# Copyright (c) 2021 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Algorithms to generate plots.
"""
import re
import logging
import hdrh.histogram
import hdrh.codec
import pandas as pd
import plotly.offline as ploff
import plotly.graph_objs as plgo
from collections import OrderedDict
from copy import deepcopy
from math import log
from plotly.exceptions import PlotlyError
from pal_utils import mean, stdev
COLORS = (
u"#1A1110",
u"#DA2647",
u"#214FC6",
u"#01786F",
u"#BD8260",
u"#FFD12A",
u"#A6E7FF",
u"#738276",
u"#C95A49",
u"#FC5A8D",
u"#CEC8EF",
u"#391285",
u"#6F2DA8",
u"#FF878D",
u"#45A27D",
u"#FFD0B9",
u"#FD5240",
u"#DB91EF",
u"#44D7A8",
u"#4F86F7",
u"#84DE02",
u"#FFCFF1",
u"#614051"
)
REGEX_NIC = re.compile(r'(\d*ge\dp\d\D*\d*[a-z]*)-')
# This value depends on latency stream rate (9001 pps) and duration (5s).
# Keep it slightly higher to ensure rounding errors to not remove tick mark.
PERCENTILE_MAX = 99.999501
def generate_plots(spec, data):
"""Generate all plots specified in the specification file.
:param spec: Specification read from the specification file.
:param data: Data to process.
:type spec: Specification
:type data: InputData
"""
generator = {
u"plot_nf_reconf_box_name": plot_nf_reconf_box_name,
u"plot_perf_box_name": plot_perf_box_name,
u"plot_tsa_name": plot_tsa_name,
u"plot_http_server_perf_box": plot_http_server_perf_box,
u"plot_nf_heatmap": plot_nf_heatmap,
u"plot_hdrh_lat_by_percentile": plot_hdrh_lat_by_percentile,
u"plot_hdrh_lat_by_percentile_x_log": plot_hdrh_lat_by_percentile_x_log,
u"plot_mrr_box_name": plot_mrr_box_name,
u"plot_ndrpdr_box_name": plot_ndrpdr_box_name
}
logging.info(u"Generating the plots ...")
for index, plot in enumerate(spec.plots):
try:
logging.info(f" Plot nr {index + 1}: {plot.get(u'title', u'')}")
plot[u"limits"] = spec.configuration[u"limits"]
generator[plot[u"algorithm"]](plot, data)
logging.info(u" Done.")
except NameError as err:
logging.error(
f"Probably algorithm {plot[u'algorithm']} is not defined: "
f"{repr(err)}"
)
logging.info(u"Done.")
def plot_hdrh_lat_by_percentile(plot, input_data):
"""Generate the plot(s) with algorithm: plot_hdrh_lat_by_percentile
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
logging.info(
f" Creating the data set for the {plot.get(u'type', u'')} "
f"{plot.get(u'title', u'')}."
)
if plot.get(u"include", None):
data = input_data.filter_tests_by_name(
plot,
params=[u"name", u"latency", u"parent", u"tags", u"type"]
)[0][0]
elif plot.get(u"filter", None):
data = input_data.filter_data(
plot,
params=[u"name", u"latency", u"parent", u"tags", u"type"],
continue_on_error=True
)[0][0]
else:
job = list(plot[u"data"].keys())[0]
build = str(plot[u"data"][job][0])
data = input_data.tests(job, build)
if data is None or len(data) == 0:
logging.error(u"No data.")
return
desc = {
u"LAT0": u"No-load.",
u"PDR10": u"Low-load, 10% PDR.",
u"PDR50": u"Mid-load, 50% PDR.",
u"PDR90": u"High-load, 90% PDR.",
u"PDR": u"Full-load, 100% PDR.",
u"NDR10": u"Low-load, 10% NDR.",
u"NDR50": u"Mid-load, 50% NDR.",
u"NDR90": u"High-load, 90% NDR.",
u"NDR": u"Full-load, 100% NDR."
}
graphs = [
u"LAT0",
u"PDR10",
u"PDR50",
u"PDR90"
]
file_links = plot.get(u"output-file-links", None)
target_links = plot.get(u"target-links", None)
for test in data:
try:
if test[u"type"] not in (u"NDRPDR",):
logging.warning(f"Invalid test type: {test[u'type']}")
continue
name = re.sub(REGEX_NIC, u"", test[u"parent"].
