/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "eal_private.h" #include "eal_filesystem.h" #include "private.h" #include "pci_init.h" /** * @file * PCI probing under linux * * This code is used to simulate a PCI probe by parsing information in sysfs. * When a registered device matches a driver, it is then initialized with * IGB_UIO driver (or doesn't initialize, if the device wasn't bound to it). */ extern struct rte_pci_bus rte_pci_bus; static int pci_get_kernel_driver_by_path(const char *filename, char *dri_name) { int count; char path[PATH_MAX]; char *name; if (!filename || !dri_name) return -1; count = readlink(filename, path, PATH_MAX); if (count >= PATH_MAX) return -1; /* For device does not have a driver */ if (count < 0) return 1; path[count] = '\0'; name = strrchr(path, '/'); if (name) { strncpy(dri_name, name + 1, strlen(name + 1) + 1); return 0; } return -1; } /* Map pci device */ int rte_pci_map_device(struct rte_pci_device *dev) { int ret = -1; /* try mapping the NIC resources using VFIO if it exists */ switch (dev->kdrv) { case RTE_KDRV_VFIO: #ifdef VFIO_PRESENT if (pci_vfio_is_enabled()) ret = pci_vfio_map_resource(dev); #endif break; case RTE_KDRV_IGB_UIO: case RTE_KDRV_UIO_GENERIC: if (rte_eal_using_phys_addrs()) { /* map resources for devices that use uio */ ret = pci_uio_map_resource(dev); } break; default: RTE_LOG(DEBUG, EAL, " Not managed by a supported kernel driver, skipped\n"); ret = 1; break; } return ret; } /* Unmap pci device */ void rte_pci_unmap_device(struct rte_pci_device *dev) { /* try unmapping the NIC resources using VFIO if it exists */ switch (dev->kdrv) { case RTE_KDRV_VFIO: #ifdef VFIO_PRESENT if (pci_vfio_is_enabled()) pci_vfio_unmap_resource(dev); #endif break; case RTE_KDRV_IGB_UIO: case RTE_KDRV_UIO_GENERIC: /* unmap resources for devices that use uio */ pci_uio_unmap_resource(dev); break; default: RTE_LOG(DEBUG, EAL, " Not managed by a supported kernel driver, skipped\n"); break; } } void * pci_find_max_end_va(void) { const struct rte_memseg *seg = rte_eal_get_physmem_layout(); const struct rte_memseg *last = seg; unsigned i = 0; for (i = 0; i < RTE_MAX_MEMSEG; i++, seg++) { if (seg->addr == NULL) break; if (seg->addr > last->addr) last = seg; } return RTE_PTR_ADD(last->addr, last->len); } /* parse one line of the "resource" sysfs file (note that the 'line' * string is modified) */ int pci_parse_one_sysfs_resource(char *line, size_t len, uint64_t *phys_addr, uint64_t *end_addr, uint64_t *flags) { union pci_resource_info { struct { char *phys_addr; char *end_addr; char *flags; }; char *ptrs[PCI_RESOURCE_FMT_NVAL]; } res_info; if (rte_strsplit(line, len, res_info.ptrs, 3, ' ') != 3) { RTE_LOG(ERR, EAL, "%s(): bad resource format\n", __func__); return -1; } errno = 0; *phys_addr = strtoull(res_info.phys_addr, NULL, 16); *end_addr = strtoull(res_info.end_addr, NULL, 16); *flags = strtoull(res_info.flags, NULL, 16); if (errno != 0) { RTE_LOG(ERR, EAL, "%s(): bad resource format\n", __func__); return -1; } return 0; } /* parse the "resource" sysfs file */ static int pci_parse_sysfs_resource(const char *filename, struct rte_pci_device *dev) { FILE *f; char buf[BUFSIZ]; int i; uint64_t phys_addr, end_addr, flags; f = fopen(filename, "r"); if (f == NULL) { RTE_LOG(ERR, EAL, "Cannot open sysfs resource\n"); return -1; } for (i = 0; imem_resource[i].phys_addr = phys_addr; dev->mem_resource[i].len = end_addr - phys_addr + 1; /* not mapped for now */ dev->mem_resource[i].addr = NULL; } } fclose(f); return 