From 97f17497d162afdb82c8704bf097f0fee3724b2e Mon Sep 17 00:00:00 2001 From: "C.J. Collier" Date: Tue, 14 Jun 2016 07:50:17 -0700 Subject: Imported Upstream version 16.04 Change-Id: I77eadcd8538a9122e4773cbe55b24033dc451757 Signed-off-by: C.J. Collier --- examples/performance-thread/pthread_shim/main.c | 287 ++++++++++++++++++++++++ 1 file changed, 287 insertions(+) create mode 100644 examples/performance-thread/pthread_shim/main.c (limited to 'examples/performance-thread/pthread_shim/main.c') diff --git a/examples/performance-thread/pthread_shim/main.c b/examples/performance-thread/pthread_shim/main.c new file mode 100644 index 00000000..f0357218 --- /dev/null +++ b/examples/performance-thread/pthread_shim/main.c @@ -0,0 +1,287 @@ + +/*- + * BSD LICENSE + * + * Copyright(c) 2015 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#define _GNU_SOURCE +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include + +#include "lthread_api.h" +#include "lthread_diag_api.h" +#include "pthread_shim.h" + +#define DEBUG_APP 0 +#define HELLOW_WORLD_MAX_LTHREADS 10 + +__thread int print_count; +__thread pthread_mutex_t print_lock; + +__thread pthread_mutex_t exit_lock; +__thread pthread_cond_t exit_cond; + +/* + * A simple thread that demonstrates use of a mutex, a condition + * variable, thread local storage, explicit yield, and thread exit. + * + * The thread uses a mutex to protect a shared counter which is incremented + * and then it waits on condition variable before exiting. + * + * The thread argument is stored in and retrieved from TLS, using + * the pthread key create, get and set specific APIs. + * + * The thread yields while holding the mutex, to provide opportunity + * for other threads to contend. + * + * All of the pthread API functions used by this thread are actually + * resolved to corresponding lthread functions by the pthread shim + * implemented in pthread_shim.c + */ +void *helloworld_pthread(void *arg); +void *helloworld_pthread(void *arg) +{ + pthread_key_t key; + + /* create a key for TLS */ + pthread_key_create(&key, NULL); + + /* store the arg in TLS */ + pthread_setspecific(key, arg); + + /* grab lock and increment shared counter */ + pthread_mutex_lock(&print_lock); + print_count++; + + /* yield thread to give opportunity for lock contention */ + pthread_yield(); + + /* retrieve arg from TLS */ + uint64_t thread_no = (uint64_t) pthread_getspecific(key); + + printf("Hello - lcore = %d count = %d thread_no = %d thread_id = %p\n", + sched_getcpu(), + print_count, + (int) thread_no, + (void *)pthread_self()); + + /* release the lock */ + pthread_mutex_unlock(&print_lock); + + /* + * wait on condition variable + * before exiting + */ + pthread_mutex_lock(&exit_lock); + pthread_cond_wait(&exit_cond, &exit_lock); + pthread_mutex_unlock(&exit_lock); + + /* exit */ + pthread_exit((void *) thread_no); +} + + +/* + * This is the initial thread + * + * It demonstrates pthread, mutex and condition variable creation, + * broadcast and pthread join APIs. + * + * This initial thread must always start life as an lthread. + * + * This thread creates many more threads then waits a short time + * before signalling them to exit using a broadcast. + * + * All of the pthread API functions used by this thread are actually + * resolved to corresponding lthread functions by the pthread shim + * implemented in pthread_shim.c + * + * After all threads have finished the lthread scheduler is shutdown + * and normal pthread operation is restored + */ +__thread pthread_t tid[HELLOW_WORLD_MAX_LTHREADS]; + +static void initial_lthread(void *args); +static void initial_lthread(void *args __attribute__((unused))) +{ + int lcore = (int) rte_lcore_id(); + /* + * + * We can now enable pthread API override + * and start to use the pthread APIs + */ + pthread_override_set(1); + + uint64_t i; + + /* initialize mutex for shared counter */ + print_count = 0; + pthread_mutex_init(&print_lock, NULL); + + /* initialize mutex and condition variable controlling thread exit */ + pthread_mutex_init(&exit_lock, NULL); + pthread_cond_init(&exit_cond, NULL); + + /* spawn a number of threads */ + for (i = 0; i < HELLOW_WORLD_MAX_LTHREADS; i++) { + + /* + * Not strictly necessary but + * for the sake of this example + * use an attribute to pass the desired lcore + */ + pthread_attr_t attr; + cpu_set_t cpuset; + + CPU_ZERO(&cpuset); + CPU_SET(lcore, &cpuset); + pthread_attr_init(&attr); + pthread_attr_setaffinity_np(&attr, sizeof(cpu_set_t), &cpuset); + + /* create the thread */ + pthread_create(&tid[i], &attr, helloworld_pthread, (void *) i); + } + + /* wait for 1s to allow threads + * to block on the condition variable + * N.B. nanosleep() is resolved to lthread_sleep() + * by the shim. + */ + struct timespec time; + + time.tv_sec = 1; + time.tv_nsec = 0; + nanosleep(&time, NULL); + + /* wake up all the threads */ + pthread_cond_broadcast(&exit_cond); + + /* wait for them to finish */ + for (i = 0; i < HELLOW_WORLD_MAX_LTHREADS; i++) { + + uint64_t thread_no; + + pthread_join(tid[i], (void *) &thread_no); + if (thread_no != i) + printf("error on thread exit\n"); + } + + pthread_cond_destroy(&exit_cond); + pthread_mutex_destroy(&print_lock); + pthread_mutex_destroy(&exit_lock); + + /* shutdown the lthread scheduler */ + lthread_scheduler_shutdown(rte_lcore_id()); + lthread_detach(); +} + + + +/* This thread creates a single initial lthread + * and then runs the scheduler + * An instance of this thread is created on each thread + * in the core mask + */ +static int +lthread_scheduler(void *args); +static int +lthread_scheduler(void *args __attribute__((unused))) +{ + /* create initial thread */ + struct lthread *lt; + + lthread_create(<, -1, initial_lthread, (void *) NULL); + + /* run the lthread scheduler */ + lthread_run(); + + /* restore genuine pthread operation */ + pthread_override_set(0); + return 0; +} + +int main(int argc, char **argv) +{ + int num_sched = 0; + + /* basic DPDK initialization is all that is necessary to run lthreads*/ + int ret = rte_eal_init(argc, argv); + + if (ret < 0) + rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); + + /* enable timer subsystem */ + rte_timer_subsystem_init(); + +#if DEBUG_APP + lthread_diagnostic_set_mask(LT_DIAG_ALL); +#endif + + /* create a scheduler on every core in the core mask + * and launch an initial lthread that will spawn many more. + */ + unsigned lcore_id; + + for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { + if (rte_lcore_is_enabled(lcore_id)) + num_sched++; + } + + /* set the number of schedulers, this forces all schedulers synchronize + * before entering their main loop + */ + lthread_num_schedulers_set(num_sched); + + /* launch all threads */ + rte_eal_mp_remote_launch(lthread_scheduler, (void *)NULL, CALL_MASTER); + + /* wait for threads to stop */ + RTE_LCORE_FOREACH_SLAVE(lcore_id) { + rte_eal_wait_lcore(lcore_id); + } + return 0; +} -- cgit 1.2.3-korg