replace(u'-ndrpdr', u'').replace(u'2n1l-', u''))
try:
nic = re.search(REGEX_NIC, test[u"parent"]).group(1)
except (IndexError, AttributeError, KeyError, ValueError):
nic = u""
name_link = f"{nic}-{test[u'name']}".replace(u'-ndrpdr', u'')
logging.info(f" Generating the graph: {name_link}")
fig = plgo.Figure()
layout = deepcopy(plot[u"layout"])
for color, graph in enumerate(graphs):
for idx, direction in enumerate((u"direction1", u"direction2")):
previous_x = 0.0
xaxis = list()
yaxis = list()
hovertext = list()
try:
decoded = hdrh.histogram.HdrHistogram.decode(
test[u"latency"][graph][direction][u"hdrh"]
)
except hdrh.codec.HdrLengthException:
logging.warning(
f"No data for direction {(u'W-E', u'E-W')[idx % 2]}"
)
continue
for item in decoded.get_recorded_iterator():
percentile = item.percentile_level_iterated_to
xaxis.append(previous_x)
yaxis.append(item.value_iterated_to)
hovertext.append(
f"{desc[graph]}
"
f"Direction: {(u'W-E', u'E-W')[idx % 2]}
"
f"Percentile: {previous_x:.5f}-{percentile:.5f}%
"
f"Latency: {item.value_iterated_to}uSec"
)
xaxis.append(percentile)
yaxis.append(item.value_iterated_to)
hovertext.append(
f"{desc[graph]}
"
f"Direction: {(u'W-E', u'E-W')[idx % 2]}
"
f"Percentile: {previous_x:.5f}-{percentile:.5f}%
"
f"Latency: {item.value_iterated_to}uSec"
)
previous_x = percentile
fig.add_trace(
plgo.Scatter(
x=xaxis,
y=yaxis,
name=desc[graph],
mode=u"lines",
legendgroup=desc[graph],
showlegend=bool(idx),
line=dict(
color=COLORS[color],
dash=u"solid",
width=1 if idx % 2 else 2
),
hovertext=hovertext,
hoverinfo=u"text"
)
)
layout[u"title"][u"text"] = f"Latency: {name}"
fig.update_layout(layout)
# Create plot
file_name = f"{plot[u'output-file']}-{name_link}.html"
logging.info(f" Writing file {file_name}")
try:
# Export Plot
ploff.plot(fig, show_link=False, auto_open=False,
filename=file_name)
# Add link to the file:
if file_links and target_links:
with open(file_links, u"a") as file_handler:
file_handler.write(
f"- `{name_link} "
f"<{target_links}/{file_name.split(u'/')[-1]}>`_\n"
)
except FileNotFoundError as err:
logging.error(
f"Not possible to write the link to the file "
f"{file_links}\n{err}"
)
except PlotlyError as err:
logging.error(f" Finished with error: {repr(err)}")
except hdrh.codec.HdrLengthException as err:
logging.warning(repr(err))
continue
except (ValueError, KeyError) as err:
logging.warning(repr(err))
continue
def plot_hdrh_lat_by_percentile_x_log(plot, input_data):
"""Generate the plot(s) with algorithm: plot_hdrh_lat_by_percentile_x_log
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
logging.info(
f" Creating the data set for the {plot.get(u'type', u'')} "
f"{plot.get(u'title', u'')}."
)
if plot.get(u"include", None):
data = input_data.filter_tests_by_name(
plot,
params=[u"name", u"latency", u"parent", u"tags", u"type"]
)[0][0]
elif plot.get(u"filter", None):
data = input_data.filter_data(
plot,
params=[u"name", u"latency", u"parent", u"tags", u"type"],
continue_on_error=True
)[0][0]
else:
job = list(plot[u"data"].keys())[0]
build = str(plot[u"data"][job][0])
data = input_data.tests(job, build)
if data is None or len(data) == 0:
logging.error(u"No data.")
return
desc = {
u"LAT0": u"No-load.",
u"PDR10": u"Low-load, 10% PDR.",
u"PDR50": u"Mid-load, 50% PDR.",
u"PDR90": u"High-load, 90% PDR.",
u"PDR": u"Full-load, 100% PDR.",
u"NDR10": u"Low-load, 10% NDR.",
u"NDR50": u"Mid-load, 50% NDR.",
u"NDR90": u"High-load, 90% NDR.",
u"NDR": u"Full-load, 100% NDR."
}
graphs = [
u"LAT0",
u"PDR10",
u"PDR50",
u"PDR90"
]
file_links = plot.get(u"output-file-links", None)
target_links = plot.get(u"target-links", None)
for test in data:
try:
if test[u"type"] not in (u"NDRPDR",):
logging.warning(f"Invalid test type: {test[u'type']}")
continue
name = re.sub(REGEX_NIC, u"", test[u"parent"].
replace(u'-ndrpdr', u'').replace(u'2n1l-', u''))
try:
nic = re.search(REGEX_NIC, test[u"parent"]).group(1)
except (IndexError, AttributeError, KeyError, ValueError):
nic = u""
name_link = f"{nic}-{test[u'name']}".replace(u'-ndrpdr', u'')
logging.info(f" Generating the graph: {name_link}")
fig = plgo.Figure()
layout = deepcopy(plot[u"layout"])
for color, graph in enumerate(graphs):
for idx, direction in enumerate((u"direction1", u"direction2")):
previous_x = 0.0
prev_perc = 0.0
xaxis = list()
yaxis = list()
hovertext = list()
try:
decoded = hdrh.histogram.HdrHistogram.decode(
test[u"latency"][graph][direction][u"hdrh"]
)
except hdrh.codec.HdrLengthException:
logging.warning(
f"No data for direction {(u'W-E', u'E-W')[idx % 2]}"
)
continue
for item in decoded.get_recorded_iterator():
