# Copyright (c) 2020 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Algorithms to generate plots.
"""
import re
import logging
from collections import OrderedDict
from copy import deepcopy
import hdrh.histogram
import hdrh.codec
import pandas as pd
import plotly.offline as ploff
import plotly.graph_objs as plgo
from plotly.subplots import make_subplots
from plotly.exceptions import PlotlyError
from pal_utils import mean, stdev
COLORS = [u"SkyBlue", u"Olive", u"Purple", u"Coral", u"Indigo", u"Pink",
u"Chocolate", u"Brown", u"Magenta", u"Cyan", u"Orange", u"Black",
u"Violet", u"Blue", u"Yellow", u"BurlyWood", u"CadetBlue", u"Crimson",
u"DarkBlue", u"DarkCyan", u"DarkGreen", u"Green", u"GoldenRod",
u"LightGreen", u"LightSeaGreen", u"LightSkyBlue", u"Maroon",
u"MediumSeaGreen", u"SeaGreen", u"LightSlateGrey"]
REGEX_NIC = re.compile(r'(\d*ge\dp\d\D*\d*[a-z]*)-')
def generate_plots(spec, data):
"""Generate all plots specified in the specification file.
:param spec: Specification read from the specification file.
:param data: Data to process.
:type spec: Specification
:type data: InputData
"""
generator = {
u"plot_nf_reconf_box_name": plot_nf_reconf_box_name,
u"plot_perf_box_name": plot_perf_box_name,
u"plot_lat_err_bars_name": plot_lat_err_bars_name,
u"plot_tsa_name": plot_tsa_name,
u"plot_http_server_perf_box": plot_http_server_perf_box,
u"plot_nf_heatmap": plot_nf_heatmap,
u"plot_lat_hdrh_bar_name": plot_lat_hdrh_bar_name,
u"plot_lat_hdrh_percentile": plot_lat_hdrh_percentile,
u"plot_hdrh_lat_by_percentile": plot_hdrh_lat_by_percentile
}
logging.info(u"Generating the plots ...")
for index, plot in enumerate(spec.plots):
try:
logging.info(f" Plot nr {index + 1}: {plot.get(u'title', u'')}")
plot[u"limits"] = spec.configuration[u"limits"]
generator[plot[u"algorithm"]](plot, data)
logging.info(u" Done.")
except NameError as err:
logging.error(
f"Probably algorithm {plot[u'algorithm']} is not defined: "
f"{repr(err)}"
)
logging.info(u"Done.")
def plot_lat_hdrh_percentile(plot, input_data):
"""Generate the plot(s) with algorithm: plot_lat_hdrh_percentile
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
plot_title = plot.get(u"title", u"")
logging.info(
f" Creating the data set for the {plot.get(u'type', u'')} "
f"{plot_title}."
)
data = input_data.filter_tests_by_name(
plot, params=[u"latency", u"parent", u"tags", u"type"])
if data is None or len(data[0][0]) == 0:
logging.error(u"No data.")
return
fig = plgo.Figure()
# Prepare the data for the plot
directions = [u"W-E", u"E-W"]
for color, test in enumerate(data[0][0]):
try:
if test[u"type"] in (u"NDRPDR",):
if u"-pdr" in plot_title.lower():
ttype = u"PDR"
elif u"-ndr" in plot_title.lower():
ttype = u"NDR"
else:
logging.warning(f"Invalid test type: {test[u'type']}")
continue
name = re.sub(REGEX_NIC, u"", test[u"parent"].
replace(u'-ndrpdr', u'').
replace(u'2n1l-', u''))
for idx, direction in enumerate(
(u"direction1", u"direction2", )):
try:
hdr_lat = test[u"latency"][ttype][direction][u"hdrh"]
# TODO: Workaround, HDRH data must be aligned to 4
# bytes, remove when not needed.
hdr_lat += u"=" * (len(hdr_lat) % 4)
xaxis = list()
yaxis = list()
hovertext = list()
decoded = hdrh.histogram.HdrHistogram.decode(hdr_lat)
for item in decoded.get_recorded_iterator():
percentile = item.percentile_level_iterated_to
if percentile != 100.0:
xaxis.append(100.0 / (100.0 - percentile))
yaxis.append(item.value_iterated_to)
hovertext.append(
f"Test: {name}
"
f"Direction: {directions[idx]}
"
f"Percentile: {percentile:.5f}%
"
f"Latency: {item.value_iterated_to}uSec"
)
fig.add_trace(
plgo.Scatter(
x=xaxis,
y=yaxis,
name=name,
mode=u"lines",
legendgroup=name,
showlegend=bool(idx),
line=dict(
color=COLORS[color]
),
hovertext=hovertext,
hoverinfo=u"text"
)
)
except hdrh.codec.HdrLengthException as err:
logging.warning(
f"No or invalid data for HDRHistogram for the test "
f"{name}\n{err}"
)
continue
else:
logging.warning(f"Invalid test type: {test[u'type']}")
continue
except (ValueError, KeyError) as err:
logging.warning(repr(err))
layout = deepcopy(plot[u"layout"])
layout[u"title"][u"text"] = \
f"Latency: {plot.get(u'graph-title', u'')}"
fig[u"layout"].update(layout)
# Create plot
file_type = plot.get(u"output-file-type", u".html")
logging.info(f" Writing file {plot[u'output-file']}{file_type}.")
try:
# Export Plot
ploff.plot(fig, show_link=False, auto_open=False,
filename=f"{plot[u'output-file']}{file_type}")
except PlotlyError as err:
logging.error(f" Finished with error: {repr(err)}")
def plot_hdrh_lat_by_percentile(plot, input_data):
"""Generate the plot(s) with algorithm: plot_hdrh_lat_by_percentile
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
logging.info(
f" Creating the data set for the {plot.get(u'type', u'')} "
f"{plot.get(u'title', u'')}."
