/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016-2017 Intel Corporation */ #include #include #include #include #include "cperf_test_verify.h" #include "cperf_ops.h" #include "cperf_test_common.h" struct cperf_verify_ctx { uint8_t dev_id; uint16_t qp_id; uint8_t lcore_id; struct rte_mempool *pool; struct rte_cryptodev_sym_session *sess; cperf_populate_ops_t populate_ops; uint32_t src_buf_offset; uint32_t dst_buf_offset; const struct cperf_options *options; const struct cperf_test_vector *test_vector; }; struct cperf_op_result { enum rte_crypto_op_status status; }; static void cperf_verify_test_free(struct cperf_verify_ctx *ctx) { if (ctx) { if (ctx->sess) { rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess); rte_cryptodev_sym_session_free(ctx->sess); } if (ctx->pool) rte_mempool_free(ctx->pool); rte_free(ctx); } } void * cperf_verify_test_constructor(struct rte_mempool *sess_mp, uint8_t dev_id, uint16_t qp_id, const struct cperf_options *options, const struct cperf_test_vector *test_vector, const struct cperf_op_fns *op_fns) { struct cperf_verify_ctx *ctx = NULL; ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0); if (ctx == NULL) goto err; ctx->dev_id = dev_id; ctx->qp_id = qp_id; ctx->populate_ops = op_fns->populate_ops; ctx->options = options; ctx->test_vector = test_vector; /* IV goes at the end of the crypto operation */ uint16_t iv_offset = sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op); ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector, iv_offset); if (ctx->sess == NULL) goto err; if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0, &ctx->src_buf_offset, &ctx->dst_buf_offset, &ctx->pool) < 0) goto err; return ctx; err: cperf_verify_test_free(ctx); return NULL; } static int cperf_verify_op(struct rte_crypto_op *op, const struct cperf_options *options, const struct cperf_test_vector *vector) { const struct rte_mbuf *m; uint32_t len; uint16_t nb_segs; uint8_t *data; uint32_t cipher_offset, auth_offset; uint8_t cipher, auth; int res = 0; if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS) return 1; if (op->sym->m_dst) m = op->sym->m_dst; else m = op->sym->m_src; nb_segs = m->nb_segs; len = 0; while (m && nb_segs != 0) { len += m->data_len; m = m->next; nb_segs--; } data = rte_malloc(NULL, len, 0); if (data == NULL) return 1; if (op->sym->m_dst) m = op->sym->m_dst; else m = op->sym->m_src; nb_segs = m->nb_segs; len = 0; while (m && nb_segs != 0) { memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *), m->data_len); len += m->data_len; m = m->next; nb_segs--; } switch (options->op_type) { case CPERF_CIPHER_ONLY: cipher = 1; cipher_offset = 0; auth = 0; auth_offset = 0; break; case CPERF_CIPHER_THEN_AUTH: cipher = 1; cipher_offset = 0; auth = 1; auth_offset = options->test_buffer_size; break; case CPERF_AUTH_ONLY: cipher = 0; cipher_offset = 0; auth = 1; auth_offset = options->test_buffer_size; break; case CPERF_AUTH_THEN_CIPHER: cipher = 1; cipher_offset = 0; auth = 1; auth_offset = options->test_buffer_size; break; case CPERF_AEAD: cipher = 1; cipher_offset = 0; auth = 1; auth_offset = options->test_buffer_size; break; default: res = 1; goto out; } if (cipher == 1) { if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) res += memcmp(data + cipher_offset, vector->ciphertext.data, options->test_buffer_size); else res += memcmp(data + cipher_offset, vector->plaintext.data, options->test_buffer_size); } if (auth == 1) { if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE) res += memcmp(data + auth_offset, vector->digest.data, options->digest_sz); } out: rte_free(data); return !!res; } static void cperf_mbuf_set(struct rte_mbuf *mbuf, const struct cperf_options *options, const struct cperf_test_vector *test_vector) { uint32_t segment_sz = options->segment_sz; uint8_t *mbuf_data; uint8_t *test_data = (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ? test_vector->plaintext.data : test_vector->ciphertext.data; uint32_t remaining_bytes = options->max_buffer_size; while (remaining_bytes) { mbuf_data = rte_pktmbuf_mtod(mbuf, uint8_t *); if (remaining_bytes <= segment_sz) { memcpy(mbuf_data, test_data, remaining_bytes); return; } memcpy(mbuf_data, test_data, segment_sz); remaining_bytes -= segment_sz; test_data += segment_sz; mbuf = mbuf->next; } } int cperf_verify_test_runner(void *test_ctx) { struct cperf_verify_ctx *ctx = test_ctx; uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0; uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0; uint64_t ops_failed = 0; static int only_once; uint64_t i; uint16_t ops_unused = 