# The real value is "percentile".
# For 100%, we cut that down to "x_perc" to avoid
# infinity.
percentile = item.percentile_level_iterated_to
x_perc = min(percentile, PERCENTILE_MAX)
xaxis.append(previous_x)
yaxis.append(item.value_iterated_to)
hovertext.append(
f"{desc[graph]}
"
f"Direction: {(u'W-E', u'E-W')[idx % 2]}
"
f"Percentile: {prev_perc:.5f}-{percentile:.5f}%
"
f"Latency: {item.value_iterated_to}uSec"
)
next_x = 100.0 / (100.0 - x_perc)
xaxis.append(next_x)
yaxis.append(item.value_iterated_to)
hovertext.append(
f"{desc[graph]}
"
f"Direction: {(u'W-E', u'E-W')[idx % 2]}
"
f"Percentile: {prev_perc:.5f}-{percentile:.5f}%
"
f"Latency: {item.value_iterated_to}uSec"
)
previous_x = next_x
prev_perc = percentile
fig.add_trace(
plgo.Scatter(
x=xaxis,
y=yaxis,
name=desc[graph],
mode=u"lines",
legendgroup=desc[graph],
showlegend=not(bool(idx)),
line=dict(
color=COLORS[color],
dash=u"solid",
width=1 if idx % 2 else 2
),
hovertext=hovertext,
hoverinfo=u"text"
)
)
layout[u"title"][u"text"] = f"Latency: {name}"
x_max = log(100.0 / (100.0 - PERCENTILE_MAX), 10)
layout[u"xaxis"][u"range"] = [0, x_max]
fig.update_layout(layout)
# Create plot
file_name = f"{plot[u'output-file']}-{name_link}.html"
logging.info(f" Writing file {file_name}")
try:
# Export Plot
ploff.plot(fig, show_link=False, auto_open=False,
filename=file_name)
# Add link to the file:
if file_links and target_links:
with open(file_links, u"a") as file_handler:
file_handler.write(
f"- `{name_link} "
f"<{target_links}/{file_name.split(u'/')[-1]}>`_\n"
)
except FileNotFoundError as err:
logging.error(
f"Not possible to write the link to the file "
f"{file_links}\n{err}"
)
except PlotlyError as err:
logging.error(f" Finished with error: {repr(err)}")
except hdrh.codec.HdrLengthException as err:
logging.warning(repr(err))
continue
except (ValueError, KeyError) as err:
logging.warning(repr(err))
continue
def plot_nf_reconf_box_name(plot, input_data):
"""Generate the plot(s) with algorithm: plot_nf_reconf_box_name
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
logging.info(
f" Creating the data set for the {plot.get(u'type', u'')} "
f"{plot.get(u'title', u'')}."
)
data = input_data.filter_tests_by_name(
plot, params=[u"result", u"parent", u"tags", u"type"]
)
if data is None:
logging.error(u"No data.")
return
for core in plot.get(u"core", tuple()):
# Prepare the data for the plot
y_vals = OrderedDict()
loss = dict()
for item in plot.get(u"include", tuple()):
reg_ex = re.compile(str(item.format(core=core)).lower())
for job in data:
for build in job:
for test_id, test in build.iteritems():
if not re.match(reg_ex, str(test_id).lower()):
continue
if y_vals.get(test[u"parent"], None) is None:
y_vals[test[u"parent"]] = list()
loss[test[u"parent"]] = list()
try:
y_vals[test[u"parent"]].append(
test[u"result"][u"time"]
)
loss[test[u"parent"]].append(
test[u"result"][u"loss"]
)
except (KeyError, TypeError):
y_vals[test[u"parent"]].append(None)
# Add None to the lists with missing data
max_len = 0
nr_of_samples = list()
for val in y_vals.values():
if len(val) > max_len:
max_len = len(val)
nr_of_samples.append(len(val))
for val in y_vals.values():
if len(val) < max_len:
val.extend([None for _ in range(max_len - len(val))])
# Add plot traces
traces = list()
df_y = pd.DataFrame(y_vals)
df_y.head()
for i, col in enumerate(df_y.columns):
tst_name = re.sub(
REGEX_NIC, u"",
col.lower().replace(u'-reconf', u'').replace(u'2n1l-', u'').
replace(u'2n-', u'').replace(u'-testpmd', u'')
)
traces.append(plgo.Box(
x=[str(i + 1) + u'.'] * len(df_y[col]),
y=df_y[col],
name=(
f"{i + 1}. "
f"({nr_of_samples[i]:02d} "
f"run{u's' if nr_of_samples[i] > 1 else u''}, "
f"packets lost average: {mean(loss[col]):.1f}) "
f"{u'-'.join(tst_name.split(u'-')[2:])}"
),
hoverinfo=u"y+name"
))
try:
# Create plot
layout = deepcopy(plot[u"layout"])
layout[u"title"] = f"Time Lost: {layout[u'title']}"
layout[u"yaxis"][u"title"] = u"Effective Blocked Time [s]"
layout[u"legend"][u"font"][u"size"] = 14
layout[u"yaxis"].pop(u"range")
plpl = plgo.Figure(data=traces, layout=layout)
# Export Plot
file_name = f"{plot[u'output-file'].format(core=core)}.html"
logging.info(f" Writing file {file_name}")
ploff.plot(
plpl,
show_link=False,
auto_open=False,
filename=file_name
)
except PlotlyError as err:
logging.error(
f" Finished with error: {repr(err)}".replace(u"\n", u" ")
)
def plot_perf_box_name(plot, input_data):
"""Generate the plot(s) with algorithm: plot_perf_box_name
specified in the specification file.
Use only for soak and hoststack tests.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
logging.info(
f" Creating data set for the {plot.get(u'type', u'')} "
f"{plot.get(u'title', u'')}."
)
data = input_data.filter_tests_by_name(
plot,
params=[u"throughput", u"gbps", u"result", u"parent", u"tags", u"type"])
if data is None:
logging.error(u"No data.")
return
# Prepare the data for the plot
y_vals = OrderedDict()
test_type = u""
for item in plot.get(u"include", tuple()):
reg_ex = re.compile(str(item).lower())
for job in data:
for build in job:
for test_id, test in build.iteritems():
if not re.match(reg_ex, str(test_id).lower()):
continue
if y_vals.get(test[u"parent"], None) is None:
y_vals[test[u"parent"]] = list()
try:
if test[u"type"] in (u"SOAK",):
y_vals[test[u"parent"]]. \
append(test[u"throughput"][u"LOWER"])
test_type = u"SOAK"
elif test[u"type"] in (u"HOSTSTACK",):
if u"LDPRELOAD" in test[u"tags"]:
y_vals[test[u"parent"]].append(
float(
test[u"result"][u"bits_per_second"]
) / 1e3
)
elif u"VPPECHO" in test[u"tags"]:
y_vals[test[u"parent"]].append(
(float(
test[u"result"][u"client"][u"tx_data"]
) * 8 / 1e3) /
((float(
test[u"result"][u"client"][u"time"]
) +
float(
test[u"result"][u"server"][u"time"])
) / 2)
)
test_type = u"HOSTSTACK"
else:
continue
except (KeyError, TypeError):
y_vals[test[u"parent"]].append(None)
# Add None to the lists with missing data
max_len = 0
nr_of_samples = list()
for val in y_vals.values():
if len(val) > max_len:
max_len = len(val)
nr_of_samples.append(len(val))
for val in y_vals.values():
if len(val) < max_len:
val.extend([None for _ in range(max_len - len(val))])
# Add plot traces
traces = list()
df_y = pd.DataFrame(y_vals)
df_y.head()
y_max = list()
for i, col in enumerate(df_y.columns):
tst_name = re.sub(REGEX_NIC, u"",
col.lower().replace(u'-ndrpdr', u'').