)
if plot.get(u"include", None):
data = input_data.filter_tests_by_name(
plot,
params=[u"name", u"latency", u"parent", u"tags", u"type"]
)[0][0]
elif plot.get(u"filter", None):
data = input_data.filter_data(
plot,
params=[u"name", u"latency", u"parent", u"tags", u"type"],
continue_on_error=True
)[0][0]
else:
job = list(plot[u"data"].keys())[0]
build = str(plot[u"data"][job][0])
data = input_data.tests(job, build)
if data is None or len(data) == 0:
logging.error(u"No data.")
return
desc = {
u"LAT0": u"No-load.",
u"PDR10": u"Low-load, 10% PDR.",
u"PDR50": u"Mid-load, 50% PDR.",
u"PDR90": u"High-load, 90% PDR.",
u"PDR": u"Full-load, 100% PDR.",
u"NDR10": u"Low-load, 10% NDR.",
u"NDR50": u"Mid-load, 50% NDR.",
u"NDR90": u"High-load, 90% NDR.",
u"NDR": u"Full-load, 100% NDR."
}
graphs = [
u"LAT0",
u"PDR10",
u"PDR50",
u"PDR90"
]
file_links = plot.get(u"output-file-links", None)
target_links = plot.get(u"target-links", None)
for test in data:
try:
if test[u"type"] not in (u"NDRPDR",):
logging.warning(f"Invalid test type: {test[u'type']}")
continue
name = re.sub(REGEX_NIC, u"", test[u"parent"].
replace(u'-ndrpdr', u'').replace(u'2n1l-', u''))
try:
nic = re.search(REGEX_NIC, test[u"parent"]).group(1)
except (IndexError, AttributeError, KeyError, ValueError):
nic = u""
name_link = f"{nic}-{test[u'name']}".replace(u'-ndrpdr', u'')
logging.info(f" Generating the graph: {name_link}")
fig = plgo.Figure()
layout = deepcopy(plot[u"layout"])
for color, graph in enumerate(graphs):
for idx, direction in enumerate((u"direction1", u"direction2")):
xaxis = [0.0, ]
yaxis = [0.0, ]
hovertext = [
f"{desc[graph]}
"
f"Direction: {(u'W-E', u'E-W')[idx % 2]}
"
f"Percentile: 0.0%
"
f"Latency: 0.0uSec"
]
decoded = hdrh.histogram.HdrHistogram.decode(
test[u"latency"][graph][direction][u"hdrh"]
)
for item in decoded.get_recorded_iterator():
percentile = item.percentile_level_iterated_to
if percentile > 99.9:
continue
xaxis.append(percentile)
yaxis.append(item.value_iterated_to)
hovertext.append(
f"{desc[graph]}
"
f"Direction: {(u'W-E', u'E-W')[idx % 2]}
"
f"Percentile: {percentile:.5f}%
"
f"Latency: {item.value_iterated_to}uSec"
)
fig.add_trace(
plgo.Scatter(
x=xaxis,
y=yaxis,
name=desc[graph],
mode=u"lines",
legendgroup=desc[graph],
showlegend=bool(idx),
line=dict(
color=COLORS[color],
dash=u"solid" if idx % 2 else u"dash"
),
hovertext=hovertext,
hoverinfo=u"text"
)
)
layout[u"title"][u"text"] = f"Latency: {name}"
fig.update_layout(layout)
# Create plot
file_name = f"{plot[u'output-file']}-{name_link}.html"
logging.info(f" Writing file {file_name}")
try:
# Export Plot
ploff.plot(fig, show_link=False, auto_open=False,
filename=file_name)
# Add link to the file:
if file_links and target_links:
with open(file_links, u"a") as fw:
fw.write(
f"- `{name_link} "
f"<{target_links}/{file_name.split(u'/')[-1]}>`_\n"
)
except FileNotFoundError as err:
logging.error(
f"Not possible to write the link to the file "
f"{file_links}\n{err}"
)
except PlotlyError as err:
logging.error(f" Finished with error: {repr(err)}")
except hdrh.codec.HdrLengthException as err:
logging.warning(repr(err))
continue
except (ValueError, KeyError) as err:
logging.warning(repr(err))
continue
def plot_lat_hdrh_bar_name(plot, input_data):
"""Generate the plot(s) with algorithm: plot_lat_hdrh_bar_name
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
plot_title = plot.get(u"title", u"")
logging.info(
f" Creating the data set for the {plot.get(u'type', u'')} "
f"{plot_title}."
)
data = input_data.filter_tests_by_name(
plot, params=[u"latency", u"parent", u"tags", u"type"])
if data is None or len(data[0][0]) == 0:
logging.error(u"No data.")
return
# Prepare the data for the plot
directions = [u"W-E", u"E-W"]
tests = list()
traces = list()
for idx_row, test in enumerate(data[0][0]):
try:
if test[u"type"] in (u"NDRPDR",):
if u"-pdr" in plot_title.lower():
ttype = u"PDR"
elif u"-ndr" in plot_title.lower():
ttype = u"NDR"
else:
logging.warning(f"Invalid test type: {test[u'type']}")
continue
name = re.sub(REGEX_NIC, u"", test[u"parent"].
replace(u'-ndrpdr', u'').
