["output-file"],
plot["output-file-type"]))
except PlotlyError as err:
logging.error(" Finished with error: {}".
format(str(err).replace("\n", " ")))
return
def plot_latency_error_bars(plot, input_data):
"""Generate the plot(s) with algorithm: plot_latency_error_bars
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
plot_title = plot.get("title", "")
logging.info(" Creating the data set for the {0} '{1}'.".
format(plot.get("type", ""), plot_title))
data = input_data.filter_data(plot)
if data is None:
logging.error("No data.")
return
# Prepare the data for the plot
y_tmp_vals = dict()
y_tags = dict()
for job in data:
for build in job:
for test in build:
if y_tmp_vals.get(test["parent"], None) is None:
y_tmp_vals[test["parent"]] = [
list(), # direction1, min
list(), # direction1, avg
list(), # direction1, max
list(), # direction2, min
list(), # direction2, avg
list() # direction2, max
]
y_tags[test["parent"]] = test.get("tags", None)
try:
if test["type"] in ("NDRPDR", ):
if "-pdr" in plot_title.lower():
ttype = "PDR"
elif "-ndr" in plot_title.lower():
ttype = "NDR"
else:
continue
y_tmp_vals[test["parent"]][0].append(
test["latency"][ttype]["direction1"]["min"])
y_tmp_vals[test["parent"]][1].append(
test["latency"][ttype]["direction1"]["avg"])
y_tmp_vals[test["parent"]][2].append(
test["latency"][ttype]["direction1"]["max"])
y_tmp_vals[test["parent"]][3].append(
test["latency"][ttype]["direction2"]["min"])
y_tmp_vals[test["parent"]][4].append(
test["latency"][ttype]["direction2"]["avg"])
y_tmp_vals[test["parent"]][5].append(
test["latency"][ttype]["direction2"]["max"])
else:
continue
except (KeyError, TypeError):
pass
# Sort the tests
order = plot.get("sort", None)
if order and y_tags:
y_sorted = OrderedDict()
y_tags_l = {s: [t.lower() for t in ts] for s, ts in y_tags.items()}
for tag in order:
for suite, tags in y_tags_l.items():
if tag.lower() in tags:
try:
y_sorted[suite] = y_tmp_vals.pop(suite)
y_tags_l.pop(suite)
except KeyError as err:
logging.error("Not found: {0}".format(err))
finally:
break
else:
y_sorted = y_tmp_vals
x_vals = list()
y_vals = list()
y_mins = list()
y_maxs = list()
for key, val in y_sorted.items():
key = "-".join(key.split("-")[1:-1])
x_vals.append(key) # dir 1
y_vals.append(mean(val[1]) if val[1] else None)
y_mins.append(mean(val[0]) if val[0] else None)
y_maxs.append(mean(val[2]) if val[2] else None)
x_vals.append(key) # dir 2
y_vals.append(mean(val[4]) if val[4] else None)
y_mins.append(mean(val[3]) if val[3] else None)
y_maxs.append(mean(val[5]) if val[5] else None)
traces = list()
annotations = list()
for idx in range(len(x_vals)):
if not bool(int(idx % 2)):
direction = "West - East"
else:
direction = "East - West"
hovertext = ("Test: {test}
"
"Direction: {dir}
".format(test=x_vals[idx],
dir=direction))
if isinstance(y_maxs[idx], float):
hovertext += "Max: {max:.2f}uSec
".format(max=y_maxs[idx])
if isinstance(y_vals[idx], float):
hovertext += "Avg: {avg:.2f}uSec
".format(avg=y_vals[idx])
if isinstance(y_mins[idx], float):
hovertext += "Min: {min:.2f}uSec".format(min=y_mins[idx])
if isinstance(y_maxs[idx], float) and isinstance(y_vals[idx], float):
array = [y_maxs[idx] - y_vals[idx], ]
else:
array = [None, ]
if isinstance(y_mins[idx], float) and isinstance(y_vals[idx], float):
arrayminus = [y_vals[idx] - y_mins[idx], ]
else:
arrayminus = [None, ]
traces.append(plgo.Scatter(
x=[idx, ],
y=[y_vals[idx], ],
name=x_vals[idx],
legendgroup=x_vals[idx],
showlegend=bool(int(idx % 2)),
mode="markers",
error_y=dict(
type='data',
symmetric=False,
array=array,
arrayminus=arrayminus,
color=COLORS[int(idx / 2)]
),
marker=dict(
size=10,
color=COLORS[int(idx / 2)],
),
text=hovertext,
hoverinfo="text",
))
annotations.append(dict(
x=idx,
y=0,
xref="x",
yref="y",
xanchor="center",
yanchor="top",
text="E-W" if bool(int(idx % 2)) else "W-E",
font=dict(
size=16,
),
align="center",
showarrow=False
))
try:
# Create plot
logging.info(" Writing file '{0}{1}'.".