replace(u'2n1l-', u''))
kwargs = dict(
x=[str(i + 1) + u'.'] * len(df_y[col]),
y=[y / 1e6 if y else None for y in df_y[col]],
name=(
f"{i + 1}. "
f"({nr_of_samples[i]:02d} "
f"run{u's' if nr_of_samples[i] > 1 else u''}) "
f"{tst_name}"
),
hoverinfo=u"y+name"
)
if test_type in (u"SOAK", ):
kwargs[u"boxpoints"] = u"all"
traces.append(plgo.Box(**kwargs))
try:
val_max = max(df_y[col])
if val_max:
y_max.append(int(val_max / 1e6) + 2)
except (ValueError, TypeError) as err:
logging.error(repr(err))
continue
try:
# Create plot
layout = deepcopy(plot[u"layout"])
if layout.get(u"title", None):
if test_type in (u"HOSTSTACK", ):
layout[u"title"] = f"Bandwidth: {layout[u'title']}"
else:
layout[u"title"] = f"Throughput: {layout[u'title']}"
if y_max:
layout[u"yaxis"][u"range"] = [0, max(y_max)]
plpl = plgo.Figure(data=traces, layout=layout)
# Export Plot
logging.info(f" Writing file {plot[u'output-file']}.html.")
ploff.plot(
plpl,
show_link=False,
auto_open=False,
filename=f"{plot[u'output-file']}.html"
)
except PlotlyError as err:
logging.error(
f" Finished with error: {repr(err)}".replace(u"\n", u" ")
)
return
def plot_ndrpdr_box_name(plot, input_data):
"""Generate the plot(s) with algorithm: plot_ndrpdr_box_name
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
logging.info(
f" Creating data set for the {plot.get(u'type', u'')} "
f"{plot.get(u'title', u'')}."
)
data = input_data.filter_tests_by_name(
plot,
params=[u"throughput", u"gbps", u"parent", u"tags", u"type"]
)
if data is None:
logging.error(u"No data.")
return
if u"-gbps" in plot.get(u"title", u"").lower():
value = u"gbps"
multiplier = 1e6
else:
value = u"throughput"
multiplier = 1.0
test_type = u""
for ttype in plot.get(u"test-type", (u"ndr", u"pdr")):
for core in plot.get(u"core", tuple()):
# Prepare the data for the plot
data_x = list()
data_y = OrderedDict()
data_y_max = list()
idx = 1
for item in plot.get(u"include", tuple()):
reg_ex = re.compile(str(item.format(core=core)).lower())
for job in data:
for build in job:
for test_id, test in build.iteritems():
if not re.match(reg_ex, str(test_id).lower()):
continue
if data_y.get(test[u"parent"], None) is None:
data_y[test[u"parent"]] = list()
test_type = test[u"type"]
data_x.append(idx)
idx += 1
try:
data_y[test[u"parent"]].append(
test[value][ttype.upper()][u"LOWER"] *
multiplier
)
except (KeyError, TypeError):
pass
# Add plot traces
traces = list()
for idx, (key, vals) in enumerate(data_y.items()):
name = re.sub(
REGEX_NIC, u'', key.lower().replace(u'-ndrpdr', u'').
replace(u'2n1l-', u'')
)
traces.append(
plgo.Box(
x=[data_x[idx], ] * len(data_x),
y=[y / 1e6 if y else None for y in vals],
name=(
f"{idx+1}."
f"({len(vals):02d} "
f"run"
f"{u's' if len(vals) > 1 else u''}) "
f"{name}"
),
hoverinfo=u"y+name"
)
)
data_y_max.append(max(vals))
try:
# Create plot
layout = deepcopy(plot[u"layout"])
if layout.get(u"title", None):
layout[u"title"] = \
layout[u'title'].format(core=core, test_type=ttype)
if test_type in (u"CPS", ):
layout[u"title"] = f"CPS: {layout[u'title']}"
else:
layout[u"title"] = \
f"Throughput: {layout[u'title']}"
if data_y_max:
layout[u"yaxis"][u"range"] = [0, max(data_y_max) / 1e6 + 1]
plpl = plgo.Figure(data=traces, layout=layout)
# Export Plot
file_name = (
f"{plot[u'output-file'].format(core=core, test_type=ttype)}"
f".html"
)
logging.info(f" Writing file {file_name}")
ploff.plot(
plpl,
show_link=False,
auto_open=False,
filename=file_name
)
except PlotlyError as err:
logging.error(
f" Finished with error: {repr(err)}".replace(u"\n", u" ")
)
def plot_mrr_box_name(plot, input_data):
"""Generate the plot(s) with algorithm: plot_mrr_box_name
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
logging.info(
f" Creating data set for the {plot.get(u'type', u'')} "
f"{plot.get(u'title', u'')}."