replace(u'2n1l-', u''))
histograms = list()
for idx_col, direction in enumerate(
(u"direction1", u"direction2", )):
try:
hdr_lat = test[u"latency"][ttype][direction][u"hdrh"]
# TODO: Workaround, HDRH data must be aligned to 4
# bytes, remove when not needed.
hdr_lat += u"=" * (len(hdr_lat) % 4)
xaxis = list()
yaxis = list()
hovertext = list()
decoded = hdrh.histogram.HdrHistogram.decode(hdr_lat)
total_count = decoded.get_total_count()
for item in decoded.get_recorded_iterator():
xaxis.append(item.value_iterated_to)
prob = float(item.count_added_in_this_iter_step) / \
total_count * 100
yaxis.append(prob)
hovertext.append(
f"Test: {name}
"
f"Direction: {directions[idx_col]}
"
f"Latency: {item.value_iterated_to}uSec
"
f"Probability: {prob:.2f}%
"
f"Percentile: "
f"{item.percentile_level_iterated_to:.2f}"
)
marker_color = [COLORS[idx_row], ] * len(yaxis)
marker_color[xaxis.index(
decoded.get_value_at_percentile(50.0))] = u"red"
marker_color[xaxis.index(
decoded.get_value_at_percentile(90.0))] = u"red"
marker_color[xaxis.index(
decoded.get_value_at_percentile(95.0))] = u"red"
histograms.append(
plgo.Bar(
x=xaxis,
y=yaxis,
showlegend=False,
name=name,
marker={u"color": marker_color},
hovertext=hovertext,
hoverinfo=u"text"
)
)
except hdrh.codec.HdrLengthException as err:
logging.warning(
f"No or invalid data for HDRHistogram for the test "
f"{name}\n{err}"
)
continue
if len(histograms) == 2:
traces.append(histograms)
tests.append(name)
else:
logging.warning(f"Invalid test type: {test[u'type']}")
continue
except (ValueError, KeyError) as err:
logging.warning(repr(err))
if not tests:
logging.warning(f"No data for {plot_title}.")
return
fig = make_subplots(
rows=len(tests),
cols=2,
specs=[
[{u"type": u"bar"}, {u"type": u"bar"}] for _ in range(len(tests))
]
)
layout_axes = dict(
gridcolor=u"rgb(220, 220, 220)",
linecolor=u"rgb(220, 220, 220)",
linewidth=1,
showgrid=True,
showline=True,
showticklabels=True,
tickcolor=u"rgb(220, 220, 220)",
)
for idx_row, test in enumerate(tests):
for idx_col in range(2):
fig.add_trace(
traces[idx_row][idx_col],
row=idx_row + 1,
col=idx_col + 1
)
fig.update_xaxes(
row=idx_row + 1,
col=idx_col + 1,
**layout_axes
)
fig.update_yaxes(
row=idx_row + 1,
col=idx_col + 1,
**layout_axes
)
layout = deepcopy(plot[u"layout"])
layout[u"title"][u"text"] = \
f"Latency: {plot.get(u'graph-title', u'')}"
layout[u"height"] = 250 * len(tests) + 130
layout[u"annotations"][2][u"y"] = 1.06 - 0.008 * len(tests)
layout[u"annotations"][3][u"y"] = 1.06 - 0.008 * len(tests)
for idx, test in enumerate(tests):
layout[u"annotations"].append({
u"font": {
u"size": 14
},
u"showarrow": False,
u"text": f"{test}",
u"textangle": 0,
u"x": 0.5,
u"xanchor": u"center",
u"xref": u"paper",
u"y": 1.0 - float(idx) * 1.06 / len(tests),
u"yanchor": u"bottom",
u"yref": u"paper"
})
fig[u"layout"].update(layout)
# Create plot
file_type = plot.get(u"output-file-type", u".html")
logging.info(f" Writing file {plot[u'output-file']}{file_type}.")
try:
# Export Plot
ploff.plot(fig, show_link=False, auto_open=False,
filename=f"{plot[u'output-file']}{file_type}")
except PlotlyError as err:
logging.error(f" Finished with error: {repr(err)}")
def plot_nf_reconf_box_name(plot, input_data):
"""Generate the plot(s) with algorithm: plot_nf_reconf_box_name
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
logging.info(
f" Creating the data set for the {plot.get(u'type', u'')} "
f"{plot.get(u'title', u'')}."
)
data = input_data.filter_tests_by_name(
plot, params=[u"result", u"parent", u"tags", u"type"]
)
if data is None:
logging.error(u"No data.")
return
# Prepare the data for the plot
y_vals = OrderedDict()
loss = dict()
for job in data:
for build in job:
for test in build:
if y_vals.get(test[u"parent"], None) is None:
y_vals[test[u"parent"]] = list()
loss[test[u"parent"]] = list()
try:
y_vals[test[u"parent"]].append(test[u"result"][u"time"])
loss[test[u"parent"]].append(test[u"result"][u"loss"])
except (KeyError, TypeError):
y_vals[test[u"parent"]].append(None)
# Add None to the lists with missing data
max_len = 0
nr_of_samples = list()
for val in y_vals.values():
if len(val) > max_len:
max_len = len(val)
nr_of_samples.append(len(val))
for val in y_vals.values():
if len(val) < max_len:
val.extend([None for _ in range(max_len - len(val))])
# Add plot traces
traces = list()
df_y = pd.DataFrame(y_vals)
df_y.head()
for i, col in enumerate(df_y.columns):
tst_name = re.sub(REGEX_NIC, u"",
col.lower().replace(u'-ndrpdr', u'').
replace(u'2n1l-', u''))
traces.append(plgo.Box(
x=[str(i + 1) + u'.'] * len(df_y[col]),
y=[y if y else None for y in df_y[col]],
name=(
f"{i + 1}. "
f"({nr_of_samples[i]:02d} "
f"run{u's' if nr_of_samples[i] > 1 else u''}, "
f"packets lost average: {mean(loss[col]):.1f}) "
f"{u'-'.join(tst_name.split(u'-')[3:-2])}"
),
hoverinfo=u"y+name"
))
try:
# Create plot
layout = deepcopy(plot[u"layout"])
layout[u"title"] = f"Time Lost: {layout[u'title']}"
layout[u"yaxis"][u"title"] = u"Implied Time Lost [s]"
layout[u"legend"][u"font"][u"size"] = 14
layout[u"yaxis"].pop(u"range")
plpl = plgo.Figure(data=traces, layout=layout)
# Export Plot
file_type = plot.get(u"output-file-type", u".html")
logging.info(f" Writing file {plot[u'output-file']}{file_type}.")
ploff.plot(
plpl,
show_link=False,
auto_open=False,
filename=f"{plot[u'output-file']}{file_type}"
)
except PlotlyError as err:
logging.error(
f" Finished with error: {repr(err)}".replace(u"\n", u" ")
)
return
def plot_perf_box_name(plot, input_data):
"""Generate the plot(s) with algorithm: plot_perf_box_name
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
logging.info(
f" Creating data set for the {plot.get(u'type', u'')} "
f"{plot.get(u'title', u'')}."