0; uint32_t imix_idx = 0; struct rte_crypto_op *ops[ctx->options->max_burst_size]; struct rte_crypto_op *ops_processed[ctx->options->max_burst_size]; uint32_t lcore = rte_lcore_id(); #ifdef CPERF_LINEARIZATION_ENABLE struct rte_cryptodev_info dev_info; int linearize = 0; /* Check if source mbufs require coalescing */ if (ctx->options->segment_sz < ctx->options->max_buffer_size) { rte_cryptodev_info_get(ctx->dev_id, &dev_info); if ((dev_info.feature_flags & RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0) linearize = 1; } #endif /* CPERF_LINEARIZATION_ENABLE */ ctx->lcore_id = lcore; if (!ctx->options->csv) printf("\n# Running verify test on device: %u, lcore: %u\n", ctx->dev_id, lcore); uint16_t iv_offset = sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op); while (ops_enqd_total < ctx->options->total_ops) { uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size) <= ctx->options->total_ops) ? ctx->options->max_burst_size : ctx->options->total_ops - ops_enqd_total; uint16_t ops_needed = burst_size - ops_unused; /* Allocate objects containing crypto operations and mbufs */ if (rte_mempool_get_bulk(ctx->pool, (void **)ops, ops_needed) != 0) { RTE_LOG(ERR, USER1, "Failed to allocate more crypto operations " "from the crypto operation pool.\n" "Consider increasing the pool size " "with --pool-sz\n"); return -1; } /* Setup crypto op, attach mbuf etc */ (ctx->populate_ops)(ops, ctx->src_buf_offset, ctx->dst_buf_offset, ops_needed, ctx->sess, ctx->options, ctx->test_vector, iv_offset, &imix_idx); /* Populate the mbuf with the test vector, for verification */ for (i = 0; i < ops_needed; i++) cperf_mbuf_set(ops[i]->sym->m_src, ctx->options, ctx->test_vector); #ifdef CPERF_LINEARIZATION_ENABLE if (linearize) { /* PMD doesn't support scatter-gather and source buffer * is segmented. * We need to linearize it before enqueuing. */ for (i = 0; i < burst_size; i++) rte_pktmbuf_linearize(ops[i]->sym->m_src); } #endif /* CPERF_LINEARIZATION_ENABLE */ /* Enqueue burst of ops on crypto device */ ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, ops, burst_size); if (ops_enqd < burst_size) ops_enqd_failed++; /** * Calculate number of ops not enqueued (mainly for hw * accelerators whose ingress queue can fill up). */ ops_unused = burst_size - ops_enqd; ops_enqd_total += ops_enqd; /* Dequeue processed burst of ops from crypto device */ ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, ops_processed, ctx->options->max_burst_size); if (ops_deqd == 0) { /** * Count dequeue polls which didn't return any * processed operations. This statistic is mainly * relevant to hw accelerators. */ ops_deqd_failed++; continue; } for (i = 0; i < ops_deqd; i++) { if (cperf_verify_op(ops_processed[i], ctx->options, ctx->test_vector)) ops_failed++; } /* Free crypto ops so they can be reused. */ rte_mempool_put_bulk(ctx->pool, (void **)ops_processed, ops_deqd); ops_deqd_total += ops_deqd; } /* Dequeue any operations still in the crypto device */ while (ops_deqd_total < ctx->options->total_ops) { /* Sending 0 length burst to flush sw crypto device */ rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); /* dequeue burst */ ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, ops_processed, ctx->options->max_burst_size); if (ops_deqd == 0) { ops_deqd_failed++; continue; } for (i = 0; i < ops_deqd; i++) { if (cperf_verify_op(ops_processed[i], ctx->options, ctx->test_vector)) ops_failed++; } /* Free crypto ops so they can be reused. */ rte_mempool_put_bulk(ctx->pool, (void **)ops_processed, ops_deqd); ops_deqd_total += ops_deqd; } if (!ctx->options->csv) { if (!only_once) printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n", "lcore id", "Buf Size", "Burst size", "Enqueued", "Dequeued", "Failed Enq", "Failed Deq", "Failed Ops"); only_once = 1; printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64 "%12"PRIu64"%12"PRIu64"\n", ctx->lcore_id, ctx->options->max_buffer_size, ctx->options->max_burst_size, ops_enqd_total, ops_deqd_total, ops_enqd_failed, ops_deqd_failed, ops_failed); } else { if (!only_once) printf("\n# lcore id, Buffer Size(B), " "Burst Size,Enqueued,Dequeued,Failed Enq," "Failed Deq,Failed Ops\n"); only_once = 1; printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";" "%"PRIu64"\n", ctx->lcore_id, ctx->options->max_buffer_size, ctx->options->max_burst_size, ops_enqd_total, ops_deqd_total, ops_enqd_failed, ops_deqd_failed, ops_failed); } return 0; } void cperf_verify_test_destructor(void *arg) { struct cperf_verify_ctx *ctx = arg; if (ctx == NULL) return; cperf_verify_test_free(ctx); }