)
data = input_data.filter_tests_by_name(
plot,
params=[u"result", u"parent", u"tags", u"type"]
)
if data is None:
logging.error(u"No data.")
return
for core in plot.get(u"core", tuple()):
# Prepare the data for the plot
data_x = list()
data_names = list()
data_y = list()
data_y_max = list()
idx = 1
for item in plot.get(u"include", tuple()):
reg_ex = re.compile(str(item.format(core=core)).lower())
for job in data:
for build in job:
for test_id, test in build.iteritems():
if not re.match(reg_ex, str(test_id).lower()):
continue
try:
data_x.append(idx)
name = re.sub(
REGEX_NIC, u'', test[u'parent'].lower().
replace(u'-mrr', u'').replace(u'2n1l-', u'')
)
data_y.append(test[u"result"][u"samples"])
data_names.append(
f"{idx}."
f"({len(data_y[-1]):02d} "
f"run{u's' if len(data_y[-1]) > 1 else u''}) "
f"{name}"
)
data_y_max.append(max(data_y[-1]))
idx += 1
except (KeyError, TypeError):
pass
# Add plot traces
traces = list()
for idx in range(len(data_x)):
traces.append(
plgo.Box(
x=[data_x[idx], ] * len(data_y[idx]),
y=data_y[idx],
name=data_names[idx],
hoverinfo=u"y+name"
)
)
try:
# Create plot
layout = deepcopy(plot[u"layout"])
if layout.get(u"title", None):
layout[u"title"] = (
f"Throughput: {layout[u'title'].format(core=core)}"
)
if data_y_max:
layout[u"yaxis"][u"range"] = [0, max(data_y_max) + 1]
plpl = plgo.Figure(data=traces, layout=layout)
# Export Plot
file_name = f"{plot[u'output-file'].format(core=core)}.html"
logging.info(f" Writing file {file_name}")
ploff.plot(
plpl,
show_link=False,
auto_open=False,
filename=file_name
)
except PlotlyError as err:
logging.error(
f" Finished with error: {repr(err)}".replace(u"\n", u" ")
)
def plot_tsa_name(plot, input_data):
"""Generate the plot(s) with algorithm:
plot_tsa_name
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
plot_title = plot.get(u"title", u"")
logging.info(
f" Creating data set for the {plot.get(u'type', u'')} {plot_title}."
)
data = input_data.filter_tests_by_name(
plot,
params=[u"throughput", u"gbps", u"parent", u"tags", u"type"]
)
if data is None:
logging.error(u"No data.")
return
plot_title = plot_title.lower()
if u"-gbps" in plot_title:
value = u"gbps"
h_unit = u"Gbps"
multiplier = 1e6
else:
value = u"throughput"
h_unit = u"Mpps"
multiplier = 1.0
for ttype in plot.get(u"test-type", (u"ndr", u"pdr")):
y_vals = OrderedDict()
for item in plot.get(u"include", tuple()):
reg_ex = re.compile(str(item).lower())
for job in data:
for build in job:
for test_id, test in build.iteritems():
if re.match(reg_ex, str(test_id).lower()):
if y_vals.get(test[u"parent"], None) is None:
y_vals[test[u"parent"]] = {
u"1": list(),
u"2": list(),
u"4": list()
}
try:
if test[u"type"] not in (u"NDRPDR", u"CPS"):
continue
if u"1C" in test[u"tags"]:
y_vals[test[u"parent"]][u"1"].append(
test[value][ttype.upper()][u"LOWER"] *
multiplier
)
elif u"2C" in test[u"tags"]:
y_vals[test[u"parent"]][u"2"].append(
test[value][ttype.upper()][u"LOWER"] *
multiplier
)
elif u"4C" in test[u"tags"]:
y_vals[test[u"parent"]][u"4"].append(
test[value][ttype.upper()][u"LOWER"] *
multiplier
)
except (KeyError, TypeError):
pass
if not y_vals:
logging.warning(f"No data for the plot {plot.get(u'title', u'')}")
return
y_1c_max = dict()
for test_name, test_vals in y_vals.items():
for key, test_val in test_vals.items():
if test_val:
avg_val = sum(test_val) / len(test_val)
y_vals[test_name][key] = [avg_val, len(test_val)]
ideal = avg_val / (int(key) * 1e6)
if test_name not in y_1c_max or ideal > y_1c_max[test_name]:
y_1c_max[test_name] = ideal
vals = OrderedDict()
y_max = list()
nic_limit = 0
lnk_limit = 0
pci_limit = 0
for test_name, test_vals in y_vals.items():
try:
if test_vals[u"1"][1]:
name = re.sub(
REGEX_NIC,
u"",
test_name.replace(u'-ndrpdr', u'').
