/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018 Cavium, Inc */ #ifndef _CPT_UCODE_H_ #define _CPT_UCODE_H_ #include #include "cpt_common.h" #include "cpt_hw_types.h" #include "cpt_mcode_defines.h" /* * This file defines functions that are interfaces to microcode spec. * */ static uint8_t zuc_d[32] = { 0x44, 0xD7, 0x26, 0xBC, 0x62, 0x6B, 0x13, 0x5E, 0x57, 0x89, 0x35, 0xE2, 0x71, 0x35, 0x09, 0xAF, 0x4D, 0x78, 0x2F, 0x13, 0x6B, 0xC4, 0x1A, 0xF1, 0x5E, 0x26, 0x3C, 0x4D, 0x78, 0x9A, 0x47, 0xAC }; static __rte_always_inline int cpt_is_algo_supported(struct rte_crypto_sym_xform *xform) { /* * Microcode only supports the following combination. * Encryption followed by authentication * Authentication followed by decryption */ if (xform->next) { if ((xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) && (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) && (xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)) { /* Unsupported as of now by microcode */ CPT_LOG_DP_ERR("Unsupported combination"); return -1; } if ((xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) && (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) && (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT)) { /* For GMAC auth there is no cipher operation */ if (xform->aead.algo != RTE_CRYPTO_AEAD_AES_GCM || xform->next->auth.algo != RTE_CRYPTO_AUTH_AES_GMAC) { /* Unsupported as of now by microcode */ CPT_LOG_DP_ERR("Unsupported combination"); return -1; } } } return 0; } static __rte_always_inline void gen_key_snow3g(uint8_t *ck, uint32_t *keyx) { int i, base; for (i = 0; i < 4; i++) { base = 4 * i; keyx[3 - i] = (ck[base] << 24) | (ck[base + 1] << 16) | (ck[base + 2] << 8) | (ck[base + 3]); keyx[3 - i] = rte_cpu_to_be_32(keyx[3 - i]); } } static __rte_always_inline void cpt_fc_salt_update(void *ctx, uint8_t *salt) { struct cpt_ctx *cpt_ctx = ctx; memcpy(&cpt_ctx->fctx.enc.encr_iv, salt, 4); } static __rte_always_inline int cpt_fc_ciph_validate_key_aes(uint16_t key_len) { switch (key_len) { case CPT_BYTE_16: case CPT_BYTE_24: case CPT_BYTE_32: return 0; default: return -1; } } static __rte_always_inline int cpt_fc_ciph_validate_key(cipher_type_t type, struct cpt_ctx *cpt_ctx, uint16_t key_len) { int fc_type = 0; switch (type) { case PASSTHROUGH: fc_type = FC_GEN; break; case DES3_CBC: case DES3_ECB: fc_type = FC_GEN; break; case AES_CBC: case AES_ECB: case AES_CFB: case AES_CTR: case AES_GCM: if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0)) return -1; fc_type = FC_GEN; break; case AES_XTS: key_len = key_len / 2; if (unlikely(key_len == CPT_BYTE_24)) { CPT_LOG_DP_ERR("Invalid AES key len for XTS"); return -1; } if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0)) return -1; fc_type = FC_GEN; break; case ZUC_EEA3: case SNOW3G_UEA2: if (unlikely(key_len != 16)) return -1; /* No support for AEAD yet */ if (unlikely(cpt_ctx->hash_type)) return -1; fc_type = ZUC_SNOW3G; break; case KASUMI_F8_CBC: case KASUMI_F8_ECB: if (unlikely(key_len != 16)) return -1; /* No support for AEAD yet */ if (unlikely(cpt_ctx->hash_type)) return -1; fc_type = KASUMI; break; default: return -1; } return fc_type; } static __rte_always_inline void cpt_fc_ciph_set_key_passthrough(struct cpt_ctx *cpt_ctx, mc_fc_context_t *fctx) { cpt_ctx->enc_cipher = 0; CPT_P_ENC_CTRL(fctx).enc_cipher = 0; } static __rte_always_inline void cpt_fc_ciph_set_key_set_aes_key_type(mc_fc_context_t *fctx, uint16_t key_len) { mc_aes_type_t aes_key_type = 0; switch (key_len) { case CPT_BYTE_16: aes_key_type = AES_128_BIT; break; case CPT_BYTE_24: aes_key_type = AES_192_BIT; break; case CPT_BYTE_32: aes_key_type = AES_256_BIT; break; default: /* This should not happen */ CPT_LOG_DP_ERR("Invalid AES key len"); return; } CPT_P_ENC_CTRL(fctx).aes_key = aes_key_type; } static __rte_always_inline void cpt_fc_ciph_set_key_snow3g_uea2(struct cpt_ctx *cpt_ctx, uint8_t *key, uint16_t key_len) { uint32_t keyx[4]; cpt_ctx->snow3g = 1; gen_key_snow3g(key, keyx); memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len); cpt_ctx->fc_type = ZUC_SNOW3G; cpt_ctx->zsk_flags = 0; } static __rte_always_inline void cpt_fc_ciph_set_key_zuc_eea3(struct cpt_ctx *cpt_ctx, uint8_t *key, uint16_t key_len) { cpt_ctx->snow3g = 0; memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len); memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32); cpt_ctx->fc_type = ZUC_SNOW3G; cpt_ctx->zsk_flags = 0; } static __rte_always_inline void cpt_fc_ciph_set_key_kasumi_f8_ecb(struct cpt_ctx *cpt_ctx, uint8_t *key, uint16_t key_len) { cpt_ctx->k_ecb = 1; memcpy(cpt_ctx->k_ctx.ci_key, key, key_len); cpt_ctx->zsk_flags = 0; cpt_ctx->fc_type = KASUMI; } static __rte_always_inline void cpt_fc_ciph_set_key_kasumi_f8_cbc(struct cpt_ctx *cpt_ctx, uint8_t *key, uint16_t key_len) { memcpy(cpt_ctx->k_ctx.ci_key, key, key_len); cpt_ctx->zsk_flags = 0; cpt_ctx->fc_type = KASUMI; } static __rte_always_inline int cpt_fc_ciph_set_key(void *ctx, cipher_type_t type, uint8_t *key, uint16_t key_len, uint8_t *salt) { struct cpt_ctx *cpt_ctx = ctx; mc_fc_context_t *fctx = &cpt_ctx->fctx; uint64_t *ctrl_flags = NULL; int fc_type; /* Validate key before proceeding */ fc_type = cpt_fc_ciph_validate_key(type, cpt_ctx, key_len); if (unlikely(fc_type == -1)) return -1; if (fc_type == FC_GEN) { cpt_ctx->fc_type = FC_GEN; ctrl_flags = (uint64_t *)&(fctx->enc.enc_ctrl.flags); *ctrl_flags = rte_be_to_cpu_64(*ctrl_flags); /* * We need to always say IV is from DPTR as user can * sometimes iverride IV per operation. */ CPT_P_ENC_CTRL(fctx).iv_source = CPT_FROM_DPTR; } switch (type) { case PASSTHROUGH: cpt_fc_ciph_set_key_passthrough(cpt_ctx, fctx); goto fc_success; case DES3_CBC: /* CPT performs DES using 3DES with the 8B DES-key * replicated 2 more times to match the 24B 3DES-key. * Eg. If org. key is "0x0a 0x0b", then new key is * "0x0a 0x0b 0x0a 0x0b 0x0a 0x0b" */ if (key_len == 8) { /* Skipping the first 8B as it will be copied * in the regular code flow */ memcpy(fctx->enc.encr_key+key_len, key, key_len); memcpy(fctx->enc.encr_key+2*key_len, key, key_len); } break; case DES3_ECB: /* For DES3_ECB IV need to be from CTX. */ CPT_P_ENC_CTRL(fctx).iv_source = CPT_FROM_CTX; break; case AES_CBC: case AES_ECB: case AES_CFB: case AES_CTR: cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len); break; case AES_GCM: /* Even though iv source is from dptr, * aes_gcm salt is taken from ctx */ if (salt) { memcpy(fctx->enc.encr_iv, salt, 4); /* Assuming it was just salt update * and nothing else */ if (!key) goto fc_success; } cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len); break; case AES_XTS: key_len = key_len / 2; cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len); /* Copy key2 for XTS into ipad */ memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad)); memcpy(fctx->hmac.ipad, &key[key_len], key_len); break; case