0; error: fclose(f); return -1; } /* Scan one pci sysfs entry, and fill the devices list from it. */ static int pci_scan_one(const char *dirname, const struct rte_pci_addr *addr) { char filename[PATH_MAX]; unsigned long tmp; struct rte_pci_device *dev; char driver[PATH_MAX]; int ret; dev = malloc(sizeof(*dev)); if (dev == NULL) return -1; memset(dev, 0, sizeof(*dev)); dev->addr = *addr; /* get vendor id */ snprintf(filename, sizeof(filename), "%s/vendor", dirname); if (eal_parse_sysfs_value(filename, &tmp) < 0) { free(dev); return -1; } dev->id.vendor_id = (uint16_t)tmp; /* get device id */ snprintf(filename, sizeof(filename), "%s/device", dirname); if (eal_parse_sysfs_value(filename, &tmp) < 0) { free(dev); return -1; } dev->id.device_id = (uint16_t)tmp; /* get subsystem_vendor id */ snprintf(filename, sizeof(filename), "%s/subsystem_vendor", dirname); if (eal_parse_sysfs_value(filename, &tmp) < 0) { free(dev); return -1; } dev->id.subsystem_vendor_id = (uint16_t)tmp; /* get subsystem_device id */ snprintf(filename, sizeof(filename), "%s/subsystem_device", dirname); if (eal_parse_sysfs_value(filename, &tmp) < 0) { free(dev); return -1; } dev->id.subsystem_device_id = (uint16_t)tmp; /* get class_id */ snprintf(filename, sizeof(filename), "%s/class", dirname); if (eal_parse_sysfs_value(filename, &tmp) < 0) { free(dev); return -1; } /* the least 24 bits are valid: class, subclass, program interface */ dev->id.class_id = (uint32_t)tmp & RTE_CLASS_ANY_ID; /* get max_vfs */ dev->max_vfs = 0; snprintf(filename, sizeof(filename), "%s/max_vfs", dirname); if (!access(filename, F_OK) && eal_parse_sysfs_value(filename, &tmp) == 0) dev->max_vfs = (uint16_t)tmp; else { /* for non igb_uio driver, need kernel version >= 3.8 */ snprintf(filename, sizeof(filename), "%s/sriov_numvfs", dirname); if (!access(filename, F_OK) && eal_parse_sysfs_value(filename, &tmp) == 0) dev->max_vfs = (uint16_t)tmp; } /* get numa node, default to 0 if not present */ snprintf(filename, sizeof(filename), "%s/numa_node", dirname); if (access(filename, F_OK) != -1) { if (eal_parse_sysfs_value(filename, &tmp) == 0) dev->device.numa_node = tmp; else dev->device.numa_node = -1; } else { dev->device.numa_node = 0; } pci_name_set(dev); /* parse resources */ snprintf(filename, sizeof(filename), "%s/resource", dirname); if (pci_parse_sysfs_resource(filename, dev) < 0) { RTE_LOG(ERR, EAL, "%s(): cannot parse resource\n", __func__); free(dev); return -1; } /* parse driver */ snprintf(filename, sizeof(filename), "%s/driver", dirname); ret = pci_get_kernel_driver_by_path(filename, driver); if (ret < 0) { RTE_LOG(ERR, EAL, "Fail to get kernel driver\n"); free(dev); return -1; } if (!ret) { if (!strcmp(driver, "vfio-pci")) dev->kdrv = RTE_KDRV_VFIO; else if (!strcmp(driver, "igb_uio")) dev->kdrv = RTE_KDRV_IGB_UIO; else if (!strcmp(driver, "uio_pci_generic")) dev->kdrv = RTE_KDRV_UIO_GENERIC; else dev->kdrv = RTE_KDRV_UNKNOWN; } else dev->kdrv = RTE_KDRV_NONE; /* device is valid, add in list (sorted) */ if (TAILQ_EMPTY(&rte_pci_bus.device_list)) { rte_pci_add_device(dev); } else { struct rte_pci_device *dev2; int ret; TAILQ_FOREACH(dev2, &rte_pci_bus.device_list, next) { ret = rte_pci_addr_cmp(&dev->addr, &dev2->addr); if (ret > 0) continue; if (ret < 0) { rte_pci_insert_device(dev2, dev); } else { /* already registered */ dev2->kdrv = dev->kdrv; dev2->max_vfs = dev->max_vfs; pci_name_set(dev2); memmove(dev2->mem_resource, dev->mem_resource, sizeof(dev->mem_resource)); free(dev); } return 