replace(u'2n1l-', u'')
)
vals[name] = OrderedDict()
y_val_1 = test_vals[u"1"][0] / 1e6
y_val_2 = test_vals[u"2"][0] / 1e6 if test_vals[u"2"][0] \
else None
y_val_4 = test_vals[u"4"][0] / 1e6 if test_vals[u"4"][0] \
else None
vals[name][u"val"] = [y_val_1, y_val_2, y_val_4]
vals[name][u"rel"] = [1.0, None, None]
vals[name][u"ideal"] = [
y_1c_max[test_name],
y_1c_max[test_name] * 2,
y_1c_max[test_name] * 4
]
vals[name][u"diff"] = [
(y_val_1 - y_1c_max[test_name]) * 100 / y_val_1,
None,
None
]
vals[name][u"count"] = [
test_vals[u"1"][1],
test_vals[u"2"][1],
test_vals[u"4"][1]
]
try:
val_max = max(vals[name][u"val"])
except ValueError as err:
logging.error(repr(err))
continue
if val_max:
y_max.append(val_max)
if y_val_2:
vals[name][u"rel"][1] = round(y_val_2 / y_val_1, 2)
vals[name][u"diff"][1] = \
(y_val_2 - vals[name][u"ideal"][1]) * 100 / y_val_2
if y_val_4:
vals[name][u"rel"][2] = round(y_val_4 / y_val_1, 2)
vals[name][u"diff"][2] = \
(y_val_4 - vals[name][u"ideal"][2]) * 100 / y_val_4
except IndexError as err:
logging.warning(f"No data for {test_name}")
logging.warning(repr(err))
# Limits:
if u"x520" in test_name:
limit = plot[u"limits"][u"nic"][u"x520"]
elif u"x710" in test_name:
limit = plot[u"limits"][u"nic"][u"x710"]
elif u"xxv710" in test_name:
limit = plot[u"limits"][u"nic"][u"xxv710"]
elif u"xl710" in test_name:
limit = plot[u"limits"][u"nic"][u"xl710"]
elif u"x553" in test_name:
limit = plot[u"limits"][u"nic"][u"x553"]
elif u"cx556a" in test_name:
limit = plot[u"limits"][u"nic"][u"cx556a"]
else:
limit = 0
if limit > nic_limit:
nic_limit = limit
mul = 2 if u"ge2p" in test_name else 1
if u"10ge" in test_name:
limit = plot[u"limits"][u"link"][u"10ge"] * mul
elif u"25ge" in test_name:
limit = plot[u"limits"][u"link"][u"25ge"] * mul
elif u"40ge" in test_name:
limit = plot[u"limits"][u"link"][u"40ge"] * mul
elif u"100ge" in test_name:
limit = plot[u"limits"][u"link"][u"100ge"] * mul
else:
limit = 0
if limit > lnk_limit:
lnk_limit = limit
if u"cx556a" in test_name:
limit = plot[u"limits"][u"pci"][u"pci-g3-x8"]
else:
limit = plot[u"limits"][u"pci"][u"pci-g3-x16"]
if limit > pci_limit:
pci_limit = limit
traces = list()
annotations = list()
x_vals = [1, 2, 4]
# Limits:
if u"-gbps" not in plot_title and u"-cps-" not in plot_title:
nic_limit /= 1e6
lnk_limit /= 1e6
pci_limit /= 1e6
min_limit = min((nic_limit, lnk_limit, pci_limit))
if nic_limit == min_limit:
traces.append(plgo.Scatter(
x=x_vals,
y=[nic_limit, ] * len(x_vals),
name=f"NIC: {nic_limit:.2f}Mpps",
showlegend=False,
mode=u"lines",
line=dict(
dash=u"dot",
color=COLORS[-1],
width=1),
hoverinfo=u"none"
))
annotations.append(dict(
x=1,
y=nic_limit,
xref=u"x",
yref=u"y",
xanchor=u"left",
yanchor=u"bottom",
text=f"NIC: {nic_limit:.2f}Mpps",
font=dict(
size=14,
color=COLORS[-1],
),
align=u"left",
showarrow=False
))
y_max.append(nic_limit)
elif lnk_limit == min_limit:
traces.append(plgo.Scatter(
x=x_vals,
y=[lnk_limit, ] * len(x_vals),
name=f"Link: {lnk_limit:.2f}Mpps",
showlegend=False,
mode=u"lines",
line=dict(
dash=u"dot",
color=COLORS[-1],
width=1),
hoverinfo=u"none"
))
annotations.append(dict(
x=1,
y=lnk_limit,
xref=u"x",
yref=u"y",
xanchor=u"left",
yanchor=u"bottom",
text=f"Link: {lnk_limit:.2f}Mpps",
font=dict(
size=14,
color=COLORS[-1],
),
align=u"left",
showarrow=False
))
y_max.append(lnk_limit)
elif pci_limit == min_limit:
traces.append(plgo.Scatter(
x=x_vals,
y=[pci_limit, ] * len(x_vals),
name=f"PCIe: {pci_limit:.2f}Mpps",
showlegend=False,
mode=u"lines",
line=dict(
dash=u"dot",
color=COLORS[-1],
width=1),
hoverinfo=u"none"
))
annotations.append(dict(
x=1,
y=pci_limit,
xref=u"x",
yref=u"y",
xanchor=u"left",
yanchor=u"bottom",
text=f"PCIe: {pci_limit:.2f}Mpps",
font=dict(
size=14,
color=COLORS[-1],
),
align=u"left",
showarrow=False
))
y_max.append(pci_limit)
# Perfect and measured:
cidx = 0
for name, val in vals.items():
hovertext = list()
try:
for idx in range(len(val[u"val"])):
htext = ""
if isinstance(val[u"val"][idx], float):
htext += (
f"No. of Runs: {val[u'count'][idx]}
"
f"Mean: {val[u'val'][idx]:.2f}{h_unit}
"
)
if isinstance(val[u"diff"][idx], float):
htext += f"Diff: {round(val[u'diff'][idx]):.0f}%
"
if isinstance(val[u"rel"][idx], float):
htext += f"Speedup: {val[u'rel'][idx]:.2f}"
hovertext.append(htext)
traces.append(
plgo.Scatter(
x=x_vals,
y=val[u"val"],
name=name,
legendgroup=name,
mode=u"lines+markers",
line=dict(
color=COLORS[cidx],
width=2),
marker=dict(
symbol=u"circle",
size=10
),
text=hovertext,
hoverinfo=u"text+name"
)
)
traces.append(
plgo.Scatter(
x=x_vals,
y=val[u"ideal"],
name=f"{name} perfect",
legendgroup=name,
showlegend=False,
mode=u"lines",
line=dict(
color=COLORS[cidx],
width=2,
dash=u"dash"),
text=[f"Perfect: {y:.2f}Mpps" for y in val[u"ideal"]],
hoverinfo=u"text"
)
)
cidx += 1
except (IndexError, ValueError, KeyError) as err:
logging.warning(f"No data for {name}\n{repr(err)}")
try:
# Create plot
file_name = f"{plot[u'output-file'].format(test_type=ttype)}.html"
logging.info(f" Writing file {file_name}")
layout = deepcopy(plot[u"layout"])
if layout.get(u"title", None):
layout[u"title"] = (
f"Speedup Multi-core: "
f"{layout[u'title'].format(test_type=ttype)}"
)
layout[u"yaxis"][u"range"] = [0, int(max(y_max) * 1.1)]
layout[u"annotations"].extend(annotations)
plpl = plgo.Figure(data=traces, layout=layout)
# Export Plot
ploff.plot(
plpl,
show_link=False,
auto_open=False,
filename=file_name
)
except PlotlyError as err:
logging.error(
f" Finished with error: {repr(err)}".replace(u"\n", u" ")
)
def plot_http_server_perf_box(plot, input_data):
"""Generate the plot(s) with algorithm: plot_http_server_perf_box
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
logging.info(
f" Creating the data set for the {plot.get(u'type', u'')} "
f"{plot.get(u'title', u'')}."