)
data = input_data.filter_tests_by_name(
plot, params=[u"throughput", u"parent", u"tags", u"type"])
if data is None:
logging.error(u"No data.")
return
# Prepare the data for the plot
y_vals = OrderedDict()
for job in data:
for build in job:
for test in build:
if y_vals.get(test[u"parent"], None) is None:
y_vals[test[u"parent"]] = list()
try:
if (test[u"type"] in (u"NDRPDR", ) and
u"-pdr" in plot.get(u"title", u"").lower()):
y_vals[test[u"parent"]].\
append(test[u"throughput"][u"PDR"][u"LOWER"])
elif (test[u"type"] in (u"NDRPDR", ) and
u"-ndr" in plot.get(u"title", u"").lower()):
y_vals[test[u"parent"]]. \
append(test[u"throughput"][u"NDR"][u"LOWER"])
elif test[u"type"] in (u"SOAK", ):
y_vals[test[u"parent"]].\
append(test[u"throughput"][u"LOWER"])
else:
continue
except (KeyError, TypeError):
y_vals[test[u"parent"]].append(None)
# Add None to the lists with missing data
max_len = 0
nr_of_samples = list()
for val in y_vals.values():
if len(val) > max_len:
max_len = len(val)
nr_of_samples.append(len(val))
for val in y_vals.values():
if len(val) < max_len:
val.extend([None for _ in range(max_len - len(val))])
# Add plot traces
traces = list()
df_y = pd.DataFrame(y_vals)
df_y.head()
y_max = list()
for i, col in enumerate(df_y.columns):
tst_name = re.sub(REGEX_NIC, u"",
col.lower().replace(u'-ndrpdr', u'').
replace(u'2n1l-', u''))
traces.append(
plgo.Box(
x=[str(i + 1) + u'.'] * len(df_y[col]),
y=[y / 1000000 if y else None for y in df_y[col]],
name=(
f"{i + 1}. "
f"({nr_of_samples[i]:02d} "
f"run{u's' if nr_of_samples[i] > 1 else u''}) "
f"{tst_name}"
),
hoverinfo=u"y+name"
)
)
try:
val_max = max(df_y[col])
if val_max:
y_max.append(int(val_max / 1000000) + 2)
except (ValueError, TypeError) as err:
logging.error(repr(err))
continue
try:
# Create plot
layout = deepcopy(plot[u"layout"])
if layout.get(u"title", None):
layout[u"title"] = f"Throughput: {layout[u'title']}"
if y_max:
layout[u"yaxis"][u"range"] = [0, max(y_max)]
plpl = plgo.Figure(data=traces, layout=layout)
# Export Plot
logging.info(f" Writing file {plot[u'output-file']}.html.")
ploff.plot(
plpl,
show_link=False,
auto_open=False,
filename=f"{plot[u'output-file']}.html"
)
except PlotlyError as err:
logging.error(
f" Finished with error: {repr(err)}".replace(u"\n", u" ")
)
return
def plot_lat_err_bars_name(plot, input_data):
"""Generate the plot(s) with algorithm: plot_lat_err_bars_name
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
plot_title = plot.get(u"title", u"")
logging.info(
f" Creating data set for the {plot.get(u'type', u'')} {plot_title}."
)
data = input_data.filter_tests_by_name(
plot, params=[u"latency", u"parent", u"tags", u"type"])
if data is None:
logging.error(u"No data.")
return
# Prepare the data for the plot
y_tmp_vals = OrderedDict()
for job in data:
for build in job:
for test in build:
try:
logging.debug(f"test[u'latency']: {test[u'latency']}\n")
except ValueError as err:
logging.warning(repr(err))
if y_tmp_vals.get(test[u"parent"], None) is None:
y_tmp_vals[test[u"parent"]] = [
list(), # direction1, min
list(), # direction1, avg
list(), # direction1, max
list(), # direction2, min
list(), # direction2, avg
list() # direction2, max
]
try:
if test[u"type"] not in (u"NDRPDR", ):
logging.warning(f"Invalid test type: {test[u'type']}")
continue
if u"-pdr" in plot_title.lower():
ttype = u"PDR"
elif u"-ndr" in plot_title.lower():
ttype = u"NDR"
else:
logging.warning(
f"Invalid test type: {test[u'type']}"
)
continue
y_tmp_vals[test[u"parent"]][0].append(
test[u"latency"][ttype][u"direction1"][u"min"])
y_tmp_vals[test[u"parent"]][1].append(
test[u"latency"][ttype][u"direction1"][u"avg"])
y_tmp_vals[test[u"parent"]][2].append(
test[u"latency"][ttype][u"direction1"][u"max"])
y_tmp_vals[test[u"parent"]][3].append(
test[u"latency"][ttype][u"direction2"][u"min"])
y_tmp_vals[test[u"parent"]][4].append(
test[u"latency"][ttype][u"direction2"][u"avg"])
y_tmp_vals[test[u"parent"]][5].append(
test[u"latency"][ttype][u"direction2"][u"max"])
except (KeyError, TypeError) as err:
logging.warning(repr(err))
x_vals = list()
y_vals = list()
y_mins = list()
y_maxs = list()
nr_of_samples = list()
for key, val in y_tmp_vals.items():
name = re.sub(REGEX_NIC, u"", key.replace(u'-ndrpdr', u'').