format(plot["output-file"], plot["output-file-type"]))
layout = deepcopy(plot["layout"])
if layout.get("title", None):
layout["title"] = "Packet Latency: {0}".\
format(layout["title"])
layout["annotations"] = annotations
plpl = plgo.Figure(data=traces, layout=layout)
# Export Plot
ploff.plot(plpl,
show_link=False, auto_open=False,
filename='{0}{1}'.format(plot["output-file"],
plot["output-file-type"]))
except PlotlyError as err:
logging.error(" Finished with error: {}".
format(str(err).replace("\n", " ")))
return
def plot_throughput_speedup_analysis(plot, input_data):
"""Generate the plot(s) with algorithm:
plot_throughput_speedup_analysis
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
plot_title = plot.get("title", "")
logging.info(" Creating the data set for the {0} '{1}'.".
format(plot.get("type", ""), plot_title))
data = input_data.filter_data(plot)
if data is None:
logging.error("No data.")
return
y_vals = dict()
y_tags = dict()
for job in data:
for build in job:
for test in build:
if y_vals.get(test["parent"], None) is None:
y_vals[test["parent"]] = {"1": list(),
"2": list(),
"4": list()}
y_tags[test["parent"]] = test.get("tags", None)
try:
if test["type"] in ("NDRPDR",):
if "-pdr" in plot_title.lower():
ttype = "PDR"
elif "-ndr" in plot_title.lower():
ttype = "NDR"
else:
continue
if "1C" in test["tags"]:
y_vals[test["parent"]]["1"]. \
append(test["throughput"][ttype]["LOWER"])
elif "2C" in test["tags"]:
y_vals[test["parent"]]["2"]. \
append(test["throughput"][ttype]["LOWER"])
elif "4C" in test["tags"]:
y_vals[test["parent"]]["4"]. \
append(test["throughput"][ttype]["LOWER"])
except (KeyError, TypeError):
pass
if not y_vals:
logging.warning("No data for the plot '{}'".
format(plot.get("title", "")))
return
y_1c_max = dict()
for test_name, test_vals in y_vals.items():
for key, test_val in test_vals.items():
if test_val:
y_vals[test_name][key] = sum(test_val) / len(test_val)
if key == "1":
y_1c_max[test_name] = max(test_val) / 1000000.0
vals = dict()
y_max = list()
nic_limit = 0
lnk_limit = 0
pci_limit = plot["limits"]["pci"]["pci-g3-x8"]
for test_name, test_vals in y_vals.items():
if test_vals["1"]:
name = "-".join(test_name.split('-')[1:-1])
vals[name] = dict()
y_val_1 = test_vals["1"] / 1000000.0
y_val_2 = test_vals["2"] / 1000000.0 if test_vals["2"] else None
y_val_4 = test_vals["4"] / 1000000.0 if test_vals["4"] else None
vals[name]["val"] = [y_val_1, y_val_2, y_val_4]
vals[name]["rel"] = [1.0, None, None]
vals[name]["ideal"] = [y_1c_max[test_name],
y_1c_max[test_name] * 2,
y_1c_max[test_name] * 4]
vals[name]["diff"] = \
[(y_val_1 - y_1c_max[test_name]) * 100 / y_val_1, None, None]
try:
val_max = max(max(vals[name]["val"], vals[name]["ideal"]))
except ValueError as err:
logging.error(err)
continue
if val_max:
y_max.append(int((val_max / 10) + 1) * 10)
if y_val_2:
vals[name]["rel"][1] = round(y_val_2 / y_val_1, 2)
vals[name]["diff"][1] = \
(y_val_2 - vals[name]["ideal"][1]) * 100 / y_val_2
if y_val_4:
vals[name]["rel"][2] = round(y_val_4 / y_val_1, 2)
vals[name]["diff"][2] = \