)
data = input_data.filter_data(plot)
if data is None:
logging.error(u"No data.")
return
# Prepare the data for the plot
y_vals = dict()
for job in data:
for build in job:
for test in build:
if y_vals.get(test[u"name"], None) is None:
y_vals[test[u"name"]] = list()
try:
y_vals[test[u"name"]].append(test[u"result"])
except (KeyError, TypeError):
y_vals[test[u"name"]].append(None)
# Add None to the lists with missing data
max_len = 0
nr_of_samples = list()
for val in y_vals.values():
if len(val) > max_len:
max_len = len(val)
nr_of_samples.append(len(val))
for val in y_vals.values():
if len(val) < max_len:
val.extend([None for _ in range(max_len - len(val))])
# Add plot traces
traces = list()
df_y = pd.DataFrame(y_vals)
df_y.head()
for i, col in enumerate(df_y.columns):
name = \
f"{i + 1}. " \
f"({nr_of_samples[i]:02d} " \
f"run{u's' if nr_of_samples[i] > 1 else u''}) " \
f"{col.lower().replace(u'-ndrpdr', u'')}"
if len(name) > 50:
name_lst = name.split(u'-')
name = u""
split_name = True
for segment in name_lst:
if (len(name) + len(segment) + 1) > 50 and split_name:
name += u"
"
split_name = False
name += segment + u'-'
name = name[:-1]
traces.append(plgo.Box(x=[str(i + 1) + u'.'] * len(df_y[col]),
y=df_y[col],
name=name,
**plot[u"traces"]))
try:
# Create plot
plpl = plgo.Figure(data=traces, layout=plot[u"layout"])
# Export Plot
logging.info(
f" Writing file {plot[u'output-file']}"
f"{plot[u'output-file-type']}."
)
ploff.plot(
plpl,
show_link=False,
auto_open=False,
filename=f"{plot[u'output-file']}{plot[u'output-file-type']}"
)
except PlotlyError as err:
logging.error(
f" Finished with error: {repr(err)}".replace(u"\n", u" ")
)
return
def plot_nf_heatmap(plot, input_data):
"""Generate the plot(s) with algorithm: plot_nf_heatmap
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
def sort_by_int(value):
"""Makes possible to sort a list of strings which represent integers.
:param value: Integer as a string.
:type value: str
:returns: Integer representation of input parameter 'value'.
:rtype: int
"""
return int(value)
regex_cn = re.compile(r'^(\d*)R(\d*)C$')
regex_test_name = re.compile(r'^.*-(\d+ch|\d+pl)-'
r'(\d+mif|\d+vh)-'
r'(\d+vm\d+t|\d+dcr\d+t|\d+dcr\d+c).*$')
vals = dict()
# Transform the data
logging.info(
f" Creating the data set for the {plot.get(u'type', u'')} "
f"{plot.get(u'title', u'')}."
)
in_data = input_data.filter_tests_by_name(
plot,
continue_on_error=True,
params=[u"throughput", u"result", u"name", u"tags", u"type"]
)
if in_data is None or in_data.empty:
logging.error(u"No data.")
return
for ttype in plot.get(u"test-type", (u"ndr", u"pdr")):
for core in plot.get(u"core", tuple()):
for item in plot.get(u"include", tuple()):
reg_ex = re.compile(str(item.format(core=core)).lower())
for job in in_data:
for build in job:
for test_id, test in build.iteritems():
if not re.match(reg_ex, str(test_id).lower()):
continue
for tag in test[u"tags"]:
groups = re.search(regex_cn, tag)
if groups:
chain = str(groups.group(1))
node = str(groups.group(2))
break
else:
continue
groups = re.search(regex_test_name, test[u"name"])
if groups and len(groups.groups()) == 3:
hover_name = (
f"{str(groups.group(1))}-"
f"{str(groups.group(2))}-"
f"{str(groups.group(3))}"
)
else:
hover_name = u""
if vals.get(chain, None) is None:
vals[chain] = dict()
if vals[chain].get(node, None) is None:
vals[chain][node] = dict(
name=hover_name,
vals=list(),
nr=None,
mean=None,
stdev=None
)
try:
if ttype == u"mrr":
result = test[u"result"][u"receive-rate"]
elif ttype == u"pdr":
result = \
test[u"throughput"][u"PDR"][u"LOWER"]
elif ttype == u"ndr":
result = \
test[u"throughput"][u"NDR"][u"LOWER"]
else:
result = None
except TypeError:
result = None
if result:
vals[chain][node][u"vals"].append(result)
if not vals:
logging.error(u"No data.")