replace(u'2n1l-', u''))
x_vals.append(name) # dir 1
y_vals.append(mean(val[1]) if val[1] else None)
y_mins.append(mean(val[0]) if val[0] else None)
y_maxs.append(mean(val[2]) if val[2] else None)
nr_of_samples.append(len(val[1]) if val[1] else 0)
x_vals.append(name) # dir 2
y_vals.append(mean(val[4]) if val[4] else None)
y_mins.append(mean(val[3]) if val[3] else None)
y_maxs.append(mean(val[5]) if val[5] else None)
nr_of_samples.append(len(val[3]) if val[3] else 0)
traces = list()
annotations = list()
for idx, _ in enumerate(x_vals):
if not bool(int(idx % 2)):
direction = u"West-East"
else:
direction = u"East-West"
hovertext = (
f"No. of Runs: {nr_of_samples[idx]}
"
f"Test: {x_vals[idx]}
"
f"Direction: {direction}
"
)
if isinstance(y_maxs[idx], float):
hovertext += f"Max: {y_maxs[idx]:.2f}uSec
"
if isinstance(y_vals[idx], float):
hovertext += f"Mean: {y_vals[idx]:.2f}uSec
"
if isinstance(y_mins[idx], float):
hovertext += f"Min: {y_mins[idx]:.2f}uSec"
if isinstance(y_maxs[idx], float) and isinstance(y_vals[idx], float):
array = [y_maxs[idx] - y_vals[idx], ]
else:
array = [None, ]
if isinstance(y_mins[idx], float) and isinstance(y_vals[idx], float):
arrayminus = [y_vals[idx] - y_mins[idx], ]
else:
arrayminus = [None, ]
traces.append(plgo.Scatter(
x=[idx, ],
y=[y_vals[idx], ],
name=x_vals[idx],
legendgroup=x_vals[idx],
showlegend=bool(int(idx % 2)),
mode=u"markers",
error_y=dict(
type=u"data",
symmetric=False,
array=array,
arrayminus=arrayminus,
color=COLORS[int(idx / 2)]
),
marker=dict(
size=10,
color=COLORS[int(idx / 2)],
),
text=hovertext,
hoverinfo=u"text",
))
annotations.append(dict(
x=idx,
y=0,
xref=u"x",
yref=u"y",
xanchor=u"center",
yanchor=u"top",
text=u"E-W" if bool(int(idx % 2)) else u"W-E",
font=dict(
size=16,
),
align=u"center",
showarrow=False
))
try:
# Create plot
file_type = plot.get(u"output-file-type", u".html")
logging.info(f" Writing file {plot[u'output-file']}{file_type}.")
layout = deepcopy(plot[u"layout"])
if layout.get(u"title", None):
layout[u"title"] = f"Latency: {layout[u'title']}"
layout[u"annotations"] = annotations
plpl = plgo.Figure(data=traces, layout=layout)
# Export Plot
ploff.plot(
plpl,
show_link=False, auto_open=False,
filename=f"{plot[u'output-file']}{file_type}"
)
except PlotlyError as err:
logging.error(
f" Finished with error: {repr(err)}".replace(u"\n", u" ")
)
return
def plot_tsa_name(plot, input_data):
"""Generate the plot(s) with algorithm:
plot_tsa_name
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
plot_title = plot.get(u"title", u"")
logging.info(
f" Creating data set for the {plot.get(u'type', u'')} {plot_title}."
)
data = input_data.filter_tests_by_name(
plot, params=[u"throughput", u"parent", u"tags", u"type"])
if data is None:
logging.error(u"No data.")
return
y_vals = OrderedDict()
for job in data:
for build in job:
for test in build:
if y_vals.get(test[u"parent"], None) is None:
y_vals[test[u"parent"]] = {
u"1": list(),
u"2": list(),
u"4": list()
}
try:
if test[u"type"] not in (u"NDRPDR",):
continue
if u"-pdr" in plot_title.lower():
ttype = u"PDR"
elif u"-ndr" in plot_title.lower():
ttype = u"NDR"
else:
continue
if u"1C" in test[u"tags"]:
y_vals[test[u"parent"]][u"1"]. \
append(test[u"throughput"][ttype][u"LOWER"])
elif u"2C" in test[u"tags"]:
y_vals[test[u"parent"]][u"2"]. \
append(test[u"throughput"][ttype][u"LOWER"])
elif u"4C" in test[u"tags"]:
y_vals[test[u"parent"]][u"4"]. \
append(test[u"throughput"][ttype][u"LOWER"])
except (KeyError, TypeError):
pass
if not y_vals:
logging.warning(f"No data for the plot {plot.get(u'title', u'')}")
return
y_1c_max = dict()
for test_name, test_vals in y_vals.items():
for key, test_val in test_vals.items():
if test_val:
avg_val = sum(test_val) / len(test_val)
y_vals[test_name][key] = [avg_val, len(test_val)]
ideal = avg_val / (int(key) * 1000000.0)
if test_name not in y_1c_max or ideal > y_1c_max[test_name]:
y_1c_max[test_name] = ideal
vals = OrderedDict()
y_max = list()
nic_limit = 0
lnk_limit = 0
pci_limit = plot[u"limits"][u"pci"][u"pci-g3-x8"]
for test_name, test_vals in y_vals.items():
try:
if test_vals[u"1"][1]:
name = re.sub(
REGEX_NIC,
u"",
test_name.replace(u'-ndrpdr', u'').replace(u'2n1l-', u'')
)
vals[name] = OrderedDict()
y_val_1 = test_vals[u"1"][0] / 1000000.0
y_val_2 = test_vals[u"2"][0] / 1000000.0 if test_vals[u"2"][0] \
else None
y_val_4 = test_vals[u"4"][0] / 1000000.0 if test_vals[u"4"][0] \
else None
vals[name][u"val"] = [y_val_1, y_val_2, y_val_4]
vals[name][u"rel"] = [1.0, None, None]
