From 97f17497d162afdb82c8704bf097f0fee3724b2e Mon Sep 17 00:00:00 2001 From: "C.J. Collier" Date: Tue, 14 Jun 2016 07:50:17 -0700 Subject: Imported Upstream version 16.04 Change-Id: I77eadcd8538a9122e4773cbe55b24033dc451757 Signed-off-by: C.J. Collier --- lib/librte_eal/linuxapp/eal/eal_memory.c | 1559 ++++++++++++++++++++++++++++++ 1 file changed, 1559 insertions(+) create mode 100644 lib/librte_eal/linuxapp/eal/eal_memory.c (limited to 'lib/librte_eal/linuxapp/eal/eal_memory.c') diff --git a/lib/librte_eal/linuxapp/eal/eal_memory.c b/lib/librte_eal/linuxapp/eal/eal_memory.c new file mode 100644 index 00000000..5b9132c6 --- /dev/null +++ b/lib/librte_eal/linuxapp/eal/eal_memory.c @@ -0,0 +1,1559 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ +/* BSD LICENSE + * + * Copyright(c) 2013 6WIND. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of 6WIND S.A. nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#define _FILE_OFFSET_BITS 64 +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "eal_private.h" +#include "eal_internal_cfg.h" +#include "eal_filesystem.h" +#include "eal_hugepages.h" + +#ifdef RTE_LIBRTE_XEN_DOM0 +int rte_xen_dom0_supported(void) +{ + return internal_config.xen_dom0_support; +} +#endif + +/** + * @file + * Huge page mapping under linux + * + * To reserve a big contiguous amount of memory, we use the hugepage + * feature of linux. For that, we need to have hugetlbfs mounted. This + * code will create many files in this directory (one per page) and + * map them in virtual memory. For each page, we will retrieve its + * physical address and remap it in order to have a virtual contiguous + * zone as well as a physical contiguous zone. + */ + +static uint64_t baseaddr_offset; + +static unsigned proc_pagemap_readable; + +#define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space" + +static void +test_proc_pagemap_readable(void) +{ + int fd = open("/proc/self/pagemap", O_RDONLY); + + if (fd < 0) { + RTE_LOG(ERR, EAL, + "Cannot open /proc/self/pagemap: %s. " + "virt2phys address translation will not work\n", + strerror(errno)); + return; + } + + /* Is readable */ + close(fd); + proc_pagemap_readable = 1; +} + +/* Lock page in physical memory and prevent from swapping. */ +int +rte_mem_lock_page(const void *virt) +{ + unsigned long virtual = (unsigned long)virt; + int page_size = getpagesize(); + unsigned long aligned = (virtual & ~ (page_size - 1)); + return mlock((void*)aligned, page_size); +} + +/* + * Get physical address of any mapped virtual address in the current process. + */ +phys_addr_t +rte_mem_virt2phy(const void *virtaddr) +{ + int fd; + uint64_t page, physaddr; + unsigned long virt_pfn; + int page_size; + off_t offset; + + /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */ + if (!proc_pagemap_readable) + return RTE_BAD_PHYS_ADDR; + + /* standard page size */ + page_size = getpagesize(); + + fd = open("/proc/self/pagemap", O_RDONLY); + if (fd < 0) { + RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n", + __func__, strerror(errno)); + return RTE_BAD_PHYS_ADDR; + } + + virt_pfn = (unsigned long)virtaddr / page_size; + offset = sizeof(uint64_t) * virt_pfn; + if (lseek(fd, offset, SEEK_SET) == (off_t) -1) { + RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n", + __func__, strerror(errno)); + close(fd); + return RTE_BAD_PHYS_ADDR; + } + if (read(fd, &page, sizeof(uint64_t)) < 0) { + RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n", + __func__, strerror(errno)); + close(fd); + return RTE_BAD_PHYS_ADDR; + } + + /* + * the pfn (page frame number) are bits 0-54 (see + * pagemap.txt in linux Documentation) + */ + physaddr = ((page & 0x7fffffffffffffULL) * page_size) + + ((unsigned long)virtaddr % page_size); + close(fd); + return physaddr; +} + +/* + * For each hugepage in hugepg_tbl, fill the physaddr value. We find + * it by browsing the /proc/self/pagemap special file. + */ +static int +find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) +{ + unsigned i; + phys_addr_t addr; + + for (i = 0; i < hpi->num_pages[0]; i++) { + addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va); + if (addr == RTE_BAD_PHYS_ADDR) + return -1; + hugepg_tbl[i].physaddr = addr; + } + return 0; +} + +/* + * Check whether address-space layout randomization is enabled in + * the kernel. This is important for multi-process as it can prevent + * two processes mapping data to the same virtual address + * Returns: + * 0 - address space randomization disabled + * 1/2 - address space randomization enabled + * negative error code on error + */ +static int +aslr_enabled(void) +{ + char c; + int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY); + if (fd < 0) + return -errno; + retval = read(fd, &c, 1); + close(fd); + if (retval < 0) + return -errno; + if (retval == 0) + return -EIO; + switch (c) { + case '0' : return 0; + case '1' : return 1; + case '2' : return 2; + default: return -EINVAL; + } +} + +/* + * Try to mmap *size bytes in /dev/zero. If it is successful, return the + * pointer to the mmap'd area and keep *size unmodified. Else, retry + * with a smaller zone: decrease *size by hugepage_sz until