SNOW3G_UEA2: cpt_fc_ciph_set_key_snow3g_uea2(cpt_ctx, key, key_len); goto success; case ZUC_EEA3: cpt_fc_ciph_set_key_zuc_eea3(cpt_ctx, key, key_len); goto success; case KASUMI_F8_ECB: cpt_fc_ciph_set_key_kasumi_f8_ecb(cpt_ctx, key, key_len); goto success; case KASUMI_F8_CBC: cpt_fc_ciph_set_key_kasumi_f8_cbc(cpt_ctx, key, key_len); goto success; default: break; } /* Only for FC_GEN case */ /* For GMAC auth, cipher must be NULL */ if (cpt_ctx->hash_type != GMAC_TYPE) CPT_P_ENC_CTRL(fctx).enc_cipher = type; memcpy(fctx->enc.encr_key, key, key_len); fc_success: *ctrl_flags = rte_cpu_to_be_64(*ctrl_flags); success: cpt_ctx->enc_cipher = type; return 0; } static __rte_always_inline uint32_t fill_sg_comp(sg_comp_t *list, uint32_t i, phys_addr_t dma_addr, uint32_t size) { sg_comp_t *to = &list[i>>2]; to->u.s.len[i%4] = rte_cpu_to_be_16(size); to->ptr[i%4] = rte_cpu_to_be_64(dma_addr); i++; return i; } static __rte_always_inline uint32_t fill_sg_comp_from_buf(sg_comp_t *list, uint32_t i, buf_ptr_t *from) { sg_comp_t *to = &list[i>>2]; to->u.s.len[i%4] = rte_cpu_to_be_16(from->size); to->ptr[i%4] = rte_cpu_to_be_64(from->dma_addr); i++; return i; } static __rte_always_inline uint32_t fill_sg_comp_from_buf_min(sg_comp_t *list, uint32_t i, buf_ptr_t *from, uint32_t *psize) { sg_comp_t *to = &list[i >> 2]; uint32_t size = *psize; uint32_t e_len; e_len = (size > from->size) ? from->size : size; to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len); to->ptr[i % 4] = rte_cpu_to_be_64(from->dma_addr); *psize -= e_len; i++; return i; } /* * This fills the MC expected SGIO list * from IOV given by user. */ static __rte_always_inline uint32_t fill_sg_comp_from_iov(sg_comp_t *list, uint32_t i, iov_ptr_t *from, uint32_t from_offset, uint32_t *psize, buf_ptr_t *extra_buf, uint32_t extra_offset) { int32_t j; uint32_t extra_len = extra_buf ? extra_buf->size : 0; uint32_t size = *psize - extra_len; buf_ptr_t *bufs; bufs = from->bufs; for (j = 0; (j < from->buf_cnt) && size; j++) { phys_addr_t e_dma_addr; uint32_t e_len; sg_comp_t *to = &list[i >> 2]; if (!bufs[j].size) continue; if (unlikely(from_offset)) { if (from_offset >= bufs[j].size) { from_offset -= bufs[j].size; continue; } e_dma_addr = bufs[j].dma_addr + from_offset; e_len = (size > (bufs[j].size - from_offset)) ? (bufs[j].size - from_offset) : size; from_offset = 0; } else { e_dma_addr = bufs[j].dma_addr; e_len = (size > bufs[j].size) ? bufs[j].size : size; } to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len); to->ptr[i % 4] = rte_cpu_to_be_64(e_dma_addr); if (extra_len && (e_len >= extra_offset)) { /* Break the data at given offset */ uint32_t next_len = e_len - extra_offset; phys_addr_t next_dma = e_dma_addr + extra_offset; if (!extra_offset) { i--; } else { e_len = extra_offset; size -= e_len; to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len); } /* Insert extra data ptr */ if (extra_len) { i++; to = &list[i >> 2]; to->u.s.len[i % 4] = rte_cpu_to_be_16(extra_buf->size); to->ptr[i % 4] = rte_cpu_to_be_64(extra_buf->dma_addr); /* size already decremented by extra len */ } /* insert the rest of the data */ if (next_len) { i++; to = &list[i >> 2]; to->u.s.len[i % 4] = rte_cpu_to_be_16(next_len); to->ptr[i % 4] = rte_cpu_to_be_64(next_dma); size -= next_len; } extra_len = 0; } else { size -= e_len; } if (extra_offset) extra_offset -= size; i++; } *psize = size; return (uint32_t)i; } static __rte_always_inline int cpt_digest_gen_prep(uint32_t flags, uint64_t d_lens, digest_params_t *params, void *op, void **prep_req) { struct cpt_request_info *req; uint32_t size, i; int32_t m_size; uint16_t data_len, mac_len, key_len; auth_type_t hash_type; buf_ptr_t *meta_p; struct cpt_ctx *ctx; sg_comp_t *gather_comp; sg_comp_t *scatter_comp; uint8_t *in_buffer; uint32_t g_size_bytes, s_size_bytes; uint64_t dptr_dma, rptr_dma; vq_cmd_word0_t vq_cmd_w0; vq_cmd_word3_t vq_cmd_w3; void *c_vaddr, *m_vaddr; uint64_t c_dma, m_dma; opcode_info_t opcode; if (!params || !params->ctx_buf.vaddr) return ERR_BAD_INPUT_ARG; ctx = params->ctx_buf.vaddr; meta_p = ¶ms->meta_buf; if (!meta_p->vaddr || !meta_p->dma_addr) return ERR_BAD_INPUT_ARG; if (meta_p->size < sizeof(struct cpt_request_info)) return ERR_BAD_INPUT_ARG; m_vaddr = meta_p->vaddr; m_dma = meta_p->dma_addr; m_size = meta_p->size; /* * Save initial space that followed app data for completion code & * alternate completion code to fall in same cache line as app data */ m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE; m_dma += COMPLETION_CODE_SIZE; size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) - (uint8_t *)m_vaddr; c_vaddr = (uint8_t *)m_vaddr + size; c_dma = m_dma + size; size += sizeof(cpt_res_s_t); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; req = m_vaddr; size = sizeof(struct cpt_request_info); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; hash_type = ctx->hash_type; mac_len = ctx->mac_len; key_len = ctx->auth_key_len; data_len = AUTH_DLEN(d_lens); /*GP op header */ vq_cmd_w0.u64 = 0; vq_cmd_w0.s.param2 = rte_cpu_to_be_16(((uint16_t)hash_type << 8)); if (ctx->hmac) { opcode.s.major = CPT_MAJOR_OP_HMAC | CPT_DMA_MODE; vq_cmd_w0.s.param1 = rte_cpu_to_be_16(key_len); vq_cmd_w0.s.dlen = rte_cpu_to_be_16((data_len + ROUNDUP8(key_len))); } else { opcode.s.major = CPT_MAJOR_OP_HASH | CPT_DMA_MODE; vq_cmd_w0.s.param1 = 0; vq_cmd_w0.s.dlen = rte_cpu_to_be_16(data_len); } opcode.s.minor = 0; /* Null auth only case enters the if */ if (unlikely(!hash_type && !ctx->enc_cipher)) { opcode.s.major = CPT_MAJOR_OP_MISC; /* Minor op is passthrough */ opcode.s.minor = 0x03; /* Send out completion code only */ vq_cmd_w0.s.param2 = 0x1; } vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags); /* DPTR has SG list */ in_buffer = m_vaddr; dptr_dma = m_dma; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; /* TODO Add error check if space will be sufficient */ gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8); /* * Input gather list */ i = 0; if (ctx->hmac) { uint64_t k_dma = params->ctx_buf.dma_addr + offsetof(struct cpt_ctx, auth_key); /* Key */ i = fill_sg_comp(gather_comp, i, k_dma, ROUNDUP8(key_len)); } /* input data */ size = data_len; if (size) { i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, NULL, 0); if (size) { CPT_LOG_DP_DEBUG("Insufficient dst IOV size, short" " by %dB", size); return ERR_BAD_INPUT_ARG; } } else { /* * Looks like we need to support zero data * gather ptr in case of hash & hmac */ i++; } ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t); /* * Output Gather list */ i = 0; scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes); if (flags & VALID_MAC_BUF) { if (params->mac_buf.size < mac_len) return ERR_BAD_INPUT_ARG; size = mac_len; i = fill_sg_comp_from_buf_min(scatter_comp, i, ¶ms->mac_buf, &size); } else { size = mac_len; i = fill_sg_comp_from_iov(scatter_comp, i, params->src_iov, data_len, &size, NULL, 0); if (size) { CPT_LOG_DP_DEBUG("Insufficient dst IOV size, short by" " %dB", size); return ERR_BAD_INPUT_ARG; } } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t); size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE; /* This is DPTR len incase of SG mode */ vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; /* cpt alternate completion address saved earlier */ req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8); *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT); rptr_dma = c_dma - 8; req->ist.ei1 = dptr_dma; req->ist.ei2 = rptr_dma; /* First 16-bit swap then 64-bit swap */ /* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions * to eliminate all the swapping */ vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64); /* vq command w3 */ vq_cmd_w3.u64 = 0; /* 16 byte aligned cpt res address */ req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr); *req->completion_addr = COMPLETION_CODE_INIT; req->comp_baddr = c_dma; /* Fill microcode part of instruction */ req->ist.ei0 = vq_cmd_w0.u64; req->ist.ei3 = vq_cmd_w3.u64; req->op = op; *prep_req = req; return 0; } static __rte_always_inline int cpt_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens, fc_params_t *fc_params, void *op, void **prep_req) { uint32_t iv_offset = 0; int32_t inputlen, outputlen, enc_dlen, auth_dlen; struct cpt_ctx *cpt_ctx; uint32_t cipher_type, hash_type; uint32_t mac_len, size; uint8_t iv_len = 16; struct cpt_request_info *req; buf_ptr_t *meta_p, *aad_buf = NULL; uint32_t encr_offset, auth_offset; uint32_t encr_data_len, auth_data_len, aad_len = 0; uint32_t passthrough_len = 0; void *m_vaddr, *offset_vaddr; uint64_t m_dma, offset_dma, ctx_dma; vq_cmd_word0_t vq_cmd_w0; vq_cmd_word3_t vq_cmd_w3; void *c_vaddr; uint64_t c_dma; int32_t m_size; opcode_info_t opcode; meta_p = &fc_params->meta_buf; m_vaddr = meta_p->vaddr; m_dma = meta_p->dma_addr; m_size = meta_p->size; encr_offset = ENCR_OFFSET(d_offs); auth_offset = AUTH_OFFSET(d_offs); encr_data_len = ENCR_DLEN(d_lens); auth_data_len = AUTH_DLEN(d_lens); if (unlikely(flags & VALID_AAD_BUF)) { /* * We dont support both aad * and auth data separately */ auth_data_len = 0; auth_offset = 0; aad_len = fc_params->aad_buf.size; aad_buf = &fc_params->aad_buf; } cpt_ctx = fc_params->ctx_buf.vaddr; cipher_type = cpt_ctx->enc_cipher; hash_type = cpt_ctx->hash_type; mac_len = cpt_ctx->mac_len; /* * Save initial space that followed app data for completion code & * alternate completion code to fall in same cache line as app data */ m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE; m_dma += COMPLETION_CODE_SIZE; size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) - (uint8_t *)m_vaddr; c_vaddr = (uint8_t *)m_vaddr + size; c_dma = m_dma + size; size += sizeof(cpt_res_s_t); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; /* start cpt request info struct at 8 byte boundary */ size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) - (uint8_t *)m_vaddr; req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size); size += sizeof(struct cpt_request_info); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; if (hash_type == GMAC_TYPE) encr_data_len = 0; if (unlikely(!(flags & VALID_IV_BUF))) { iv_len = 0; iv_offset = ENCR_IV_OFFSET(d_offs); } if (unlikely(flags & VALID_AAD_BUF)) { /* * When AAD is given, data above encr_offset is pass through * Since AAD is given as separate pointer and not as offset, * this is a special case as we need to fragment input data * into passthrough + encr_data and then insert AAD in between. */ if (hash_type != GMAC_TYPE) { passthrough_len = encr_offset; auth_offset = passthrough_len + iv_len; encr_offset = passthrough_len + aad_len + iv_len; auth_data_len = aad_len + encr_data_len; } else { passthrough_len = 16 + aad_len; auth_offset = passthrough_len + iv_len; auth_data_len = aad_len; } } else { encr_offset += iv_len; auth_offset += iv_len; } /* Encryption */ opcode.s.major = CPT_MAJOR_OP_FC; opcode.s.minor = 0; auth_dlen = auth_offset + auth_data_len; enc_dlen = encr_data_len + encr_offset; if (unlikely(encr_data_len & 0xf)) { if ((cipher_type == DES3_CBC) || (cipher_type == DES3_ECB)) enc_dlen = ROUNDUP8(encr_data_len) + encr_offset; else if (likely((cipher_type == AES_CBC) || (cipher_type == AES_ECB))) enc_dlen = ROUNDUP16(encr_data_len) + encr_offset; } if (unlikely(hash_type == GMAC_TYPE)) { encr_offset = auth_dlen; enc_dlen = 0; } if (unlikely(auth_dlen > enc_dlen)) { inputlen = auth_dlen; outputlen = auth_dlen + mac_len; } else { inputlen = enc_dlen; outputlen = enc_dlen + mac_len; } /* GP op header */ vq_cmd_w0.u64 = 0; vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len); vq_cmd_w0.s.param2 = rte_cpu_to_be_16(auth_data_len); /* * In 83XX since we have a limitation of * IV & Offset control word not part of instruction * and need to be part of Data Buffer, we check if * head room is there and then only do the Direct mode processing */ if (likely((flags & SINGLE_BUF_INPLACE) && (flags & SINGLE_BUF_HEADTAILROOM))) { void *dm_vaddr = fc_params->bufs[0].vaddr; uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr; /* * This flag indicates that there is 24 bytes head room and * 8 bytes tail room available, so that we get to do * DIRECT MODE with limitation */ offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len; offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len; /* DPTR */ req->ist.ei1 = offset_dma; /* RPTR should just exclude offset control word */ req->ist.ei2 = dm_dma_addr - iv_len; req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr + outputlen - iv_len); vq_cmd_w0.s.dlen = rte_cpu_to_be_16(inputlen + OFF_CTRL_LEN); vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags); if (likely(iv_len)) { uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN); uint64_t *src = fc_params->iv_buf; dest[0] = src[0]; dest[1] = src[1]; } *(uint64_t *)offset_vaddr = rte_cpu_to_be_64(((uint64_t)encr_offset << 16) | ((uint64_t)iv_offset << 8) | ((uint64_t)auth_offset)); } else { uint32_t i, g_size_bytes, s_size_bytes; uint64_t dptr_dma, rptr_dma; sg_comp_t *gather_comp; sg_comp_t *scatter_comp; uint8_t *in_buffer; /* This falls under strict SG mode */ offset_vaddr = m_vaddr; offset_dma = m_dma; size = OFF_CTRL_LEN + iv_len; m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; opcode.s.major |= CPT_DMA_MODE; vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags); if (likely(iv_len)) { uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN); uint64_t *src = fc_params->iv_buf; dest[0] = src[0]; dest[1] = src[1]; } *(uint64_t *)offset_vaddr = rte_cpu_to_be_64(((uint64_t)encr_offset << 