0; } rte_pci_add_device(dev); } return 0; } int pci_update_device(const struct rte_pci_addr *addr) { char filename[PATH_MAX]; snprintf(filename, sizeof(filename), "%s/" PCI_PRI_FMT, rte_pci_get_sysfs_path(), addr->domain, addr->bus, addr->devid, addr->function); return pci_scan_one(filename, addr); } /* * split up a pci address into its constituent parts. */ static int parse_pci_addr_format(const char *buf, int bufsize, struct rte_pci_addr *addr) { /* first split on ':' */ union splitaddr { struct { char *domain; char *bus; char *devid; char *function; }; char *str[PCI_FMT_NVAL]; /* last element-separator is "." not ":" */ } splitaddr; char *buf_copy = strndup(buf, bufsize); if (buf_copy == NULL) return -1; if (rte_strsplit(buf_copy, bufsize, splitaddr.str, PCI_FMT_NVAL, ':') != PCI_FMT_NVAL - 1) goto error; /* final split is on '.' between devid and function */ splitaddr.function = strchr(splitaddr.devid,'.'); if (splitaddr.function == NULL) goto error; *splitaddr.function++ = '\0'; /* now convert to int values */ errno = 0; addr->domain = strtoul(splitaddr.domain, NULL, 16); addr->bus = strtoul(splitaddr.bus, NULL, 16); addr->devid = strtoul(splitaddr.devid, NULL, 16); addr->function = strtoul(splitaddr.function, NULL, 10); if (errno != 0) goto error; free(buf_copy); /* free the copy made with strdup */ return 0; error: free(buf_copy); return -1; } /* * Scan the content of the PCI bus, and the devices in the devices * list */ int rte_pci_scan(void) { struct dirent *e; DIR *dir; char dirname[PATH_MAX]; struct rte_pci_addr addr; /* for debug purposes, PCI can be disabled */ if (!rte_eal_has_pci()) return 0; #ifdef VFIO_PRESENT if (!pci_vfio_is_enabled()) RTE_LOG(DEBUG, EAL, "VFIO PCI modules not loaded\n"); #endif dir = opendir(rte_pci_get_sysfs_path()); if (dir == NULL) { RTE_LOG(ERR, EAL, "%s(): opendir failed: %s\n", __func__, strerror(errno)); return -1; } while ((e = readdir(dir)) != NULL) { if (e->d_name[0] == '.') continue; if (parse_pci_addr_format(e->d_name, sizeof(e->d_name), &addr) != 0) continue; snprintf(dirname, sizeof(dirname), "%s/%s", rte_pci_get_sysfs_path(), e->d_name); if (pci_scan_one(dirname, &addr) < 0) goto error; } closedir(dir); return 0; error: closedir(dir); return -1; } /* * Is pci device bound to any kdrv */ static inline int pci_one_device_is_bound(void) { struct rte_pci_device *dev = NULL; int ret = 0; FOREACH_DEVICE_ON_PCIBUS(dev) { if (dev->kdrv == RTE_KDRV_UNKNOWN || dev->kdrv == RTE_KDRV_NONE) { continue; } else { ret = 1; break; } } return ret; } /* * Any one of the device bound to uio */ static inline int pci_one_device_bound_uio(void) { struct rte_pci_device *dev = NULL; struct rte_devargs *devargs; int need_check; FOREACH_DEVICE_ON_PCIBUS(dev) { devargs = dev->device.devargs; need_check = 0; switch (rte_pci_bus.bus.conf.scan_mode) { case RTE_BUS_SCAN_WHITELIST: if (devargs && devargs->policy == RTE_DEV_WHITELISTED) need_check = 1; break; case RTE_BUS_SCAN_UNDEFINED: case RTE_BUS_SCAN_BLACKLIST: if (devargs == NULL || devargs->policy != RTE_DEV_BLACKLISTED) need_check = 1; break; } if (!need_check) continue; if (dev->kdrv == RTE_KDRV_IGB_UIO || dev->kdrv == RTE_KDRV_UIO_GENERIC) { return 1; } } return 0; } /* * Any one of the device has iova as va */ static inline int pci_one_device_has_iova_va(void) { struct rte_pci_device *dev = NULL; struct rte_pci_driver *drv = NULL; FOREACH_DRIVER_ON_PCIBUS(drv) { if (drv && drv->drv_flags & RTE_PCI_DRV_IOVA_AS_VA) { FOREACH_DEVICE_ON_PCIBUS(dev) { if (dev->kdrv == RTE_KDRV_VFIO && rte_pci_match(drv, dev)) return 1; } } } return 0; } #if defined(RTE_ARCH_X86) static bool pci_one_device_iommu_support_va(struct rte_pci_device *dev) { #define VTD_CAP_MGAW_SHIFT 16 #define VTD_CAP_MGAW_MASK (0x3fULL << VTD_CAP_MGAW_SHIFT) struct rte_pci_addr *addr = &dev->addr; char filename[PATH_MAX]; FILE *fp; uint64_t mgaw, vtd_cap_reg = 0; snprintf(filename, sizeof(filename), "%s/" PCI_PRI_FMT "/iommu/intel-iommu/cap", rte_pci_get_sysfs_path(), addr->domain, addr->bus, addr->devid, addr->function); if (access(filename, F_OK) == -1) { /* We don't have an Intel IOMMU, assume VA supported*/ return true; } /* We have an intel IOMMU */ fp = fopen(filename, "r"); if (fp == NULL) { RTE_LOG(ERR, EAL, "%s(): can't open %s\n", __func__, filename); return false; } if (fscanf(fp, "%" PRIx64, &vtd_cap_reg) != 1) { RTE_LOG(ERR, EAL, "%s(): can't read %s\n", __func__, filename); fclose(fp); return false; } fclose(fp); mgaw = ((vtd_cap_reg & VTD_CAP_MGAW_MASK) >> VTD_CAP_MGAW_SHIFT) + 1; if (!rte_eal_check_dma_mask(mgaw)) return true; else return false; } #elif defined(RTE_ARCH_PPC_64) static bool pci_one_device_iommu_support_va(__rte_unused struct rte_pci_device *dev) { return false; } #else static bool pci_one_device_iommu_support_va(__rte_unused struct rte_pci_device *dev) { return true; } #endif /* * All devices IOMMUs support VA as IOVA */ static bool pci_devices_iommu_support_va(void) { struct rte_pci_device *dev = NULL; struct rte_pci_driver *drv = NULL; int iommu_dma_mask_check_done = 0; FOREACH_DRIVER_ON_PCIBUS(drv) { FOREACH_DEVICE_ON_PCIBUS(dev) { if (!rte_pci_match(drv, dev)) continue; if (!iommu_dma_mask_check_done) { if (!pci_one_device_iommu_support_va(dev)) return false; iommu_dma_mask_check_done = 1; } } } return true; } /* * Get iommu class of PCI devices on the bus. */ enum rte_iova_mode rte_pci_get_iommu_class(void) { bool is_bound; bool is_vfio_noiommu_enabled = true; bool has_iova_va; bool is_bound_uio; bool iommu_no_va; is_bound = pci_one_device_is_bound(); if (!is_bound) return RTE_IOVA_DC; has_iova_va = pci_one_device_has_iova_va(); is_bound_uio = pci_one_device_bound_uio(); iommu_no_va = !pci_devices_iommu_support_va(); #ifdef VFIO_PRESENT is_vfio_noiommu_enabled = rte_vfio_noiommu_is_enabled() == true ? true : false; #endif if (has_iova_va && !is_bound_uio && !is_vfio_noiommu_enabled && !iommu_no_va) return RTE_IOVA_VA; if (has_iova_va) { RTE_LOG(WARNING, EAL, "Some devices want iova as va but pa will be used because.. "); if (is_vfio_noiommu_enabled) RTE_LOG(WARNING, EAL, "vfio-noiommu mode configured\n"); if (is_bound_uio) RTE_LOG(WARNING, EAL, "few device bound to UIO\n"); if (iommu_no_va) RTE_LOG(WARNING, EAL, "IOMMU does not support IOVA as VA\n"); } return RTE_IOVA_PA; } /* Read PCI config space. */ int rte_pci_read_config(const struct rte_pci_device *device, void *buf, size_t len, off_t offset) { const struct rte_intr_handle *intr_handle = &device->intr_handle; switch (intr_handle->type) { case RTE_INTR_HANDLE_UIO: case RTE_INTR_HANDLE_UIO_INTX: return pci_uio_read_config(intr_handle, buf, len, offset); #ifdef VFIO_PRESENT case RTE_INTR_HANDLE_VFIO_MSIX: case RTE_INTR_HANDLE_VFIO_MSI: case RTE_INTR_HANDLE_VFIO_LEGACY: return pci_vfio_read_config(intr_handle, buf, len, offset); #endif default: RTE_LOG(ERR, EAL, "Unknown handle type of fd %d\n", intr_handle->fd); return -1; } } /* Write PCI config space. */ int rte_pci_write_config(const struct rte_pci_device *device, const void *buf, size_t len, off_t