(y_val_4 - vals[name]["ideal"][2]) * 100 / y_val_4
# Limits:
if "x520" in test_name:
limit = plot["limits"]["nic"]["x520"]
elif "x710" in test_name:
limit = plot["limits"]["nic"]["x710"]
elif "xxv710" in test_name:
limit = plot["limits"]["nic"]["xxv710"]
elif "xl710" in test_name:
limit = plot["limits"]["nic"]["xl710"]
else:
limit = 0
if limit > nic_limit:
nic_limit = limit
mul = 2 if "ge2p" in test_name else 1
if "10ge" in test_name:
limit = plot["limits"]["link"]["10ge"] * mul
elif "25ge" in test_name:
limit = plot["limits"]["link"]["25ge"] * mul
elif "40ge" in test_name:
limit = plot["limits"]["link"]["40ge"] * mul
elif "100ge" in test_name:
limit = plot["limits"]["link"]["100ge"] * mul
else:
limit = 0
if limit > lnk_limit:
lnk_limit = limit
# Sort the tests
order = plot.get("sort", None)
if order and y_tags:
y_sorted = OrderedDict()
y_tags_l = {s: [t.lower() for t in ts] for s, ts in y_tags.items()}
for tag in order:
for test, tags in y_tags_l.items():
if tag.lower() in tags:
name = "-".join(test.split('-')[1:-1])
try:
y_sorted[name] = vals.pop(name)
y_tags_l.pop(test)
except KeyError as err:
logging.error("Not found: {0}".format(err))
finally:
break
else:
y_sorted = vals
traces = list()
annotations = list()
x_vals = [1, 2, 4]
# Limits:
try:
threshold = 1.1 * max(y_max) # 10%
except ValueError as err:
logging.error(err)
return
nic_limit /= 1000000.0
if nic_limit < threshold:
traces.append(plgo.Scatter(
x=x_vals,
y=[nic_limit, ] * len(x_vals),
name="NIC: {0:.2f}Mpps".format(nic_limit),
showlegend=False,
mode="lines",
line=dict(
dash="dot",
color=COLORS[-1],
width=1),
hoverinfo="none"
))
annotations.append(dict(
x=1,
y=nic_limit,
xref="x",
yref="y",
xanchor="left",
yanchor="bottom",
text="NIC: {0:.2f}Mpps".format(nic_limit),
font=dict(
size=14,
color=COLORS[-1],
),
align="left",
showarrow=False
))
y_max.append(int((nic_limit / 10) + 1) * 10)
lnk_limit /= 1000000.0
if lnk_limit < threshold:
traces.append(plgo.Scatter(
x=x_vals,
y=[lnk_limit, ] * len(x_vals),
name="Link: {0:.2f}Mpps".format(lnk_limit),
showlegend=False,
mode="lines",
line=dict(
dash="dot",
color=COLORS[-2],
width=1),
hoverinfo="none"
))
annotations.append(dict(
x=1,
y=lnk_limit,
xref="x",
yref="y",
xanchor="left",
yanchor="bottom",
text="Link: {0:.2f}Mpps".format(lnk_limit),
font=dict(
size=14,
color=COLORS[-2],
),
align="left",
showarrow=False
))
y_max.append(int((lnk_limit / 10) + 1) * 10)
pci_limit /= 1000000.0
if pci_limit < threshold:
traces.append(plgo.Scatter(
x=x_vals,
y=[pci_limit, ] * len(x_vals),
name="PCIe: {0:.2f}Mpps".format(pci_limit),
showlegend=False,
mode="lines",
line=dict(
dash="dot",
color=COLORS[-3],
width=1),
hoverinfo="none"
))
annotations.append(dict(
x=1,
y=pci_limit,
xref="x",
yref="y",
xanchor="left",
yanchor="bottom",
text="PCIe: {0:.2f}Mpps".format(pci_limit),
font=dict(
size=14,
color=COLORS[-3],
),
align="left",
showarrow=False
))
y_max.append(int((pci_limit / 10) + 1) * 10)
# Perfect and measured:
cidx = 0
for name, val in y_sorted.iteritems():
hovertext = list()
for idx in range(len(val["val"])):