16) | ((uint64_t)iv_offset << 8) | ((uint64_t)auth_offset)); /* DPTR has SG list */ in_buffer = m_vaddr; dptr_dma = m_dma; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; /* TODO Add error check if space will be sufficient */ gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8); /* * Input Gather List */ i = 0; /* Offset control word that includes iv */ i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len); /* Add input data */ size = inputlen - iv_len; if (likely(size)) { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (unlikely(flags & SINGLE_BUF_INPLACE)) { i = fill_sg_comp_from_buf_min(gather_comp, i, fc_params->bufs, &size); } else { i = fill_sg_comp_from_iov(gather_comp, i, fc_params->src_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { CPT_LOG_DP_ERR("Insufficient buffer space," " size %d needed", size); return ERR_BAD_INPUT_ARG; } } ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t); /* * Output Scatter list */ i = 0; scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes); /* Add IV */ if (likely(iv_len)) { i = fill_sg_comp(scatter_comp, i, offset_dma + OFF_CTRL_LEN, iv_len); } /* output data or output data + digest*/ if (unlikely(flags & VALID_MAC_BUF)) { size = outputlen - iv_len - mac_len; if (size) { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (unlikely(flags & SINGLE_BUF_INPLACE)) { i = fill_sg_comp_from_buf_min( scatter_comp, i, fc_params->bufs, &size); } else { i = fill_sg_comp_from_iov(scatter_comp, i, fc_params->dst_iov, 0, &size, aad_buf, aad_offset); } if (size) return ERR_BAD_INPUT_ARG; } /* mac_data */ if (mac_len) { i = fill_sg_comp_from_buf(scatter_comp, i, &fc_params->mac_buf); } } else { /* Output including mac */ size = outputlen - iv_len; if (likely(size)) { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (unlikely(flags & SINGLE_BUF_INPLACE)) { i = fill_sg_comp_from_buf_min( scatter_comp, i, fc_params->bufs, &size); } else { i = fill_sg_comp_from_iov(scatter_comp, i, fc_params->dst_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) { CPT_LOG_DP_ERR("Insufficient buffer" " space, size %d needed", size); return ERR_BAD_INPUT_ARG; } } } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t); size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE; /* This is DPTR len incase of SG mode */ vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; /* cpt alternate completion address saved earlier */ req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8); *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT); rptr_dma = c_dma - 8; req->ist.ei1 = dptr_dma; req->ist.ei2 = rptr_dma; } /* First 16-bit swap then 64-bit swap */ /* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions * to eliminate all the swapping */ vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64); ctx_dma = fc_params->ctx_buf.dma_addr + offsetof(struct cpt_ctx, fctx); /* vq command w3 */ vq_cmd_w3.u64 = 0; vq_cmd_w3.s.grp = 0; vq_cmd_w3.s.cptr = ctx_dma; /* 16 byte aligned cpt res address */ req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr); *req->completion_addr = COMPLETION_CODE_INIT; req->comp_baddr = c_dma; /* Fill microcode part of instruction */ req->ist.ei0 = vq_cmd_w0.u64; req->ist.ei3 = vq_cmd_w3.u64; req->op = op; *prep_req = req; return 0; } static __rte_always_inline int cpt_dec_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens, fc_params_t *fc_params, void *op, void **prep_req) { uint32_t iv_offset = 0, size; int32_t inputlen, outputlen, enc_dlen, auth_dlen; struct cpt_ctx *cpt_ctx; int32_t hash_type, mac_len, m_size; uint8_t iv_len = 16; struct cpt_request_info *req; buf_ptr_t *meta_p, *aad_buf = NULL; uint32_t encr_offset, auth_offset; uint32_t encr_data_len, auth_data_len, aad_len = 0; uint32_t passthrough_len = 0; void *m_vaddr, *offset_vaddr; uint64_t m_dma, offset_dma, ctx_dma; opcode_info_t opcode; vq_cmd_word0_t vq_cmd_w0; vq_cmd_word3_t vq_cmd_w3; void *c_vaddr; uint64_t c_dma; meta_p = &fc_params->meta_buf; m_vaddr = meta_p->vaddr; m_dma = meta_p->dma_addr; m_size = meta_p->size; encr_offset = ENCR_OFFSET(d_offs); auth_offset = AUTH_OFFSET(d_offs); encr_data_len = ENCR_DLEN(d_lens); auth_data_len = AUTH_DLEN(d_lens); if (unlikely(flags & VALID_AAD_BUF)) { /* * We dont support both aad * and auth data separately */ auth_data_len = 0; auth_offset = 0; aad_len = fc_params->aad_buf.size; aad_buf = &fc_params->aad_buf; } cpt_ctx = fc_params->ctx_buf.vaddr; hash_type = cpt_ctx->hash_type; mac_len = cpt_ctx->mac_len; if (hash_type == GMAC_TYPE) encr_data_len = 0; if (unlikely(!(flags & VALID_IV_BUF))) { iv_len = 0; iv_offset = ENCR_IV_OFFSET(d_offs); } if (unlikely(flags & VALID_AAD_BUF)) { /* * When AAD is given, data above encr_offset is pass through * Since AAD is given as separate pointer and not as offset, * this is a special case as we need to fragment input data * into passthrough + encr_data and then insert AAD in between. */ if (hash_type != GMAC_TYPE) { passthrough_len = encr_offset; auth_offset = passthrough_len + iv_len; encr_offset = passthrough_len + aad_len + iv_len; auth_data_len = aad_len + encr_data_len; } else { passthrough_len = 16 + aad_len; auth_offset = passthrough_len + iv_len; auth_data_len = aad_len; } } else { encr_offset += iv_len; auth_offset += iv_len; } /* * Save initial space that followed app data for completion code & * alternate completion code to fall in same cache line as app data */ m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE; m_dma += COMPLETION_CODE_SIZE; size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) - (uint8_t *)m_vaddr; c_vaddr = (uint8_t *)m_vaddr + size; c_dma = m_dma + size; size += sizeof(cpt_res_s_t); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; /* start cpt request info structure at 8 byte alignment */ size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) - (uint8_t *)m_vaddr; req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size); size += sizeof(struct cpt_request_info); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; /* Decryption */ opcode.s.major = CPT_MAJOR_OP_FC; opcode.s.minor = 1; enc_dlen = encr_offset + encr_data_len; auth_dlen = auth_offset + auth_data_len; if (auth_dlen > enc_dlen) { inputlen = auth_dlen + mac_len; outputlen = auth_dlen; } else { inputlen = enc_dlen + mac_len; outputlen = enc_dlen; } if (hash_type == GMAC_TYPE) encr_offset = inputlen; vq_cmd_w0.u64 = 0; vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len); vq_cmd_w0.s.param2 = rte_cpu_to_be_16(auth_data_len); /* * In 83XX since we have a limitation of * IV & Offset control word not part of instruction * and need to be part of Data Buffer, we check if * head room is there and then only do the Direct mode processing */ if (likely((flags & SINGLE_BUF_INPLACE) && (flags & SINGLE_BUF_HEADTAILROOM))) { void *dm_vaddr = fc_params->bufs[0].vaddr; uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr; /* * This flag indicates that there is 24 bytes head room and * 8 bytes tail room available, so that we get to do * DIRECT MODE with limitation */ offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len; offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len; req->ist.ei1 = offset_dma; /* RPTR should just exclude offset control word */ req->ist.ei2 = dm_dma_addr - iv_len; req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr + outputlen - iv_len); /* since this is decryption, * don't touch the content of * alternate ccode space as it contains * hmac. */ vq_cmd_w0.s.dlen = rte_cpu_to_be_16(inputlen + OFF_CTRL_LEN); vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags); if (likely(iv_len)) { uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN); uint64_t *src = fc_params->iv_buf; dest[0] = src[0]; dest[1] = src[1]; } *(uint64_t *)offset_vaddr = rte_cpu_to_be_64(((uint64_t)encr_offset << 16) | ((uint64_t)iv_offset << 8) | ((uint64_t)auth_offset)); } else { uint64_t dptr_dma, rptr_dma; uint32_t g_size_bytes, s_size_bytes; sg_comp_t *gather_comp; sg_comp_t *scatter_comp; uint8_t *in_buffer; uint8_t i = 0; /* This falls under strict SG mode */ offset_vaddr = m_vaddr; offset_dma = m_dma; size = OFF_CTRL_LEN + iv_len; m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; opcode.s.major |= CPT_DMA_MODE; vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags); if (likely(iv_len)) { uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN); uint64_t *src = fc_params->iv_buf; dest[0] = src[0]; dest[1] = src[1]; } *(uint64_t *)offset_vaddr = rte_cpu_to_be_64(((uint64_t)encr_offset << 16) | ((uint64_t)iv_offset << 8) | ((uint64_t)auth_offset)); /* DPTR has SG list */ in_buffer = m_vaddr; dptr_dma = m_dma; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; /* TODO Add error check if space will be sufficient */ gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8); /* * Input Gather List */ i = 0; /* Offset control word that includes iv */ i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len); /* Add input data */ if (flags & VALID_MAC_BUF) { size = inputlen - iv_len - mac_len; if (size) { /* input data only */ if (unlikely(flags & SINGLE_BUF_INPLACE)) { i = fill_sg_comp_from_buf_min( gather_comp, i, fc_params->bufs, &size); } else { uint32_t aad_offset = aad_len ? passthrough_len : 0; i = fill_sg_comp_from_iov(gather_comp, i, fc_params->src_iov, 0, &size, aad_buf, aad_offset); } if (size) return ERR_BAD_INPUT_ARG; } /* mac data */ if (mac_len) { i = fill_sg_comp_from_buf(gather_comp, i, &fc_params->mac_buf); } } else { /* input data + mac */ size = inputlen - iv_len; if (size) { if (unlikely(flags & SINGLE_BUF_INPLACE)) { i = fill_sg_comp_from_buf_min( gather_comp, i, fc_params->bufs, &size); } else { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (!fc_params->src_iov) return ERR_BAD_INPUT_ARG; i = fill_sg_comp_from_iov( gather_comp, i, fc_params->src_iov, 0, &size, aad_buf, aad_offset); } if (size) return ERR_BAD_INPUT_ARG; } } ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t); /* * Output Scatter List */ i = 0; scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes); /* Add iv */ if (iv_len) { i = fill_sg_comp(scatter_comp, i, offset_dma + OFF_CTRL_LEN, iv_len); } /* Add output data */ size = outputlen - iv_len; if (size) { if (unlikely(flags & SINGLE_BUF_INPLACE)) { /* handle single buffer here */ i = fill_sg_comp_from_buf_min(scatter_comp, i, fc_params->bufs, &size); } else { uint32_t aad_offset = aad_len ? passthrough_len : 0; if (!fc_params->dst_iov) return ERR_BAD_INPUT_ARG; i = fill_sg_comp_from_iov(scatter_comp, i, fc_params->dst_iov, 0, &size, aad_buf, aad_offset); } if (unlikely(size)) return ERR_BAD_INPUT_ARG; } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t); size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE; /* This is DPTR len incase of SG mode */ vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; /* cpt alternate completion address saved earlier */ req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8); *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT); rptr_dma = c_dma - 8; size += COMPLETION_CODE_SIZE; req->ist.ei1 = dptr_dma; req->ist.ei2 = rptr_dma; } /* First 16-bit swap then 64-bit swap */ /* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions * to eliminate all the swapping */ vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64); ctx_dma = fc_params->ctx_buf.dma_addr + offsetof(struct cpt_ctx, fctx); /* vq command w3 */ vq_cmd_w3.u64 = 0; vq_cmd_w3.s.grp = 0; vq_cmd_w3.s.cptr = ctx_dma; /* 16 byte aligned cpt res address */ req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr); *req->completion_addr = COMPLETION_CODE_INIT; req->comp_baddr = c_dma; /* Fill microcode part of instruction */ req->ist.ei0 = vq_cmd_w0.u64; req->ist.ei3 = vq_cmd_w3.u64; req->op = op; *prep_req = req; return 0; } static __rte_always_inline int cpt_zuc_snow3g_enc_prep(uint32_t req_flags, uint64_t d_offs, uint64_t d_lens, fc_params_t *params, void *op, void **prep_req) { uint32_t size; int32_t inputlen, outputlen; struct cpt_ctx *cpt_ctx; uint32_t mac_len = 0; uint8_t snow3g, j; struct cpt_request_info *req; buf_ptr_t *buf_p; uint32_t encr_offset = 0, auth_offset = 0; uint32_t encr_data_len = 0, auth_data_len = 0; int flags, iv_len = 16, m_size; void *m_vaddr, *c_vaddr; uint64_t m_dma, c_dma, offset_ctrl; uint64_t *offset_vaddr, offset_dma; uint32_t *iv_s, iv[4]; vq_cmd_word0_t vq_cmd_w0; vq_cmd_word3_t vq_cmd_w3; opcode_info_t opcode; buf_p = ¶ms->meta_buf; m_vaddr = buf_p->vaddr; m_dma = buf_p->dma_addr; m_size = buf_p->size; cpt_ctx = params->ctx_buf.vaddr; flags = cpt_ctx->zsk_flags; mac_len = cpt_ctx->mac_len; snow3g = cpt_ctx->snow3g; /* * Save initial space that followed app data for completion code & * alternate completion code to fall in same cache line as app data */ m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE; m_dma += COMPLETION_CODE_SIZE; size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) - (uint8_t *)m_vaddr; c_vaddr = (uint8_t *)m_vaddr + size; c_dma = m_dma + size; size += sizeof(cpt_res_s_t); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; /* Reserve memory for cpt request info */ req = m_vaddr; size = sizeof(struct cpt_request_info); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G; /* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */ opcode.s.minor = ((1 << 6) | (snow3g << 5) | (0 << 4) | (0 << 3) | (flags & 0x7)); if (flags == 0x1) { /* * Microcode expects offsets in bytes * TODO: Rounding off */ auth_data_len = AUTH_DLEN(d_lens); /* EIA3 or UIA2 */ auth_offset = AUTH_OFFSET(d_offs); auth_offset = auth_offset / 8; /* consider iv len */ auth_offset += iv_len; inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8); outputlen = mac_len; offset_ctrl = rte_cpu_to_be_64((uint64_t)auth_offset); } else { /* EEA3 or UEA2 */ /* * Microcode expects offsets in bytes * TODO: Rounding off */ encr_data_len = ENCR_DLEN(d_lens); encr_offset = ENCR_OFFSET(d_offs); encr_offset = encr_offset / 8; /* consider iv len */ encr_offset += iv_len; inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8); outputlen = inputlen; /* iv offset is 0 */ offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16); } /* IV */ iv_s = (flags == 0x1) ? params->auth_iv_buf : params->iv_buf; if (snow3g) { /* * DPDK seems to provide it in form of IV3 IV2 IV1 IV0 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3 */ for (j = 0; j < 4; j++) iv[j] = iv_s[3 - j]; } else { /* ZUC doesn't need a swap */ for (j = 0; j < 4; j++) iv[j] = iv_s[j]; } /* * GP op header, lengths are expected in bits. */ vq_cmd_w0.u64 = 0; vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len); vq_cmd_w0.s.param2 = rte_cpu_to_be_16(auth_data_len); /* * In 83XX since we have a limitation of * IV & Offset control word not part of instruction * and need to be part of Data Buffer, we check if * head room is there and then only do the Direct mode processing */ if (likely((req_flags & SINGLE_BUF_INPLACE) && (req_flags & SINGLE_BUF_HEADTAILROOM))) { void *dm_vaddr = params->bufs[0].vaddr; uint64_t dm_dma_addr = params->bufs[0].dma_addr; /* * This flag indicates that there is 24 bytes head room and * 8 bytes tail room available, so that we get to do * DIRECT MODE with limitation */ offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len); offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len; /* DPTR */ req->ist.ei1 = offset_dma; /* RPTR should just exclude offset control word */ req->ist.ei2 = dm_dma_addr - iv_len; req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr + outputlen - iv_len); vq_cmd_w0.s.dlen = rte_cpu_to_be_16(inputlen + OFF_CTRL_LEN); vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags); if (likely(iv_len)) { uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN); memcpy(iv_d, iv, 16); } *offset_vaddr = offset_ctrl; } else { uint32_t i, g_size_bytes, s_size_bytes; uint64_t dptr_dma, rptr_dma; sg_comp_t *gather_comp; sg_comp_t *scatter_comp; uint8_t *in_buffer; uint32_t *iv_d; /* save space for iv */ offset_vaddr = m_vaddr; offset_dma = m_dma; m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len; m_dma += OFF_CTRL_LEN + iv_len; m_size -= OFF_CTRL_LEN + iv_len; opcode.s.major |= CPT_DMA_MODE; vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags); /* DPTR has SG list */ in_buffer = m_vaddr; dptr_dma = m_dma; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; /* TODO Add error check if space will be sufficient */ gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8); /* * Input Gather List */ i = 0; /* Offset control word followed by iv */ i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len); /* iv offset is 0 */ *offset_vaddr = offset_ctrl; iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN); memcpy(iv_d, iv, 16); /* input data */ size = inputlen - iv_len; if (size) { i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, NULL, 0); if (size) return ERR_BAD_INPUT_ARG; } ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t); /* * Output Scatter List */ i = 0; scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes); if (flags == 0x1) { /* IV in SLIST only for EEA3 & UEA2 */ iv_len = 0; } if (iv_len) { i = fill_sg_comp(scatter_comp, i, offset_dma + OFF_CTRL_LEN, iv_len); } /* Add output data */ if (req_flags & VALID_MAC_BUF) { size = outputlen - iv_len - mac_len; if (size) { i = fill_sg_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, NULL, 0); if (size) return ERR_BAD_INPUT_ARG; } /* mac data */ if (mac_len) { i = fill_sg_comp_from_buf(scatter_comp, i, ¶ms->mac_buf); } } else { /* Output including mac */ size = outputlen - iv_len; if (size) { i = fill_sg_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, NULL, 0); if (size) return ERR_BAD_INPUT_ARG; } } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t); size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE; /* This is DPTR len incase of SG mode */ vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; /* cpt alternate completion address saved earlier */ req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8); *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT); rptr_dma = c_dma - 8; req->ist.ei1 = dptr_dma; req->ist.ei2 = rptr_dma; } /* First 16-bit swap then 64-bit swap */ /* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions * to eliminate all the swapping */ vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64); /* vq command w3 */ vq_cmd_w3.u64 = 0; vq_cmd_w3.s.grp = 0; vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr + offsetof(struct cpt_ctx, zs_ctx); /* 16 byte aligned cpt res address */ req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr); *req->completion_addr = COMPLETION_CODE_INIT; req->comp_baddr = c_dma; /* Fill microcode part of instruction */ req->ist.ei0 = vq_cmd_w0.u64; req->ist.ei3 = vq_cmd_w3.u64; req->op = op; *prep_req = req; return 0; } static __rte_always_inline int cpt_zuc_snow3g_dec_prep(uint32_t req_flags, uint64_t d_offs, uint64_t d_lens, fc_params_t *params, void *op, void **prep_req) { uint32_t size; int32_t inputlen = 0, outputlen; struct cpt_ctx *cpt_ctx; uint8_t snow3g, iv_len = 16; struct cpt_request_info *req; buf_ptr_t *buf_p; uint32_t encr_offset; uint32_t encr_data_len; int flags, m_size; void *m_vaddr, *c_vaddr; uint64_t m_dma, c_dma; uint64_t *offset_vaddr, offset_dma; uint32_t *iv_s, iv[4], j; vq_cmd_word0_t vq_cmd_w0; vq_cmd_word3_t vq_cmd_w3; opcode_info_t opcode; buf_p = ¶ms->meta_buf; m_vaddr = buf_p->vaddr; m_dma = buf_p->dma_addr; m_size = buf_p->size; /* * Microcode expects offsets in bytes * TODO: Rounding off */ encr_offset = ENCR_OFFSET(d_offs) / 8; encr_data_len = ENCR_DLEN(d_lens); cpt_ctx = params->ctx_buf.vaddr; flags = cpt_ctx->zsk_flags; snow3g = cpt_ctx->snow3g; /* * Save initial space that followed app data for completion code & * alternate completion code to fall in same cache line as app data */ m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE; m_dma += COMPLETION_CODE_SIZE; size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) - (uint8_t *)m_vaddr; c_vaddr = (uint8_t *)m_vaddr + size; c_dma = m_dma + size; size += sizeof(cpt_res_s_t); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; /* Reserve memory for cpt request info */ req = m_vaddr; size = sizeof(struct cpt_request_info); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G; /* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */ opcode.s.minor = ((1 << 6) | (snow3g << 5) | (0 << 4) | (0 << 