vals[name][u"ideal"] = [
y_1c_max[test_name],
y_1c_max[test_name] * 2,
y_1c_max[test_name] * 4
]
vals[name][u"diff"] = [
(y_val_1 - y_1c_max[test_name]) * 100 / y_val_1, None, None
]
vals[name][u"count"] = [
test_vals[u"1"][1],
test_vals[u"2"][1],
test_vals[u"4"][1]
]
try:
val_max = max(vals[name][u"val"])
except ValueError as err:
logging.error(repr(err))
continue
if val_max:
y_max.append(val_max)
if y_val_2:
vals[name][u"rel"][1] = round(y_val_2 / y_val_1, 2)
vals[name][u"diff"][1] = \
(y_val_2 - vals[name][u"ideal"][1]) * 100 / y_val_2
if y_val_4:
vals[name][u"rel"][2] = round(y_val_4 / y_val_1, 2)
vals[name][u"diff"][2] = \
(y_val_4 - vals[name][u"ideal"][2]) * 100 / y_val_4
except IndexError as err:
logging.warning(f"No data for {test_name}")
logging.warning(repr(err))
# Limits:
if u"x520" in test_name:
limit = plot[u"limits"][u"nic"][u"x520"]
elif u"x710" in test_name:
limit = plot[u"limits"][u"nic"][u"x710"]
elif u"xxv710" in test_name:
limit = plot[u"limits"][u"nic"][u"xxv710"]
elif u"xl710" in test_name:
limit = plot[u"limits"][u"nic"][u"xl710"]
elif u"x553" in test_name:
limit = plot[u"limits"][u"nic"][u"x553"]
else:
limit = 0
if limit > nic_limit:
nic_limit = limit
mul = 2 if u"ge2p" in test_name else 1
if u"10ge" in test_name:
limit = plot[u"limits"][u"link"][u"10ge"] * mul
elif u"25ge" in test_name:
limit = plot[u"limits"][u"link"][u"25ge"] * mul
elif u"40ge" in test_name:
limit = plot[u"limits"][u"link"][u"40ge"] * mul
elif u"100ge" in test_name:
limit = plot[u"limits"][u"link"][u"100ge"] * mul
else:
limit = 0
if limit > lnk_limit:
lnk_limit = limit
traces = list()
annotations = list()
x_vals = [1, 2, 4]
# Limits:
try:
threshold = 1.1 * max(y_max) # 10%
except ValueError as err:
logging.error(err)
return
nic_limit /= 1000000.0
traces.append(plgo.Scatter(
x=x_vals,
y=[nic_limit, ] * len(x_vals),
name=f"NIC: {nic_limit:.2f}Mpps",
showlegend=False,
mode=u"lines",
line=dict(
dash=u"dot",
color=COLORS[-1],
width=1),
hoverinfo=u"none"
))
annotations.append(dict(
x=1,
y=nic_limit,
xref=u"x",
yref=u"y",
xanchor=u"left",
yanchor=u"bottom",
text=f"NIC: {nic_limit:.2f}Mpps",
font=dict(
size=14,
color=COLORS[-1],
),
align=u"left",
showarrow=False
))
y_max.append(nic_limit)
lnk_limit /= 1000000.0
if lnk_limit < threshold:
traces.append(plgo.Scatter(
x=x_vals,
y=[lnk_limit, ] * len(x_vals),
name=f"Link: {lnk_limit:.2f}Mpps",
showlegend=False,
mode=u"lines",
line=dict(
dash=u"dot",
color=COLORS[-2],
width=1),
hoverinfo=u"none"
))
annotations.append(dict(
x=1,
y=lnk_limit,
xref=u"x",
yref=u"y",
xanchor=u"left",
yanchor=u"bottom",
text=f"Link: {lnk_limit:.2f}Mpps",
font=dict(
size=14,
color=COLORS[-2],
),
align=u"left",
showarrow=False
))
y_max.append(lnk_limit)
pci_limit /= 1000000.0
if (pci_limit < threshold and
(pci_limit < lnk_limit * 0.95 or lnk_limit > lnk_limit * 1.05)):
traces.append(plgo.Scatter(
x=x_vals,
y=[pci_limit, ] * len(x_vals),
name=f"PCIe: {pci_limit:.2f}Mpps",
showlegend=False,
mode=u"lines",
line=dict(
dash=u"dot",
color=COLORS[-3],
width=1),
hoverinfo=u"none"
))
annotations.append(dict(
x=1,
y=pci_limit,
xref=u"x",
yref=u"y",
xanchor=u"left",
yanchor=u"bottom",
text=f"PCIe: {pci_limit:.2f}Mpps",
font=dict(
size=14,
color=COLORS[-3],
),
align=u"left",
showarrow=False
))
y_max.append(pci_limit)
# Perfect and measured:
cidx = 0
for name, val in vals.items():
hovertext = list()
try:
for idx in range(len(val[u"val"])):
htext = ""
if isinstance(val[u"val"][idx], float):
htext += (
f"No. of Runs: {val[u'count'][idx]}
"
f"Mean: {val[u'val'][idx]:.2f}Mpps
"
)
if isinstance(val[u"diff"][idx], float):
htext += f"Diff: {round(val[u'diff'][idx]):.0f}%
"
if isinstance(val[u"rel"][idx], float):
htext += f"Speedup: {val[u'rel'][idx]:.2f}"
hovertext.append(htext)
traces.append(
plgo.Scatter(
x=x_vals,
y=val[u"val"],
name=name,
legendgroup=name,
mode=u"lines+markers",
line=dict(
color=COLORS[cidx],
width=2),
marker=dict(
symbol=u"circle",
size=10
),
text=hovertext,
hoverinfo=u"text+name"
)
)
traces.append(
plgo.Scatter(
x=x_vals,
y=val[u"ideal"],
name=f"{name} perfect",
legendgroup=name,
showlegend=False,
mode=u"lines",
line=dict(
color=COLORS[cidx],
width=2,
dash=u"dash"),
text=[f"Perfect: {y:.2f}Mpps" for y in val[u"ideal"]],
hoverinfo=u"text"
)
)
cidx += 1
except (IndexError, ValueError, KeyError) as err:
logging.warning(f"No data for {name}\n{repr(err)}")
try:
# Create plot
file_type = plot.get(u"output-file-type", u".html")
logging.info(f" Writing file {plot[u'output-file']}{file_type}.")