offset) { const struct rte_intr_handle *intr_handle = &device->intr_handle; switch (intr_handle->type) { case RTE_INTR_HANDLE_UIO: case RTE_INTR_HANDLE_UIO_INTX: return pci_uio_write_config(intr_handle, buf, len, offset); #ifdef VFIO_PRESENT case RTE_INTR_HANDLE_VFIO_MSIX: case RTE_INTR_HANDLE_VFIO_MSI: case RTE_INTR_HANDLE_VFIO_LEGACY: return pci_vfio_write_config(intr_handle, buf, len, offset); #endif default: RTE_LOG(ERR, EAL, "Unknown handle type of fd %d\n", intr_handle->fd); return -1; } } #if defined(RTE_ARCH_X86) static int pci_ioport_map(struct rte_pci_device *dev, int bar __rte_unused, struct rte_pci_ioport *p) { uint16_t start, end; FILE *fp; char *line = NULL; char pci_id[16]; int found = 0; size_t linesz; snprintf(pci_id, sizeof(pci_id), PCI_PRI_FMT, dev->addr.domain, dev->addr.bus, dev->addr.devid, dev->addr.function); fp = fopen("/proc/ioports", "r"); if (fp == NULL) { RTE_LOG(ERR, EAL, "%s(): can't open ioports\n", __func__); return -1; } while (getdelim(&line, &linesz, '\n', fp) > 0) { char *ptr = line; char *left; int n; n = strcspn(ptr, ":"); ptr[n] = 0; left = &ptr[n + 1]; while (*left && isspace(*left)) left++; if (!strncmp(left, pci_id, strlen(pci_id))) { found = 1; while (*ptr && isspace(*ptr)) ptr++; sscanf(ptr, "%04hx-%04hx", &start, &end); break; } } free(line); fclose(fp); if (!found) return -1; p->base = start; RTE_LOG(DEBUG, EAL, "PCI Port IO found start=0x%x\n", start); return 0; } #endif int rte_pci_ioport_map(struct rte_pci_device *dev, int bar, struct rte_pci_ioport *p) { int ret = -1; switch (dev->kdrv) { #ifdef VFIO_PRESENT case RTE_KDRV_VFIO: if (pci_vfio_is_enabled()) ret = pci_vfio_ioport_map(dev, bar, p); break; #endif case RTE_KDRV_IGB_UIO: ret = pci_uio_ioport_map(dev, bar, p); break; case RTE_KDRV_UIO_GENERIC: #if defined(RTE_ARCH_X86) ret = pci_ioport_map(dev, bar, p); #else ret = pci_uio_ioport_map(dev, bar, p); #endif break; case RTE_KDRV_NONE: #if defined(RTE_ARCH_X86) ret = pci_ioport_map(dev, bar, p); #endif break; default: break; } if (!ret) p->dev = dev; return ret; } void rte_pci_ioport_read(struct rte_pci_ioport *p, void *data, size_t len, off_t offset) { switch (p->dev->kdrv) { #ifdef VFIO_PRESENT case RTE_KDRV_VFIO: pci_vfio_ioport_read(p, data, len, offset); break; #endif case RTE_KDRV_IGB_UIO: pci_uio_ioport_read(p, data, len, offset); break; case RTE_KDRV_UIO_GENERIC: pci_uio_ioport_read(p, data, len, offset); break; case RTE_KDRV_NONE: #if defined(RTE_ARCH_X86) pci_uio_ioport_read(p, data, len, offset); #endif break; default: break; } } void rte_pci_ioport_write(struct rte_pci_ioport *p, const void *data, size_t len, off_t offset) { switch (p->dev->kdrv) { #ifdef VFIO_PRESENT case RTE_KDRV_VFIO: pci_vfio_ioport_write(p, data, len, offset); break; #endif case RTE_KDRV_IGB_UIO: pci_uio_ioport_write(p, data, len, offset); break; case RTE_KDRV_UIO_GENERIC: pci_uio_ioport_write(p, data, len, offset); break; case RTE_KDRV_NONE: #if defined(RTE_ARCH_X86) pci_uio_ioport_write(p, data, len, offset); #endif break; default: break; } } int rte_pci_ioport_unmap(struct rte_pci_ioport *p) { int ret = -1; switch (p->dev->kdrv) { #ifdef VFIO_PRESENT case RTE_KDRV_VFIO: if (pci_vfio_is_enabled()) ret = pci_vfio_ioport_unmap(p); break; #endif case RTE_KDRV_IGB_UIO: ret = pci_uio_ioport_unmap(p); break; case RTE_KDRV_UIO_GENERIC: #if defined(RTE_ARCH_X86) ret = 0; #else ret = pci_uio_ioport_unmap(p); #endif break; case RTE_KDRV_NONE: #if defined(RTE_ARCH_X86) ret = 0; #endif break; default: break; } return ret; }