return
txt_chains = list()
txt_nodes = list()
for key_c in vals:
txt_chains.append(key_c)
for key_n in vals[key_c].keys():
txt_nodes.append(key_n)
if vals[key_c][key_n][u"vals"]:
vals[key_c][key_n][u"nr"] = \
len(vals[key_c][key_n][u"vals"])
vals[key_c][key_n][u"mean"] = \
round(mean(vals[key_c][key_n][u"vals"]) / 1e6, 1)
vals[key_c][key_n][u"stdev"] = \
round(stdev(vals[key_c][key_n][u"vals"]) / 1e6, 1)
txt_nodes = list(set(txt_nodes))
txt_chains = sorted(txt_chains, key=sort_by_int)
txt_nodes = sorted(txt_nodes, key=sort_by_int)
chains = [i + 1 for i in range(len(txt_chains))]
nodes = [i + 1 for i in range(len(txt_nodes))]
data = [list() for _ in range(len(chains))]
for chain in chains:
for node in nodes:
try:
val = vals[txt_chains[chain - 1]] \
[txt_nodes[node - 1]][u"mean"]
except (KeyError, IndexError):
val = None
data[chain - 1].append(val)
# Color scales:
my_green = [[0.0, u"rgb(235, 249, 242)"],
[1.0, u"rgb(45, 134, 89)"]]
my_blue = [[0.0, u"rgb(236, 242, 248)"],
[1.0, u"rgb(57, 115, 172)"]]
my_grey = [[0.0, u"rgb(230, 230, 230)"],
[1.0, u"rgb(102, 102, 102)"]]
hovertext = list()
annotations = list()
text = (u"Test: {name}
"
u"Runs: {nr}
"
u"Thput: {val}
"
u"StDev: {stdev}")
for chain, _ in enumerate(txt_chains):
hover_line = list()
for node, _ in enumerate(txt_nodes):
if data[chain][node] is not None:
annotations.append(
dict(
x=node+1,
y=chain+1,
xref=u"x",
yref=u"y",
xanchor=u"center",
yanchor=u"middle",
text=str(data[chain][node]),
font=dict(
size=14,
),
align=u"center",
showarrow=False
)
)
hover_line.append(text.format(
name=vals[txt_chains[chain]][txt_nodes[node]]
[u"name"],
nr=vals[txt_chains[chain]][txt_nodes[node]][u"nr"],
val=data[chain][node],
stdev=vals[txt_chains[chain]][txt_nodes[node]]
[u"stdev"]
))
hovertext.append(hover_line)
traces = [
plgo.Heatmap(
x=nodes,
y=chains,
z=data,
colorbar=dict(
title=plot.get(u"z-axis", u"{test_type}").
format(test_type=ttype.upper()),
titleside=u"right",
titlefont=dict(
size=16
),
tickfont=dict(
size=16,
),
tickformat=u".1f",
yanchor=u"bottom",
y=-0.02,
len=0.925,
),
showscale=True,
colorscale=my_green,
text=hovertext,
hoverinfo=u"text"
)
]
for idx, item in enumerate(txt_nodes):
# X-axis, numbers:
annotations.append(
dict(
x=idx+1,
y=0.05,
xref=u"x",
yref=u"y",
xanchor=u"center",
yanchor=u"top",
text=item,
font=dict(
size=16,
),
align=u"center",
showarrow=False
)
)
for idx, item in enumerate(txt_chains):
# Y-axis, numbers:
annotations.append(
dict(
x=0.35,
y=idx+1,
xref=u"x",
yref=u"y",
xanchor=u"right",
yanchor=u"middle",
text=item,
font=dict(
size=16,
),
align=u"center",
showarrow=False
)
)
# X-axis, title:
annotations.append(
dict(
x=0.55,
y=-0.15,
xref=u"paper",
yref=u"y",
xanchor=u"center",
yanchor=u"bottom",
text=plot.get(u"x-axis", u""),
font=dict(
size=16,
),
align=u"center",
showarrow=False
)
)
# Y-axis, title:
annotations.append(
dict(
x=-0.1,
y=0.5,
xref=u"x",
yref=u"paper",
xanchor=u"center",
yanchor=u"middle",
text=plot.get(u"y-axis", u""),
font=dict(
size=16,
),
align=u"center",
textangle=270,
showarrow=False
)
)
updatemenus = list([
dict(
x=1.0,
y=0.0,
xanchor=u"right",
yanchor=u"bottom",
direction=u"up",
buttons=list([
dict(
args=[
{
u"colorscale": [my_green, ],
u"reversescale": False
}
],
label=u"Green",
method=u"update"
),
dict(
args=[
{
u"colorscale": [my_blue, ],
u"reversescale": False
}
],
label=u"Blue",
method=u"update"
),
dict(
args=[
{
u"colorscale": [my_grey, ],
u"reversescale": False
}
],
label=u"Grey",
method=u"update"
)
])
)
])
try:
layout = deepcopy(plot[u"layout"])
except KeyError as err:
logging.error(
f"Finished with error: No layout defined\n{repr(err)}"
)
return
layout[u"annotations"] = annotations
layout[u'updatemenus'] = updatemenus
if layout.get(u"title", None):
layout[u"title"] = layout[u'title'].replace(u"test_type", ttype)
try:
# Create plot
plpl = plgo.Figure(data=traces, layout=layout)
# Export Plot
file_name = (
f"{plot[u'output-file'].format(core=core, test_type=ttype)}"
f".html"
)
logging.info(f" Writing file {file_name}")
ploff.plot(
plpl,
show_link=False,
auto_open=False,
filename=file_name
)
except PlotlyError as err:
logging.error(
f" Finished with error: {repr(err)}".replace(u"\n", u" ")
)