#!/usr/bin/python3 # Copyright (c) 2020 Cisco and/or its affiliates. # # SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later # # Licensed under the Apache License 2.0 or # GNU General Public License v2.0 or later; you may not use this file # except in compliance with one of these Licenses. You # may obtain a copy of the Licenses at: # # http://www.apache.org/licenses/LICENSE-2.0 # https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html # # Note: If this file is linked with Scapy, which is GPLv2+, your use of it # must be under GPLv2+. If at any point in the future it is no longer linked # with Scapy (or other GPLv2+ licensed software), you are free to choose Apache 2. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module gets T-Rex advanced stateful (astf) traffic profile together with other parameters, reads the profile and sends the traffic. At the end, it parses for various counters. """ import argparse import json import sys import time sys.path.insert( 0, u"/opt/trex-core-2.82/scripts/automation/trex_control_plane/interactive/" ) from trex.astf.api import * def fmt_latency(lat_min, lat_avg, lat_max, hdrh): """Return formatted, rounded latency. :param lat_min: Min latency :param lat_avg: Average latency :param lat_max: Max latency :param hdrh: Base64 encoded compressed HDRHistogram object. :type lat_min: str :type lat_avg: str :type lat_max: str :type hdrh: str :return: Formatted and rounded output (hdrh unchanged) "min/avg/max/hdrh". :rtype: str """ try: t_min = int(round(float(lat_min))) except ValueError: t_min = int(-1) try: t_avg = int(round(float(lat_avg))) except ValueError: t_avg = int(-1) try: t_max = int(round(float(lat_max))) except ValueError: t_max = int(-1) return u"/".join(str(tmp) for tmp in (t_min, t_avg, t_max, hdrh)) def simple_burst( profile_file, duration, framesize, multiplier, port_0, port_1, latency, async_start=False, traffic_directions=2, ): """Send traffic and measure packet loss and latency. Procedure: - reads the given traffic profile with streams, - connects to the T-rex astf client, - resets the ports, - removes all existing streams, - adds streams from the traffic profile to the ports, - clears the statistics from the client, - starts the traffic, - waits for the defined time (or runs forever if async mode is defined), - explicitly stops the traffic, - reads and displays the statistics and - disconnects from the client. Duration details: Contrary to stateless mode, ASTF profiles typically limit the number of flows/transactions that can happen. The caller is expected to set the duration parameter accordingly to this limit and multiplier, including any overheads. See *_traffic_duration output fields for TRex's measurement of the real traffic duration (should be without any inactivity overheads). If traffic has not ended by the final time, the traffic is stopped explicitly, counters reflect the state just after the stop. TODO: Support tests which focus only on some transaction phases, e.g. TCP tests ignoring init and teardown separated by delays. Currently, approximated time measures the whole traffic duration. :param profile_file: A python module with T-rex traffic profile. :param duration: Expected duration for all transactions to finish, assuming only tolerable duration stretching happens. This includes later start of later transactions (according to TPS multiplier) and expected duration of each transaction. Critically, this also includes any delay TRex shows when starting traffic (but not the similar delay during stopping). :param framesize: Frame size. :param multiplier: Multiplier of profile CPS. :param port_0: Port 0 on the traffic generator. :param port_1: Port 1 on the traffic generator. :param latency: With latency stats. :param async_start: Start the traffic and exit. :param traffic_directions: Bidirectional (2) or unidirectional (1) traffic. :type profile_file: str :type duration: float :type framesize: int or str :type multiplier: int :type port_0: int :type port_1: int :type latency: bool :type async_start: bool :type traffic_directions: int """ client = None total_received = 0 total_sent = 0 lost_a = 0 lost_b = 0 lat_a = u"-1/-1/-1/" lat_b = u"-1/-1/-1/" lat_a_hist = u"" lat_b_hist = u"" l7_data = u"" stats = dict() approximated_duration = 0 # Read the profile. try: # TODO: key-values pairs to the profile file # - ips ? print(f"### Profile file:\n{profile_file}") profile = ASTFProfile.load(profile_file, framesize=framesize) except TRexError: print(f"Error while loading profile '{profile_file}'!") raise try: # Create the client. client = ASTFClient() # Connect to server client.connect() # Acquire ports, stop the traffic, remove loaded traffic and clear # stats. client.reset() # Load the profile. client.load_profile(profile) ports = [port_0] if traffic_directions > 1: ports.append(port_1) # Clear the stats before injecting. lost_a = 0 lost_b = 0 stats = dict() # Choose CPS and start traffic. client.start( mult=multiplier, # Increase the input duration slightly, # to ensure it does not end before sleep&stop below happens. duration=duration + 0.1 if duration > 0 else duration, nc=True, latency_pps=int(multiplier) if latency else 0, client_mask=2**len(ports)-1, ) time_start = time.monotonic() if async_start: # For async stop, we need to export the current snapshot. xsnap0 = client.ports[port_0].get_xstats().reference_stats print(f"Xstats snapshot 0: {xsnap0!r}") if traffic_directions > 1: xsnap1 = client.ports[port_1].get_xstats().reference_stats print(f"Xstats snapshot 1: {xsnap1!r}") else: time.sleep(duration) # Do not block yet, the existing transactions may take long time # to finish. We need an action that is almost reset(), # but without clearing stats. client.stop(block=False) client.stop_latency() client.remove_rx_queue(client.get_all_ports()) # Now we can wait for the real traffic stop. client.stop(block=True) # Read the stats after the traffic stopped (or time up). stats[time.monotonic() - time_start] = client.get_stats( ports=ports ) if client.get_warnings(): for warning in client.get_warnings(): print(warning) # Now finish the complete reset. client.reset() print(u"##### Statistics #####") print(json.dumps(stats, indent=4, separators=(u",", u": "))) approximated_duration = list(sorted(stats.keys()))[-1] stats = stats[sorted(stats.keys())[-1]] lost_a = stats[port_0][u"opackets"] - stats[port_1][u"ipackets"] if traffic_directions > 1: lost_b = stats[port_1][u"opackets"] - stats[port_0][u"ipackets"] # TODO: Latency measurement not used at this phase. This part will # be aligned in another commit. # Stats index is not a port number, but "pgid". if latency: lat_obj = stats[u"latency"][0][u"hist"] # TODO: Latency histogram is dictionary in astf mode, # needs additional processing lat_a = fmt_latency( str(lat_obj[u"min_usec"]), str(lat_obj[u"s_avg"]), str(lat_obj[u"max_usec"]), u"-") lat_a_hist = str(lat_obj[u"histogram"]) if traffic_directions > 1: lat_obj = stats[u"latency"][1][u"hist"] lat_b = fmt_latency( str(lat_obj[u"min_usec"]), str(lat_obj[u"s_avg"]), str(lat_obj[u"max_usec"]), u"-") lat_b_hist = str(lat_obj[u"histogram"]) if traffic_directions > 1: total_sent = \ stats[port_0][u"opackets"] + stats[port_1][u"opackets"] total_received = \ stats[port_0][u"ipackets"] + stats[port_1][u"ipackets"] client_sent = stats[port_0][u"opackets"] client_received = stats[port_0][u"ipackets"] client_stats = stats[u"traffic"][u"client"] server_stats = stats[u"traffic"][u"server"] # Some zero counters are not sent # Active and established flows UDP/TCP # Client c_act_flows = client_stats[u"m_active_flows"] c_est_flows = client_stats[u"m_est_flows"] c_traffic_duration = client_stats.get(u"m_traffic_duration", 0) l7_data = f"client_active_flows={c_act_flows}; " l7_data += f"client_established_flows={c_est_flows}; " l7_data += f"client_traffic_duration={c_traffic_duration}; " # Possible errors # Too many packets in NIC rx queue c_err_rx_throttled = client_stats.get(u"err_rx_throttled", 0) l7_data += f"client_err_rx_throttled={c_err_rx_throttled}; " # Number of client side flows that were not