htext = ""
if isinstance(val["val"][idx], float):
htext += "value: {0:.2f}Mpps
".format(val["val"][idx])
if isinstance(val["diff"][idx], float):
htext += "diff: {0:.0f}%
".format(round(val["diff"][idx]))
if isinstance(val["rel"][idx], float):
htext += "speedup: {0:.2f}".format(val["rel"][idx])
hovertext.append(htext)
traces.append(plgo.Scatter(x=x_vals,
y=val["val"],
name=name,
legendgroup=name,
mode="lines+markers",
line=dict(
color=COLORS[cidx],
width=2),
marker=dict(
symbol="circle",
size=10
),
text=hovertext,
hoverinfo="text+name"
))
traces.append(plgo.Scatter(x=x_vals,
y=val["ideal"],
name="{0} perfect".format(name),
legendgroup=name,
showlegend=False,
mode="lines",
line=dict(
color=COLORS[cidx],
width=2,
dash="dash"),
text=["perfect: {0:.2f}Mpps".format(y)
for y in val["ideal"]],
hoverinfo="text"
))
cidx += 1
try:
# Create plot
logging.info(" Writing file '{0}{1}'.".
format(plot["output-file"], plot["output-file-type"]))
layout = deepcopy(plot["layout"])
if layout.get("title", None):
layout["title"] = "Speedup Multi-core: {0}". \
format(layout["title"])
layout["annotations"].extend(annotations)
plpl = plgo.Figure(data=traces, layout=layout)
# Export Plot
ploff.plot(plpl,
show_link=False, auto_open=False,
filename='{0}{1}'.format(plot["output-file"],
plot["output-file-type"]))
except PlotlyError as err:
logging.error(" Finished with error: {}".
format(str(err).replace("\n", " ")))
return
def plot_http_server_performance_box(plot, input_data):
"""Generate the plot(s) with algorithm: plot_http_server_performance_box
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
logging.info(" Creating the data set for the {0} '{1}'.".
format(plot.get("type", ""), plot.get("title", "")))
data = input_data.filter_data(plot)
if data is None:
logging.error("No data.")
return
# Prepare the data for the plot
y_vals = dict()
for job in data:
for build in job:
for test in build:
if y_vals.get(test["name"], None) is None:
y_vals[test["name"]] = list()
try:
y_vals[test["name"]].append(test["result"])
except (KeyError, TypeError):
y_vals[test["name"]].append(None)
# Add None to the lists with missing data
max_len = 0
for val in y_vals.values():
if len(val) > max_len:
max_len = len(val)
for key, val in y_vals.items():
if len(val) < max_len:
val.extend([None for _ in range(max_len - len(val))])
# Add plot traces
traces = list()
df = pd.DataFrame(y_vals)
df.head()
for i, col in enumerate(df.columns):
name = "{0}. {1}".format(i + 1, col.lower().replace('-cps', '').
replace('-rps', ''))
traces.append(plgo.Box(x=[str(i + 1) + '.'] * len(df[col]),
y=df[col],
name=name,
**plot["traces"]))
try:
# Create plot
plpl = plgo.Figure(data=traces, layout=plot["layout"])
# Export Plot
logging.info(" Writing file '{0}{1}'.".
format(plot["output-file"], plot["output-file-type"]))
ploff.plot(plpl, show_link=False, auto_open=False,
filename='{0}{1}'.format(plot["output-file"],
plot["output-file-type"]))
except PlotlyError as err:
logging.error(" Finished with error: {}".
format(str(err).replace("\n", " ")))
return