it reaches + * 0. In this case, return NULL. Note: this function returns an address + * which is a multiple of hugepage size. + */ +static void * +get_virtual_area(size_t *size, size_t hugepage_sz) +{ + void *addr; + int fd; + long aligned_addr; + + if (internal_config.base_virtaddr != 0) { + addr = (void*) (uintptr_t) (internal_config.base_virtaddr + + baseaddr_offset); + } + else addr = NULL; + + RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size); + + fd = open("/dev/zero", O_RDONLY); + if (fd < 0){ + RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n"); + return NULL; + } + do { + addr = mmap(addr, + (*size) + hugepage_sz, PROT_READ, MAP_PRIVATE, fd, 0); + if (addr == MAP_FAILED) + *size -= hugepage_sz; + } while (addr == MAP_FAILED && *size > 0); + + if (addr == MAP_FAILED) { + close(fd); + RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n", + strerror(errno)); + return NULL; + } + + munmap(addr, (*size) + hugepage_sz); + close(fd); + + /* align addr to a huge page size boundary */ + aligned_addr = (long)addr; + aligned_addr += (hugepage_sz - 1); + aligned_addr &= (~(hugepage_sz - 1)); + addr = (void *)(aligned_addr); + + RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n", + addr, *size); + + /* increment offset */ + baseaddr_offset += *size; + + return addr; +} + +/* + * Mmap all hugepages of hugepage table: it first open a file in + * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the + * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored + * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to + * map continguous physical blocks in contiguous virtual blocks. + */ +static int +map_all_hugepages(struct hugepage_file *hugepg_tbl, + struct hugepage_info *hpi, int orig) +{ + int fd; + unsigned i; + void *virtaddr; + void *vma_addr = NULL; + size_t vma_len = 0; + +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + RTE_SET_USED(vma_len); +#endif + + for (i = 0; i < hpi->num_pages[0]; i++) { + uint64_t hugepage_sz = hpi->hugepage_sz; + + if (orig) { + hugepg_tbl[i].file_id = i; + hugepg_tbl[i].size = hugepage_sz; +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + eal_get_hugefile_temp_path(hugepg_tbl[i].filepath, + sizeof(hugepg_tbl[i].filepath), hpi->hugedir, + hugepg_tbl[i].file_id); +#else + eal_get_hugefile_path(hugepg_tbl[i].filepath, + sizeof(hugepg_tbl[i].filepath), hpi->hugedir, + hugepg_tbl[i].file_id); +#endif + hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0'; + } +#ifndef RTE_ARCH_64 + /* for 32-bit systems, don't remap 1G and 16G pages, just reuse + * original map address as final map address. + */ + else if ((hugepage_sz == RTE_PGSIZE_1G) + || (hugepage_sz == RTE_PGSIZE_16G)) { + hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va; + hugepg_tbl[i].orig_va = NULL; + continue; + } +#endif + +#ifndef RTE_EAL_SINGLE_FILE_SEGMENTS + else if (vma_len == 0) { + unsigned j, num_pages; + + /* reserve a virtual area for next contiguous + * physical block: count the number of + * contiguous physical pages. */ + for (j = i+1; j < hpi->num_pages[0] ; j++) { +#ifdef RTE_ARCH_PPC_64 + /* The physical addresses are sorted in + * descending order on PPC64 */ + if (hugepg_tbl[j].physaddr != + hugepg_tbl[j-1].physaddr - hugepage_sz) + break; +#else + if (hugepg_tbl[j].physaddr != + hugepg_tbl[j-1].physaddr + hugepage_sz) + break; +#endif + } + num_pages = j - i; + vma_len = num_pages * hugepage_sz; + + /* get the biggest virtual memory area up to + * vma_len. If it fails, vma_addr is NULL, so + * let the kernel provide the address. */ + vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz); + if (vma_addr == NULL) + vma_len = hugepage_sz; + } +#endif + + /* try to create hugepage file */ + fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0755); + if (fd < 0) { + RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__, + strerror(errno)); + return -1; + } + + /* map the segment, and populate page tables, + * the kernel fills this segment with zeros */ + virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE, + MAP_SHARED | MAP_POPULATE, fd, 0); + if (virtaddr == MAP_FAILED) { + RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__, + strerror(errno)); + close(fd); + return -1; + } + + if (orig) { + hugepg_tbl[i].orig_va = virtaddr; + } + else { + hugepg_tbl[i].final_va = virtaddr; + } + + /* set shared flock on the file. */ + if (flock(fd, LOCK_SH | LOCK_NB) == -1) { + RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n", + __func__, strerror(errno)); + close(fd); + return -1; + } + + close(fd); + + vma_addr = (char *)vma_addr + hugepage_sz; + vma_len -= hugepage_sz; + } + return 0; +} + +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + +/* + * Remaps all hugepages into single file segments + */ +static int +remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) +{ + int fd; + unsigned i = 0, j, num_pages, page_idx = 0; + void *vma_addr = NULL, *old_addr = NULL, *page_addr = NULL; + size_t vma_len = 0; + size_t hugepage_sz = hpi->hugepage_sz; + size_t total_size, offset; + char filepath[MAX_HUGEPAGE_PATH]; + phys_addr_t physaddr; + int socket; + + while (i < hpi->num_pages[0]) { + +#ifndef RTE_ARCH_64 + /* for 32-bit systems, don't remap 1G pages and 16G pages, + * just reuse original map address as final map address. + */ + if ((hugepage_sz == RTE_PGSIZE_1G) + || (hugepage_sz == RTE_PGSIZE_16G)) { + hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va; + hugepg_tbl[i].orig_va = NULL; + i++; + continue; + } +#endif + + /* reserve a virtual area for next contiguous + * physical block: count the number of + * contiguous physical pages. */ + for (j = i+1; j < hpi->num_pages[0] ; j++) { +#ifdef RTE_ARCH_PPC_64 + /* The physical addresses are sorted in descending + * order on PPC64 */ + if (hugepg_tbl[j].physaddr != + hugepg_tbl[j-1].physaddr - hugepage_sz) + break; +#else + if (hugepg_tbl[j].physaddr != + hugepg_tbl[j-1].physaddr + hugepage_sz) + break; +#endif + } + num_pages = j - i; + vma_len = num_pages * hugepage_sz; + + socket = hugepg_tbl[i].socket_id; + + /* get the biggest virtual memory area up to + * vma_len. If it fails, vma_addr is NULL, so + * let the kernel provide the address. */ + vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz); + + /* If we can't find a big enough virtual area, work out how many pages + * we are going to get */ + if (vma_addr == NULL) + j = i + 1; + else if (vma_len != num_pages * hugepage_sz) { + num_pages = vma_len / hugepage_sz; + j = i + num_pages; + + } + + hugepg_tbl[page_idx].file_id = page_idx; + eal_get_hugefile_path(filepath, + sizeof(filepath), + hpi->hugedir, + hugepg_tbl[page_idx].file_id); + + /* try to create hugepage file */ + fd = open(filepath, O_CREAT | O_RDWR, 0755); + if (fd < 0) { + RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__, strerror(errno)); + return -1; + } + + total_size = 0; + for (;i < j; i++) { + + /* unmap current segment */ + if (total_size > 0) + munmap(vma_addr, total_size); + + /* unmap original page */ + munmap(hugepg_tbl[i].orig_va, hugepage_sz); + unlink(hugepg_tbl[i].filepath); + + total_size += hugepage_sz; + + old_addr = vma_addr; + + /* map new, bigger segment, and populate page tables, + * the kernel fills this segment with zeros */ + vma_addr = mmap(vma_addr, total_size, + PROT_READ | PROT_WRITE, MAP_SHARED | MAP_POPULATE, fd, 0); + + if (vma_addr == MAP_FAILED || vma_addr != old_addr) { + RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__, strerror(errno)); + close(fd); + return -1; + } + } + + /* set shared flock on the file. */ + if (flock(fd, LOCK_SH | LOCK_NB) == -1) { + RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n", + __func__, strerror(errno)); + close(fd); + return -1; + } + + snprintf(hugepg_tbl[page_idx].filepath, MAX_HUGEPAGE_PATH, "%s", + filepath); + + physaddr = rte_mem_virt2phy(vma_addr); + + if (physaddr == RTE_BAD_PHYS_ADDR) + return -1; + + hugepg_tbl[page_idx].final_va = vma_addr; + + hugepg_tbl[page_idx].physaddr = physaddr; + + hugepg_tbl[page_idx].repeated = num_pages; + + hugepg_tbl[page_idx].socket_id = socket; + + close(fd); + + /* verify the memory segment - that is, check that every VA corresponds + * to the physical address we expect to see + */ + for (offset = 0; offset < vma_len; offset += hugepage_sz) { + uint64_t expected_physaddr; + + expected_physaddr = hugepg_tbl[page_idx].physaddr + offset; + page_addr = RTE_PTR_ADD(vma_addr, offset); + physaddr = rte_mem_virt2phy(page_addr); + + if (physaddr != expected_physaddr) { + RTE_LOG(ERR, EAL, "Segment sanity check failed: wrong physaddr " + "at %p (offset 0x%" PRIx64 ": 0x%" PRIx64 + " (expected 0x%" PRIx64 ")\n", + page_addr, offset, physaddr, expected_physaddr); + return -1; + } + } + + page_idx++; + } + + /* zero out the rest */ + memset(&hugepg_tbl[page_idx], 0, (hpi->num_pages[0] - page_idx) * sizeof(struct hugepage_file)); + return page_idx; +} +#else/* RTE_EAL_SINGLE_FILE_SEGMENTS=n */ + +/* Unmap all hugepages from original mapping */ +static int +unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) +{ + unsigned i; + for (i = 0; i < hpi->num_pages[0]; i++) { + if (hugepg_tbl[i].orig_va) { + munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz); + hugepg_tbl[i].orig_va = NULL; + } + } + return 0; +} +#endif /* RTE_EAL_SINGLE_FILE_SEGMENTS */ + +/* + * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge + * page. + */ +static int +find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) +{ + int socket_id; + char *end, *nodestr; + unsigned i, hp_count = 0; + uint64_t virt_addr; + char buf[BUFSIZ]; + char hugedir_str[PATH_MAX]; + FILE *f; + + f = fopen("/proc/self/numa_maps", "r"); + if (f == NULL) { + RTE_LOG(NOTICE, EAL, "cannot open /proc/self/numa_maps," + " consider that all memory is in socket_id 0\n"); + return 0; + } + + snprintf(hugedir_str, sizeof(hugedir_str), + "%s/%s", hpi->hugedir, internal_config.hugefile_prefix); + + /* parse numa map */ + while (fgets(buf, sizeof(buf), f) != NULL) { + + /* ignore non huge page */ + if (strstr(buf, " huge ") == NULL && + strstr(buf, hugedir_str) == NULL) + continue; + + /* get zone addr */ + virt_addr = strtoull(buf, &end, 16); + if (virt_addr == 0 || end == buf) { + RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); + goto error; + } + + /* get