opened # due to flow-table overflow c_err_nf_throttled = client_stats.get(u"err_c_nf_throttled", 0) l7_data += f"client_err_nf_throttled={c_err_nf_throttled}; " # Too many flows c_err_flow_overflow = client_stats.get(u"err_flow_overflow", 0) l7_data += f"client_err_flow_overflow={c_err_flow_overflow}; " # Server s_act_flows = server_stats[u"m_active_flows"] s_est_flows = server_stats[u"m_est_flows"] s_traffic_duration = server_stats.get(u"m_traffic_duration", 0) l7_data += f"server_active_flows={s_act_flows}; " l7_data += f"server_established_flows={s_est_flows}; " l7_data += f"server_traffic_duration={s_traffic_duration}; " # Possible errors # Too many packets in NIC rx queue s_err_rx_throttled = server_stats.get(u"err_rx_throttled", 0) l7_data += f"client_err_rx_throttled={s_err_rx_throttled}; " if u"udp" in profile_file: # Client # Established connections c_udp_connects = client_stats.get(u"udps_connects", 0) l7_data += f"client_udp_connects={c_udp_connects}; " # Closed connections c_udp_closed = client_stats.get(u"udps_closed", 0) l7_data += f"client_udp_closed={c_udp_closed}; " # Sent bytes c_udp_sndbyte = client_stats.get(u"udps_sndbyte", 0) l7_data += f"client_udp_tx_bytes={c_udp_sndbyte}; " # Sent packets c_udp_sndpkt = client_stats.get(u"udps_sndpkt", 0) l7_data += f"client_udp_tx_packets={c_udp_sndpkt}; " # Received bytes c_udp_rcvbyte = client_stats.get(u"udps_rcvbyte", 0) l7_data += f"client_udp_rx_bytes={c_udp_rcvbyte}; " # Received packets c_udp_rcvpkt = client_stats.get(u"udps_rcvpkt", 0) l7_data += f"client_udp_rx_packets={c_udp_rcvpkt}; " # Keep alive drops c_udp_keepdrops = client_stats.get(u"udps_keepdrops", 0) l7_data += f"client_udp_keep_drops={c_udp_keepdrops}; " # Client without flow c_err_cwf = client_stats.get(u"err_cwf", 0) l7_data += f"client_err_cwf={c_err_cwf}; " # Server # Accepted connections s_udp_accepts = server_stats.get(u"udps_accepts", 0) l7_data += f"server_udp_accepts={s_udp_accepts}; " # Closed connections s_udp_closed = server_stats.get(u"udps_closed", 0) l7_data += f"server_udp_closed={s_udp_closed}; " # Sent bytes s_udp_sndbyte = server_stats.get(u"udps_sndbyte", 0) l7_data += f"server_udp_tx_bytes={s_udp_sndbyte}; " # Sent packets s_udp_sndpkt = server_stats.get(u"udps_sndpkt", 0) l7_data += f"server_udp_tx_packets={s_udp_sndpkt}; " # Received bytes s_udp_rcvbyte = server_stats.get(u"udps_rcvbyte", 0) l7_data += f"server_udp_rx_bytes={s_udp_rcvbyte}; " # Received packets s_udp_rcvpkt = server_stats.get(u"udps_rcvpkt", 0) l7_data += f"server_udp_rx_packets={s_udp_rcvpkt}; " elif u"tcp" in profile_file: # Client # Connection attempts c_tcp_connattempt = client_stats.get(u"tcps_connattempt", 0) l7_data += f"client_tcp_connattempt={c_tcp_connattempt}; " # Established connections c_tcp_connects = client_stats.get(u"tcps_connects", 0) l7_data += f"client_tcp_connects={c_tcp_connects}; " # Closed connections c_tcp_closed = client_stats.get(u"tcps_closed", 0) l7_data += f"client_tcp_closed={c_tcp_closed}; " # Send bytes c_tcp_sndbyte = client_stats.get(u"tcps_sndbyte", 0) l7_data += f"client_tcp_tx_bytes={c_tcp_sndbyte}; " # Received bytes c_tcp_rcvbyte = client_stats.get(u"tcps_rcvbyte", 0) l7_data += f"client_tcp_rx_bytes={c_tcp_rcvbyte}; " # Server # Accepted connections s_tcp_accepts = server_stats.get(u"tcps_accepts", 0) l7_data += f"server_tcp_accepts={s_tcp_accepts}; " # Established connections s_tcp_connects = server_stats.get(u"tcps_connects", 0) l7_data += f"server_tcp_connects={s_tcp_connects}; " # Closed connections s_tcp_closed = server_stats.get(u"tcps_closed", 0) l7_data += f"server_tcp_closed={s_tcp_closed}; " # Sent bytes s_tcp_sndbyte = server_stats.get(u"tcps_sndbyte", 0) l7_data += f"server_tcp_tx_bytes={s_tcp_sndbyte}; " # Received bytes s_tcp_rcvbyte = server_stats.get(u"tcps_rcvbyte", 0) l7_data += f"server_tcp_rx_bytes={s_tcp_rcvbyte}; " else: total_sent = stats[port_0][u"opackets"] total_received = stats[port_1][u"ipackets"] print(f"packets lost from {port_0} --> {port_1}: {lost_a} pkts") if traffic_directions > 1