layout = deepcopy(plot[u"layout"])
if layout.get(u"title", None):
layout[u"title"] = f"Speedup Multi-core: {layout[u'title']}"
layout[u"yaxis"][u"range"] = [0, int(max(y_max) * 1.1)]
layout[u"annotations"].extend(annotations)
plpl = plgo.Figure(data=traces, layout=layout)
# Export Plot
ploff.plot(
plpl,
show_link=False,
auto_open=False,
filename=f"{plot[u'output-file']}{file_type}"
)
except PlotlyError as err:
logging.error(
f" Finished with error: {repr(err)}".replace(u"\n", u" ")
)
return
def plot_http_server_perf_box(plot, input_data):
"""Generate the plot(s) with algorithm: plot_http_server_perf_box
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
# Transform the data
logging.info(
f" Creating the data set for the {plot.get(u'type', u'')} "
f"{plot.get(u'title', u'')}."
)
data = input_data.filter_data(plot)
if data is None:
logging.error(u"No data.")
return
# Prepare the data for the plot
y_vals = dict()
for job in data:
for build in job:
for test in build:
if y_vals.get(test[u"name"], None) is None:
y_vals[test[u"name"]] = list()
try:
y_vals[test[u"name"]].append(test[u"result"])
except (KeyError, TypeError):
y_vals[test[u"name"]].append(None)
# Add None to the lists with missing data
max_len = 0
nr_of_samples = list()
for val in y_vals.values():
if len(val) > max_len:
max_len = len(val)
nr_of_samples.append(len(val))
for val in y_vals.values():
if len(val) < max_len:
val.extend([None for _ in range(max_len - len(val))])
# Add plot traces
traces = list()
df_y = pd.DataFrame(y_vals)
df_y.head()
for i, col in enumerate(df_y.columns):
name = \
f"{i + 1}. " \
f"({nr_of_samples[i]:02d} " \
f"run{u's' if nr_of_samples[i] > 1 else u''}) " \
f"{col.lower().replace(u'-ndrpdr', u'')}"
if len(name) > 50:
name_lst = name.split(u'-')
name = u""
split_name = True
for segment in name_lst:
if (len(name) + len(segment) + 1) > 50 and split_name:
name += u"
"
split_name = False
name += segment + u'-'
name = name[:-1]
traces.append(plgo.Box(x=[str(i + 1) + u'.'] * len(df_y[col]),
y=df_y[col],
name=name,
**plot[u"traces"]))
try:
# Create plot
plpl = plgo.Figure(data=traces, layout=plot[u"layout"])
# Export Plot
logging.info(
f" Writing file {plot[u'output-file']}"
f"{plot[u'output-file-type']}."
)
ploff.plot(
plpl,
show_link=False,
auto_open=False,
filename=f"{plot[u'output-file']}{plot[u'output-file-type']}"
)
except PlotlyError as err:
logging.error(
f" Finished with error: {repr(err)}".replace(u"\n", u" ")
)
return
def plot_nf_heatmap(plot, input_data):
"""Generate the plot(s) with algorithm: plot_nf_heatmap
specified in the specification file.
:param plot: Plot to generate.
:param input_data: Data to process.
:type plot: pandas.Series
:type input_data: InputData
"""
regex_cn = re.compile(r'^(\d*)R(\d*)C$')
regex_test_name = re.compile(r'^.*-(\d+ch|\d+pl)-'
r'(\d+mif|\d+vh)-'
r'(\d+vm\d+t|\d+dcr\d+t).*$')
vals = dict()
# Transform the data
logging.info(
f" Creating the data set for the {plot.get(u'type', u'')} "
f"{plot.get(u'title', u'')}."
)
data = input_data.filter_data(plot, continue_on_error=True)
if data is None or data.empty:
logging.error(u"No data.")
return
for job in data:
for build in job:
for test in build:
for tag in test[u"tags"]:
groups = re.search(regex_cn, tag)
if groups:
chain = str(groups.group(1))
node = str(groups.group(2))
break
else:
continue
groups = re.search(regex_test_name, test[u"name"])
if groups and len(groups.groups()) == 3:
hover_name = (
f"{str(groups.group(1))}-"
f"{str(groups.group(2))}-"
f"{str(groups.group(3))}"
)
else:
hover_name = u""
if vals.get(chain, None) is None:
vals[chain] = dict()
if vals[chain].get(node, None) is None:
vals[chain][node] = dict(
name=hover_name,
vals=list(),
nr=None,
mean=None,
stdev=None
)
try:
if plot[u"include-tests"] == u"MRR":
result = test[u"result"][u"receive-rate"]
elif plot[u"include-tests"] == u"PDR":
result = test[u"throughput"][u"PDR"][u"LOWER"]
elif plot[u"include-tests"] == u"NDR":
result = test[u"throughput"][u"NDR"][u"LOWER"]
else:
result = None
except TypeError:
result = None
if result:
vals[chain][node][u"vals"].append(result)
if not vals:
logging.error(u"No data.")
return
txt_chains = list()
txt_nodes = list()
for key_c in vals:
txt_chains.append(key_c)
for key_n in vals[key_c].keys():
txt_nodes.append(key_n)
if vals[key_c][key_n][u"vals"]:
vals[key_c][key_n][u"nr"] = len(vals[key_c][key_n][u"vals"])
vals[key_c][key_n][u"mean"] = \
round(mean(vals[key_c][key_n][u"vals"]) / 1000000, 1)
vals[key_c][key_n][u"stdev"] = \
round(stdev(vals[key_c][key_n][u"vals"]) / 1000000, 1)
txt_nodes = list(set(txt_nodes))
def sort_by_int(value):
"""Makes possible to sort a list of strings which represent integers.