node id (socket id) */ + nodestr = strstr(buf, " N"); + if (nodestr == NULL) { + RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); + goto error; + } + nodestr += 2; + end = strstr(nodestr, "="); + if (end == NULL) { + RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); + goto error; + } + end[0] = '\0'; + end = NULL; + + socket_id = strtoul(nodestr, &end, 0); + if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) { + RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__); + goto error; + } + + /* if we find this page in our mappings, set socket_id */ + for (i = 0; i < hpi->num_pages[0]; i++) { + void *va = (void *)(unsigned long)virt_addr; + if (hugepg_tbl[i].orig_va == va) { + hugepg_tbl[i].socket_id = socket_id; + hp_count++; + } + } + } + + if (hp_count < hpi->num_pages[0]) + goto error; + + fclose(f); + return 0; + +error: + fclose(f); + return -1; +} + +static int +cmp_physaddr(const void *a, const void *b) +{ +#ifndef RTE_ARCH_PPC_64 + const struct hugepage_file *p1 = (const struct hugepage_file *)a; + const struct hugepage_file *p2 = (const struct hugepage_file *)b; +#else + /* PowerPC needs memory sorted in reverse order from x86 */ + const struct hugepage_file *p1 = (const struct hugepage_file *)b; + const struct hugepage_file *p2 = (const struct hugepage_file *)a; +#endif + if (p1->physaddr < p2->physaddr) + return -1; + else if (p1->physaddr > p2->physaddr) + return 1; + else + return 0; +} + +/* + * Uses mmap to create a shared memory area for storage of data + * Used in this file to store the hugepage file map on disk + */ +static void * +create_shared_memory(const char *filename, const size_t mem_size) +{ + void *retval; + int fd = open(filename, O_CREAT | O_RDWR, 0666); + if (fd < 0) + return NULL; + if (ftruncate(fd, mem_size) < 0) { + close(fd); + return NULL; + } + retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); + close(fd); + return retval; +} + +/* + * this copies *active* hugepages from one hugepage table to another. + * destination is typically the shared memory. + */ +static int +copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size, + const struct hugepage_file * src, int src_size) +{ + int src_pos, dst_pos = 0; + + for (src_pos = 0; src_pos < src_size; src_pos++) { + if (src[src_pos].final_va != NULL) { + /* error on overflow attempt */ + if (dst_pos == dest_size) + return -1; + memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file)); + dst_pos++; + } + } + return 0; +} + +static int +unlink_hugepage_files(struct hugepage_file *hugepg_tbl, + unsigned num_hp_info) +{ + unsigned socket, size; + int page, nrpages = 0; + + /* get total number of hugepages */ + for (size = 0; size < num_hp_info; size++) + for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) + nrpages += + internal_config.hugepage_info[size].num_pages[socket]; + + for (page = 0; page < nrpages; page++) { + struct hugepage_file *hp = &hugepg_tbl[page]; + + if (hp->final_va != NULL && unlink(hp->filepath)) { + RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n", + __func__, hp->filepath, strerror(errno)); + } + } + return 0; +} + +/* + * unmaps hugepages that are not going to be used. since we originally allocate + * ALL hugepages (not just those we need), additional unmapping needs to be done. + */ +static int +unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl, + struct hugepage_info *hpi, + unsigned num_hp_info) +{ + unsigned socket, size; + int page, nrpages = 0; + + /* get total number of hugepages */ + for (size = 0; size < num_hp_info; size++) + for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) + nrpages += internal_config.hugepage_info[size].num_pages[socket]; + + for (size = 0; size < num_hp_info; size++) { + for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { + unsigned pages_found = 0; + + /* traverse until we have unmapped all the unused pages */ + for (page = 0; page < nrpages; page++) { + struct hugepage_file *hp = &hugepg_tbl[page]; + +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + /* if this page was already cleared */ + if (hp->final_va == NULL) + continue; +#endif + + /* find a page that matches the criteria */ + if ((hp->size == hpi[size].hugepage_sz) && + (hp->socket_id == (int) socket)) { + + /* if we skipped enough pages, unmap the rest */ + if (pages_found == hpi[size].num_pages[socket]) { + uint64_t unmap_len; + +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + unmap_len = hp->size * hp->repeated; +#else + unmap_len = hp->size; +#endif + + /* get start addr and len of the remaining segment */ + munmap(hp->final_va, (size_t) unmap_len); + + hp->final_va = NULL; + if (unlink(hp->filepath) == -1) { + RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n", + __func__, hp->filepath, strerror(errno)); + return -1; + } + } +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + /* else, check how much do we need to map */ + else { + int nr_pg_left = + hpi[size].num_pages[socket] - pages_found; + + /* if we need enough memory to fit into the segment */ + if (hp->repeated <= nr_pg_left) { + pages_found += hp->repeated; + } + /* truncate the segment */ + else { + uint64_t final_size = nr_pg_left * hp->size; + uint64_t seg_size = hp->repeated * hp->size; + + void * unmap_va = RTE_PTR_ADD(hp->final_va, + final_size); + int fd; + + munmap(unmap_va, seg_size - final_size); + + fd = open(hp->filepath, O_RDWR); + if (fd < 0) { + RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", + hp->filepath, strerror(errno)); + return -1; + } + if (ftruncate(fd, final_size) < 0) { + RTE_LOG(ERR, EAL, "Cannot truncate %s: %s\n", + hp->filepath, strerror(errno)); + return -1; + } + close(fd); + + pages_found += nr_pg_left; + hp->repeated = nr_pg_left; + } + } +#else + /* else, lock the page and skip */ + else + pages_found++; +#endif + + } /* match page */ + } /* foreach page */ + } /* foreach socket */ + } /* foreach pagesize */ + + return 0; +} + +static inline uint64_t +get_socket_mem_size(int socket) +{ + uint64_t size = 0; + unsigned i; + + for (i = 0; i < internal_config.num_hugepage_sizes; i++){ + struct hugepage_info *hpi = &internal_config.hugepage_info[i]; + if (hpi->hugedir != NULL) + size += hpi->hugepage_sz * hpi->num_pages[socket]; + } + + return size; +} + +/* + * This function is a NUMA-aware equivalent of calc_num_pages. + * It takes in the list of hugepage sizes and the + * number of pages thereof, and calculates the best number of + * pages of each size to fulfill the request for ram + */ +static int +calc_num_pages_per_socket(uint64_t * memory, + struct hugepage_info *hp_info, + struct hugepage_info *hp_used, + unsigned num_hp_info) +{ + unsigned socket, j, i = 0; + unsigned requested, available; + int total_num_pages = 0; + uint64_t remaining_mem, cur_mem; + uint64_t total_mem = internal_config.memory; + + if (num_hp_info == 0) + return -1; + + /* if specific memory amounts per socket weren't requested */ + if (internal_config.force_sockets == 0) { + int cpu_per_socket[RTE_MAX_NUMA_NODES]; + size_t default_size, total_size; + unsigned lcore_id; + + /* Compute number of cores per socket */ + memset(cpu_per_socket, 0, sizeof(cpu_per_socket)); + RTE_LCORE_FOREACH(lcore_id) { + cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++; + } + + /* + * Automatically spread requested memory amongst detected sockets according + * to number of cores from cpu mask present on each socket + */ + total_size = internal_config.memory; + for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) { + + /* Set memory amount per socket */ + default_size = (internal_config.memory * cpu_per_socket[socket]) + / rte_lcore_count(); + + /* Limit to maximum available memory on socket */ + default_size = RTE_MIN(default_size, get_socket_mem_size(socket)); + + /* Update sizes */ + memory[socket] = default_size; + total_size -= default_size; + } + + /* + * If some memory is remaining, try to allocate it by getting all + * available memory from sockets, one after the other + */ + for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) { + /* take whatever is available */ + default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket], + total_size); + + /* Update sizes */ + memory[socket] += default_size; + total_size -= default_size; + } + } + + for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) { + /* skips if the memory on specific socket wasn't requested */ + for (i = 0; i < num_hp_info && memory[socket] != 0; i++){ + hp_used[i].hugedir = hp_info[i].hugedir; + hp_used[i].num_pages[socket] = RTE_MIN( + memory[socket] / hp_info[i].hugepage_sz, + hp_info[i].num_pages[socket]); + + cur_mem = hp_used[i].num_pages[socket] * + hp_used[i].hugepage_sz; + + memory[socket] -= cur_mem; + total_mem -= cur_mem; + + total_num_pages += hp_used[i].num_pages[socket]; + + /* check if we have met all memory requests */ + if (memory[socket] == 0) + break; + + /* check if we have any more pages left at this size, if so + * move on to next size */ + if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket]) + continue; + /* At this point we know that there are more pages available that are + * bigger than the memory we want, so lets see if we can get enough + * from other page sizes. + */ + remaining_mem = 0; + for (j = i+1; j < num_hp_info; j++) + remaining_mem += hp_info[j].hugepage_sz * + hp_info[j].num_pages[socket]; + + /* is there enough other memory, if not allocate another page and quit */ + if (remaining_mem < memory[socket]){ + cur_mem = RTE_MIN(memory[socket], + hp_info[i].hugepage_sz); + memory[socket] -= cur_mem; + total_mem -= cur_mem; + hp_used[i].num_pages[socket]++; + total_num_pages++; + break; /* we are done with this socket*/ + } + } + /* if we didn't satisfy all memory requirements per socket */ + if (memory[socket] > 0) { + /* to prevent icc errors */ + requested = (unsigned) (internal_config.socket_mem[socket] / + 0x100000); + available = requested - + ((unsigned) (memory[socket] / 0x100000)); + RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! " + "Requested: %uMB, available: %uMB\n", socket, + requested, available); + return -1; + } + } + + /* if we didn't satisfy total memory requirements */ + if (total_mem > 0) { + requested = (unsigned) (internal_config.memory / 0x100000); + available = requested - (unsigned) (total_mem / 0x100000); + RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB," + " available: %uMB\n", requested, available); + return -1; + } + return total_num_pages; +} + +/* + * Prepare physical memory mapping: fill configuration structure with + * these infos, return 0 on success. + * 1. map N huge pages in separate files in hugetlbfs + * 2. find associated physical addr + * 3. find associated NUMA socket ID + * 4. sort all huge pages by physical address + * 5. remap these N huge pages in the correct order + * 6. unmap the first mapping + * 7. fill memsegs in configuration with contiguous zones + */ +int +rte_eal_hugepage_init(void) +{ + struct rte_mem_config *mcfg; + struct hugepage_file *hugepage, *tmp_hp = NULL; + struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES]; + + uint64_t memory[RTE_MAX_NUMA_NODES]; + + unsigned hp_offset; + int i, j, new_memseg; + int nr_hugefiles, nr_hugepages = 0; + void *addr; +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + int new_pages_count[MAX_HUGEPAGE_SIZES]; +#endif + + test_proc_pagemap_readable(); + + memset(used_hp, 0, sizeof(used_hp)); + + /* get pointer to global configuration */ + mcfg = rte_eal_get_configuration()->mem_config; + + /* hugetlbfs can be disabled */ + if (internal_config.no_hugetlbfs) { + addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE, + MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); + if (addr == MAP_FAILED) { + RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__, + strerror(errno)); + return -1; + } + mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr; + mcfg->memseg[0].addr = addr; + mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K; + mcfg->memseg[0].len = internal_config.memory; + mcfg->memseg[0].socket_id = 0; + return 0; + } + +/* check if app runs on Xen Dom0 */ + if (internal_config.xen_dom0_support) { +#ifdef RTE_LIBRTE_XEN_DOM0 + /* use dom0_mm kernel driver to init memory */ + if (rte_xen_dom0_memory_init() < 0) + return -1; + else + return 0; +#endif + } + + /* calculate total number of hugepages available. at this point we haven't + * yet started sorting them so they all are on socket 0 */ + for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { + /* meanwhile, also initialize used_hp hugepage sizes in used_hp */ + used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz; + + nr_hugepages += internal_config.hugepage_info[i].num_pages[0]; + } + + /* + * allocate a memory area for hugepage table. + * this isn't shared memory yet. due to the fact that we need some + * processing done on these pages, shared memory will be created + * at a later stage. + */ + tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file)); + if (tmp_hp == NULL) + goto fail; + + memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file)); + + hp_offset = 0; /* where we start the current page size entries */ + + /* map all hugepages and sort them */ + for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){ + struct hugepage_info *hpi; + + /* + * we don't yet mark hugepages as used at this stage, so + * we just map all hugepages available to the system + * all hugepages are still located on socket 0 + */ + hpi = &internal_config.hugepage_info[i]; + + if (hpi->num_pages[0] == 0) + continue; + + /* map all hugepages available */ + if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 1) < 0){ + RTE_LOG(DEBUG, EAL, "Failed to mmap %u MB hugepages\n", + (unsigned)(hpi->hugepage_sz / 0x100000)); + goto fail; + } + + /* find physical addresses and sockets for each hugepage */ + if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0){ + RTE_LOG(DEBUG, EAL, "Failed to find phys addr for %u MB pages\n", + (unsigned)(hpi->hugepage_sz / 0x100000)); + goto fail; + } + + if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){ + RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n", + (unsigned)(hpi->hugepage_sz / 0x100000)); + goto fail; + } + + qsort(&tmp_hp[hp_offset], hpi->num_pages[0], + sizeof(struct hugepage_file), cmp_physaddr); + +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + /* remap all hugepages into single file segments */ + new_pages_count[i] = remap_all_hugepages(&tmp_hp[hp_offset], hpi); + if (new_pages_count[i] < 0){ + RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n", + (unsigned)(hpi->hugepage_sz / 0x100000)); + goto fail; + } + + /* we have processed a num of hugepages of this size, so inc offset */ + hp_offset += new_pages_count[i]; +#else + /* remap all hugepages */ + if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) < 0){ + RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n", + (unsigned)(hpi->hugepage_sz / 0x100000)); + goto fail; + } + + /* unmap original mappings */ + if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0) + goto fail; + + /* we have processed a num of hugepages of this size, so inc offset */ + hp_offset += hpi->num_pages[0]; +#endif + } + +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + nr_hugefiles = 0; + for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { + nr_hugefiles += new_pages_count[i]; + } +#else + nr_hugefiles = nr_hugepages; +#endif + + + /* clean out the numbers of pages */ + for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) + for (j = 0; j < RTE_MAX_NUMA_NODES; j++) + internal_config.hugepage_info[i].num_pages[j] = 0; + + /* get hugepages for each socket */ + for (i = 0; i < nr_hugefiles; i++) { + int socket = tmp_hp[i].socket_id; + + /* find a hugepage info with right size and increment num_pages */ + const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES, + (int)internal_config.num_hugepage_sizes); + for (j = 0; j < nb_hpsizes; j++) { + if (tmp_hp[i].size == + internal_config.hugepage_info[j].hugepage_sz) { +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + internal_config.hugepage_info[j].num_pages[socket] += + tmp_hp[i].repeated; +#else + internal_config.hugepage_info[j].num_pages[socket]++; +#endif + } + } + } + + /* make a copy of socket_mem, needed for number of pages calculation */ + for (i = 0; i < RTE_MAX_NUMA_NODES; i++) + memory[i] = internal_config.socket_mem[i]; + + /* calculate final number of pages */ + nr_hugepages = calc_num_pages_per_socket(memory, + internal_config.hugepage_info, used_hp, + internal_config.num_hugepage_sizes); + + /* error if not enough memory available */ + if (nr_hugepages < 0) + goto fail; + + /* reporting in! */ + for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { + for (j = 0; j < RTE_MAX_NUMA_NODES; j++) { + if (used_hp[i].num_pages[j] > 0) { + RTE_LOG(DEBUG, EAL, + "Requesting %u pages of size %uMB" + " from socket %i\n", + used_hp[i].num_pages[j], + (unsigned) + (used_hp[i].hugepage_sz / 0x100000), + j); + } + } + } + + /* create shared memory */ + hugepage = create_shared_memory(eal_hugepage_info_path(), + nr_hugefiles * sizeof(struct hugepage_file)); + + if (hugepage == NULL) { + RTE_LOG(ERR, EAL, "Failed to create shared memory!\n"); + goto fail; + } + memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file)); + + /* + * unmap pages that we won't need (looks at used_hp). + * also, sets final_va to NULL on pages that were unmapped. + */ + if (unmap_unneeded_hugepages(tmp_hp, used_hp, + internal_config.num_hugepage_sizes) < 0) { + RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n"); + goto fail; + } + + /* + * copy stuff from malloc'd hugepage* to the actual shared memory. + * this procedure only copies those hugepages that have final_va + * not NULL. has overflow protection. + */ + if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles, + tmp_hp, nr_hugefiles) < 0) { + RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n"); + goto fail; + } + + /* free the hugepage backing files */ + if (internal_config.hugepage_unlink && + unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) { + RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n"); + goto fail; + } + + /* free the temporary hugepage table */ + free(tmp_hp); + tmp_hp = NULL; + + /* find earliest free memseg - this is needed because in case of IVSHMEM, + * segments might have already been initialized */ + for (j = 0; j < RTE_MAX_MEMSEG; j++) + if (mcfg->memseg[j].addr == NULL) { + /* move to previous segment and exit loop */ + j--; + break; + } + + for (i = 0; i < nr_hugefiles; i++) { + new_memseg = 0; + + /* if this is a new section, create a new memseg */ + if (i == 0) + new_memseg = 1; + else if (hugepage[i].socket_id != hugepage[i-1].socket_id) + new_memseg = 1; + else if (hugepage[i].size != hugepage[i-1].size) + new_memseg = 1; + +#ifdef RTE_ARCH_PPC_64 + /* On PPC64 architecture, the mmap always start from higher + * virtual address to lower address. Here, both the physical + * address and virtual address are in descending order */ + else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) != + hugepage[i].size) + new_memseg = 1; + else if (((unsigned long)hugepage[i-1].final_va - + (unsigned long)hugepage[i].final_va) != hugepage[i].size) + new_memseg = 1; +#else + else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) != + hugepage[i].size) + new_memseg = 1; + else if (((unsigned long)hugepage[i].final_va - + (unsigned long)hugepage[i-1].final_va) != hugepage[i].size) + new_memseg = 1; +#endif + + if (new_memseg) { + j += 1; + if (j == RTE_MAX_MEMSEG) + break; + + mcfg->memseg[j].phys_addr = hugepage[i].physaddr; + mcfg->memseg[j].addr = hugepage[i].final_va; +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + mcfg->memseg[j].len = hugepage[i].size * hugepage[i].repeated; +#else + mcfg->memseg[j].len = hugepage[i].size; +#endif + mcfg->memseg[j].socket_id = hugepage[i].socket_id; + mcfg->memseg[j].hugepage_sz = hugepage[i].size; + } + /* continuation of previous memseg */ + else { +#ifdef RTE_ARCH_PPC_64 + /* Use the phy and virt address of the last page as segment + * address for IBM Power architecture */ + mcfg->memseg[j].phys_addr = hugepage[i].physaddr; + mcfg->memseg[j].addr = hugepage[i].final_va; +#endif + mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz; + } + hugepage[i].memseg_id = j; + } + + if (i < nr_hugefiles) { + RTE_LOG(ERR, EAL, "Can only reserve %d pages " + "from %d requested\n" + "Current %s=%d is not enough\n" + "Please either increase it or request less amount " + "of memory.