:param value: Integer as a string.
:type value: str
:returns: Integer representation of input parameter 'value'.
:rtype: int
"""
return int(value)
txt_chains = sorted(txt_chains, key=sort_by_int)
txt_nodes = sorted(txt_nodes, key=sort_by_int)
chains = [i + 1 for i in range(len(txt_chains))]
nodes = [i + 1 for i in range(len(txt_nodes))]
data = [list() for _ in range(len(chains))]
for chain in chains:
for node in nodes:
try:
val = vals[txt_chains[chain - 1]][txt_nodes[node - 1]][u"mean"]
except (KeyError, IndexError):
val = None
data[chain - 1].append(val)
# Color scales:
my_green = [[0.0, u"rgb(235, 249, 242)"],
[1.0, u"rgb(45, 134, 89)"]]
my_blue = [[0.0, u"rgb(236, 242, 248)"],
[1.0, u"rgb(57, 115, 172)"]]
my_grey = [[0.0, u"rgb(230, 230, 230)"],
[1.0, u"rgb(102, 102, 102)"]]
hovertext = list()
annotations = list()
text = (u"Test: {name}
"
u"Runs: {nr}
"
u"Thput: {val}
"
u"StDev: {stdev}")
for chain, _ in enumerate(txt_chains):
hover_line = list()
for node, _ in enumerate(txt_nodes):
if data[chain][node] is not None:
annotations.append(
dict(
x=node+1,
y=chain+1,
xref=u"x",
yref=u"y",
xanchor=u"center",
yanchor=u"middle",
text=str(data[chain][node]),
font=dict(
size=14,
),
align=u"center",
showarrow=False
)
)
hover_line.append(text.format(
name=vals[txt_chains[chain]][txt_nodes[node]][u"name"],
nr=vals[txt_chains[chain]][txt_nodes[node]][u"nr"],
val=data[chain][node],
stdev=vals[txt_chains[chain]][txt_nodes[node]][u"stdev"]))
hovertext.append(hover_line)
traces = [
plgo.Heatmap(
x=nodes,
y=chains,
z=data,
colorbar=dict(
title=plot.get(u"z-axis", u""),
titleside=u"right",
titlefont=dict(
size=16
),
tickfont=dict(
size=16,
),
tickformat=u".1f",
yanchor=u"bottom",
y=-0.02,
len=0.925,
),
showscale=True,
colorscale=my_green,
text=hovertext,
hoverinfo=u"text"
)
]
for idx, item in enumerate(txt_nodes):
# X-axis, numbers:
annotations.append(
dict(
x=idx+1,
y=0.05,
xref=u"x",
yref=u"y",
xanchor=u"center",
yanchor=u"top",
text=item,
font=dict(
size=16,
),
align=u"center",
showarrow=False
)
)
for idx, item in enumerate(txt_chains):
# Y-axis, numbers:
annotations.append(
dict(
x=0.35,
y=idx+1,
xref=u"x",
yref=u"y",
xanchor=u"right",
yanchor=u"middle",
text=item,
font=dict(
size=16,
),
align=u"center",
showarrow=False
)
)
# X-axis, title:
annotations.append(
dict(
x=0.55,
y=-0.15,
xref=u"paper",
yref=u"y",
xanchor=u"center",
yanchor=u"bottom",
text=plot.get(u"x-axis", u""),
font=dict(
size=16,
),
align=u"center",
showarrow=False
)
)
# Y-axis, title:
annotations.append(
dict(
x=-0.1,
y=0.5,
xref=u"x",
yref=u"paper",
xanchor=u"center",
yanchor=u"middle",
text=plot.get(u"y-axis", u""),
font=dict(
size=16,
),
align=u"center",
textangle=270,
showarrow=False
)
)
updatemenus = list([
dict(
x=1.0,
y=0.0,
xanchor=u"right",
yanchor=u"bottom",
direction=u"up",
buttons=list([
dict(
args=[
{
u"colorscale": [my_green, ],
u"reversescale": False
}
],
label=u"Green",
method=u"update"
),
dict(
args=[
{
u"colorscale": [my_blue, ],
u"reversescale": False
}
],
label=u"Blue",
method=u"update"
),
dict(
args=[
{
u"colorscale": [my_grey, ],
u"reversescale": False
}
],
label=u"Grey",
method=u"update"
)
])
)
])
try:
layout = deepcopy(plot[u"layout"])
except KeyError as err:
logging.error(f"Finished with error: No layout defined\n{repr(err)}")
return
layout[u"annotations"] = annotations
layout[u'updatemenus'] = updatemenus
try:
# Create plot
plpl = plgo.Figure(data=traces, layout=layout)
# Export Plot
logging.info(f" Writing file {plot[u'output-file']}.html")
ploff.plot(
plpl,
show_link=False,
auto_open=False,
filename=f"{plot[u'output-file']}.html"
)
except PlotlyError as err:
logging.error(
f" Finished with error: {repr(err)}".replace(u"\n", u" ")
)
return