\n", + i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG), + RTE_MAX_MEMSEG); + return -ENOMEM; + } + + return 0; + +fail: + free(tmp_hp); + return -1; +} + +/* + * uses fstat to report the size of a file on disk + */ +static off_t +getFileSize(int fd) +{ + struct stat st; + if (fstat(fd, &st) < 0) + return 0; + return st.st_size; +} + +/* + * This creates the memory mappings in the secondary process to match that of + * the server process. It goes through each memory segment in the DPDK runtime + * configuration and finds the hugepages which form that segment, mapping them + * in order to form a contiguous block in the virtual memory space + */ +int +rte_eal_hugepage_attach(void) +{ + const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + const struct hugepage_file *hp = NULL; + unsigned num_hp = 0; + unsigned i, s = 0; /* s used to track the segment number */ + off_t size; + int fd, fd_zero = -1, fd_hugepage = -1; + + if (aslr_enabled() > 0) { + RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization " + "(ASLR) is enabled in the kernel.\n"); + RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory " + "into secondary processes\n"); + } + + test_proc_pagemap_readable(); + + if (internal_config.xen_dom0_support) { +#ifdef RTE_LIBRTE_XEN_DOM0 + if (rte_xen_dom0_memory_attach() < 0) { + RTE_LOG(ERR, EAL,"Failed to attach memory setments of primay " + "process\n"); + return -1; + } + return 0; +#endif + } + + fd_zero = open("/dev/zero", O_RDONLY); + if (fd_zero < 0) { + RTE_LOG(ERR, EAL, "Could not open /dev/zero\n"); + goto error; + } + fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY); + if (fd_hugepage < 0) { + RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path()); + goto error; + } + + /* map all segments into memory to make sure we get the addrs */ + for (s = 0; s < RTE_MAX_MEMSEG; ++s) { + void *base_addr; + + /* + * the first memory segment with len==0 is the one that + * follows the last valid segment. + */ + if (mcfg->memseg[s].len == 0) + break; + +#ifdef RTE_LIBRTE_IVSHMEM + /* + * if segment has ioremap address set, it's an IVSHMEM segment and + * doesn't need mapping as it was already mapped earlier + */ + if (mcfg->memseg[s].ioremap_addr != 0) + continue; +#endif + + /* + * fdzero is mmapped to get a contiguous block of virtual + * addresses of the appropriate memseg size. + * use mmap to get identical addresses as the primary process. + */ + base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len, + PROT_READ, MAP_PRIVATE, fd_zero, 0); + if (base_addr == MAP_FAILED || + base_addr != mcfg->memseg[s].addr) { + RTE_LOG(ERR, EAL, "Could not mmap %llu bytes " + "in /dev/zero to requested address [%p]: '%s'\n", + (unsigned long long)mcfg->memseg[s].len, + mcfg->memseg[s].addr, strerror(errno)); + if (aslr_enabled() > 0) { + RTE_LOG(ERR, EAL, "It is recommended to " + "disable ASLR in the kernel " + "and retry running both primary " + "and secondary processes\n"); + } + goto error; + } + } + + size = getFileSize(fd_hugepage); + hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0); + if (hp == NULL) { + RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path()); + goto error; + } + + num_hp = size / sizeof(struct hugepage_file); + RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp); + + s = 0; + while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){ + void *addr, *base_addr; + uintptr_t offset = 0; + size_t mapping_size; +#ifdef RTE_LIBRTE_IVSHMEM + /* + * if segment has ioremap address set, it's an IVSHMEM segment and + * doesn't need mapping as it was already mapped earlier + */ + if (mcfg->memseg[s].ioremap_addr != 0) { + s++; + continue; + } +#endif + /* + * free previously mapped memory so we can map the + * hugepages into the space + */ + base_addr = mcfg->memseg[s].addr; + munmap(base_addr, mcfg->memseg[s].len); + + /* find the hugepages for this segment and map them + * we don't need to worry about order, as the server sorted the + * entries before it did the second mmap of them */ + for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){ + if (hp[i].memseg_id == (int)s){ + fd = open(hp[i].filepath, O_RDWR); + if (fd < 0) { + RTE_LOG(ERR, EAL, "Could not open %s\n", + hp[i].filepath); + goto error; + } +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + mapping_size = hp[i].size * hp[i].repeated; +#else + mapping_size = hp[i].size; +#endif + addr = mmap(RTE_PTR_ADD(base_addr, offset), + mapping_size, PROT_READ | PROT_WRITE, + MAP_SHARED, fd, 0); + close(fd); /* close file both on success and on failure */ + if (addr == MAP_FAILED || + addr != RTE_PTR_ADD(base_addr, offset)) { + RTE_LOG(ERR, EAL, "Could not mmap %s\n", + hp[i].filepath); + goto error; + } + offset+=mapping_size; + } + } + RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s, + (unsigned long long)mcfg->memseg[s].len); + s++; + } + /* unmap the hugepage config file, since we are done using it */ + munmap((void *)(uintptr_t)hp, size); + close(fd_zero); + close(fd_hugepage); + return 0; + +error: + if (fd_zero >= 0) + close(fd_zero); + if (fd_hugepage >= 0) + close(fd_hugepage); + return -1; +} -- cgit 1.2.3-korg