3) | (flags & 0x7)); /* consider iv len */ encr_offset += iv_len; inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8); outputlen = inputlen; /* IV */ iv_s = params->iv_buf; if (snow3g) { /* * DPDK seems to provide it in form of IV3 IV2 IV1 IV0 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3 */ for (j = 0; j < 4; j++) iv[j] = iv_s[3 - j]; } else { /* ZUC doesn't need a swap */ for (j = 0; j < 4; j++) iv[j] = iv_s[j]; } /* * GP op header, lengths are expected in bits. */ vq_cmd_w0.u64 = 0; vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len); /* * In 83XX since we have a limitation of * IV & Offset control word not part of instruction * and need to be part of Data Buffer, we check if * head room is there and then only do the Direct mode processing */ if (likely((req_flags & SINGLE_BUF_INPLACE) && (req_flags & SINGLE_BUF_HEADTAILROOM))) { void *dm_vaddr = params->bufs[0].vaddr; uint64_t dm_dma_addr = params->bufs[0].dma_addr; /* * This flag indicates that there is 24 bytes head room and * 8 bytes tail room available, so that we get to do * DIRECT MODE with limitation */ offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len); offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len; /* DPTR */ req->ist.ei1 = offset_dma; /* RPTR should just exclude offset control word */ req->ist.ei2 = dm_dma_addr - iv_len; req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr + outputlen - iv_len); vq_cmd_w0.s.dlen = rte_cpu_to_be_16(inputlen + OFF_CTRL_LEN); vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags); if (likely(iv_len)) { uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN); memcpy(iv_d, iv, 16); } /* iv offset is 0 */ *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16); } else { uint32_t i, g_size_bytes, s_size_bytes; uint64_t dptr_dma, rptr_dma; sg_comp_t *gather_comp; sg_comp_t *scatter_comp; uint8_t *in_buffer; uint32_t *iv_d; /* save space for offset and iv... */ offset_vaddr = m_vaddr; offset_dma = m_dma; m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len; m_dma += OFF_CTRL_LEN + iv_len; m_size -= OFF_CTRL_LEN + iv_len; opcode.s.major |= CPT_DMA_MODE; vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags); /* DPTR has SG list */ in_buffer = m_vaddr; dptr_dma = m_dma; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; /* TODO Add error check if space will be sufficient */ gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8); /* * Input Gather List */ i = 0; /* Offset control word */ /* iv offset is 0 */ *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16); i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len); iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN); memcpy(iv_d, iv, 16); /* Add input data */ size = inputlen - iv_len; if (size) { i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, NULL, 0); if (size) return ERR_BAD_INPUT_ARG; } ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t); /* * Output Scatter List */ i = 0; scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes); /* IV */ i = fill_sg_comp(scatter_comp, i, offset_dma + OFF_CTRL_LEN, iv_len); /* Add output data */ size = outputlen - iv_len; if (size) { i = fill_sg_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, NULL, 0); if (size) return ERR_BAD_INPUT_ARG; } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t); size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE; /* This is DPTR len incase of SG mode */ vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; /* cpt alternate completion address saved earlier */ req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8); *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT); rptr_dma = c_dma - 8; req->ist.ei1 = dptr_dma; req->ist.ei2 = rptr_dma; } /* First 16-bit swap then 64-bit swap */ /* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions * to eliminate all the swapping */ vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64); /* vq command w3 */ vq_cmd_w3.u64 = 0; vq_cmd_w3.s.grp = 0; vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr + offsetof(struct cpt_ctx, zs_ctx); /* 16 byte aligned cpt res address */ req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr); *req->completion_addr = COMPLETION_CODE_INIT; req->comp_baddr = c_dma; /* Fill microcode part of instruction */ req->ist.ei0 = vq_cmd_w0.u64; req->ist.ei3 = vq_cmd_w3.u64; req->op = op; *prep_req = req; return 0; } static __rte_always_inline int cpt_kasumi_enc_prep(uint32_t req_flags, uint64_t d_offs, uint64_t d_lens, fc_params_t *params, void *op, void **prep_req) { uint32_t size; int32_t inputlen = 0, outputlen = 0; struct cpt_ctx *cpt_ctx; uint32_t mac_len = 0; uint8_t i = 0; struct cpt_request_info *req; buf_ptr_t *buf_p; uint32_t encr_offset, auth_offset; uint32_t encr_data_len, auth_data_len; int flags, m_size; uint8_t *iv_s, *iv_d, iv_len = 8; uint8_t dir = 0; void *m_vaddr, *c_vaddr; uint64_t m_dma, c_dma; uint64_t *offset_vaddr, offset_dma; vq_cmd_word0_t vq_cmd_w0; vq_cmd_word3_t vq_cmd_w3; opcode_info_t opcode; uint8_t *in_buffer; uint32_t g_size_bytes, s_size_bytes; uint64_t dptr_dma, rptr_dma; sg_comp_t *gather_comp; sg_comp_t *scatter_comp; buf_p = ¶ms->meta_buf; m_vaddr = buf_p->vaddr; m_dma = buf_p->dma_addr; m_size = buf_p->size; encr_offset = ENCR_OFFSET(d_offs) / 8; auth_offset = AUTH_OFFSET(d_offs) / 8; encr_data_len = ENCR_DLEN(d_lens); auth_data_len = AUTH_DLEN(d_lens); cpt_ctx = params->ctx_buf.vaddr; flags = cpt_ctx->zsk_flags; mac_len = cpt_ctx->mac_len; if (flags == 0x0) iv_s = params->iv_buf; else iv_s = params->auth_iv_buf; dir = iv_s[8] & 0x1; /* * Save initial space that followed app data for completion code & * alternate completion code to fall in same cache line as app data */ m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE; m_dma += COMPLETION_CODE_SIZE; size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) - (uint8_t *)m_vaddr; c_vaddr = (uint8_t *)m_vaddr + size; c_dma = m_dma + size; size += sizeof(cpt_res_s_t); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; /* Reserve memory for cpt request info */ req = m_vaddr; size = sizeof(struct cpt_request_info); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE; /* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */ opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) | (dir << 4) | (0 << 3) | (flags & 0x7)); /* * GP op header, lengths are expected in bits. */ vq_cmd_w0.u64 = 0; vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len); vq_cmd_w0.s.param2 = rte_cpu_to_be_16(auth_data_len); vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags); /* consider iv len */ if (flags == 0x0) { encr_offset += iv_len; auth_offset += iv_len; } /* save space for offset ctrl and iv */ offset_vaddr = m_vaddr; offset_dma = m_dma; m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len; m_dma += OFF_CTRL_LEN + iv_len; m_size -= OFF_CTRL_LEN + iv_len; /* DPTR has SG list */ in_buffer = m_vaddr; dptr_dma = m_dma; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; /* TODO Add error check if space will be sufficient */ gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8); /* * Input Gather List */ i = 0; /* Offset control word followed by iv */ if (flags == 0x0) { inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8); outputlen = inputlen; /* iv offset is 0 */ *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16); } else { inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8); outputlen = mac_len; /* iv offset is 0 */ *offset_vaddr = rte_cpu_to_be_64((uint64_t)auth_offset); } i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len); /* IV */ iv_d = (uint8_t *)offset_vaddr + OFF_CTRL_LEN; memcpy(iv_d, iv_s, iv_len); /* input data */ size = inputlen - iv_len; if (size) { i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, NULL, 0); if (size) return ERR_BAD_INPUT_ARG; } ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t); /* * Output Scatter List */ i = 0; scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes); if (flags == 0x1) { /* IV in SLIST only for F8 */ iv_len = 0; } /* IV */ if (iv_len) { i = fill_sg_comp(scatter_comp, i, offset_dma + OFF_CTRL_LEN, iv_len); } /* Add output data */ if (req_flags & VALID_MAC_BUF) { size = outputlen - iv_len - mac_len; if (size) { i = fill_sg_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, NULL, 0); if (size) return ERR_BAD_INPUT_ARG; } /* mac data */ if (mac_len) { i = fill_sg_comp_from_buf(scatter_comp, i, ¶ms->mac_buf); } } else { /* Output including mac */ size = outputlen - iv_len; if (size) { i = fill_sg_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, NULL, 0); if (size) return ERR_BAD_INPUT_ARG; } } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t); size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE; /* This is DPTR len incase of SG mode */ vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; /* cpt alternate completion address saved earlier */ req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8); *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT); rptr_dma = c_dma - 8; req->ist.ei1 = dptr_dma; req->ist.ei2 = rptr_dma; /* First 16-bit swap then 64-bit swap */ /* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions * to eliminate all the swapping */ vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64); /* vq command w3 */ vq_cmd_w3.u64 = 0; vq_cmd_w3.s.grp = 0; vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr + offsetof(struct cpt_ctx, k_ctx); /* 16 byte aligned cpt res address */ req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr); *req->completion_addr = COMPLETION_CODE_INIT; req->comp_baddr = c_dma; /* Fill microcode part of instruction */ req->ist.ei0 = vq_cmd_w0.u64; req->ist.ei3 = vq_cmd_w3.u64; req->op = op; *prep_req = req; return 0; } static __rte_always_inline int cpt_kasumi_dec_prep(uint64_t d_offs, uint64_t d_lens, fc_params_t *params, void *op, void **prep_req) { uint32_t size; int32_t inputlen = 0, outputlen; struct cpt_ctx *cpt_ctx; uint8_t i = 0, iv_len = 8; struct cpt_request_info *req; buf_ptr_t *buf_p; uint32_t encr_offset; uint32_t encr_data_len; int flags, m_size; uint8_t dir = 0; void *m_vaddr, *c_vaddr; uint64_t m_dma, c_dma; uint64_t *offset_vaddr, offset_dma; vq_cmd_word0_t vq_cmd_w0; vq_cmd_word3_t vq_cmd_w3; opcode_info_t opcode; uint8_t *in_buffer; uint32_t g_size_bytes, s_size_bytes; uint64_t dptr_dma, rptr_dma; sg_comp_t *gather_comp; sg_comp_t *scatter_comp; buf_p = ¶ms->meta_buf; m_vaddr = buf_p->vaddr; m_dma = buf_p->dma_addr; m_size = buf_p->size; encr_offset = ENCR_OFFSET(d_offs) / 8; encr_data_len = ENCR_DLEN(d_lens); cpt_ctx = params->ctx_buf.vaddr; flags = cpt_ctx->zsk_flags; /* * Save initial space that followed app data for completion code & * alternate completion code to fall in same cache line as app data */ m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE; m_dma += COMPLETION_CODE_SIZE; size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) - (uint8_t *)m_vaddr; c_vaddr = (uint8_t *)m_vaddr + size; c_dma = m_dma + size; size += sizeof(cpt_res_s_t); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; /* Reserve memory for cpt request info */ req = m_vaddr; size = sizeof(struct cpt_request_info); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE; /* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */ opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) | (dir << 4) | (0 << 3) | (flags & 0x7)); /* * GP op header, lengths are expected in bits. */ vq_cmd_w0.u64 = 0; vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len); vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags); /* consider iv len */ encr_offset += iv_len; inputlen = iv_len + (RTE_ALIGN(encr_data_len, 8) / 8); outputlen = inputlen; /* save space for offset ctrl & iv */ offset_vaddr = m_vaddr; offset_dma = m_dma; m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len; m_dma += OFF_CTRL_LEN + iv_len; m_size -= OFF_CTRL_LEN + iv_len; /* DPTR has SG list */ in_buffer = m_vaddr; dptr_dma = m_dma; ((uint16_t *)in_buffer)[0] = 0; ((uint16_t *)in_buffer)[1] = 0; /* TODO Add error check if space will be sufficient */ gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8); /* * Input Gather List */ i = 0; /* Offset control word followed by iv */ *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16); i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len); /* IV */ memcpy((uint8_t *)offset_vaddr + OFF_CTRL_LEN, params->iv_buf, iv_len); /* Add input data */ size = inputlen - iv_len; if (size) { i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0, &size, NULL, 0); if (size) return ERR_BAD_INPUT_ARG; } ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i); g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t); /* * Output Scatter List */ i = 0; scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes); /* IV */ i = fill_sg_comp(scatter_comp, i, offset_dma + OFF_CTRL_LEN, iv_len); /* Add output data */ size = outputlen - iv_len; if (size) { i = fill_sg_comp_from_iov(scatter_comp, i, params->dst_iov, 0, &size, NULL, 0); if (size) return ERR_BAD_INPUT_ARG; } ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i); s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t); size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE; /* This is DPTR len incase of SG mode */ vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size); m_vaddr = (uint8_t *)m_vaddr + size; m_dma += size; m_size -= size; /* cpt alternate completion address saved earlier */ req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8); *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT); rptr_dma = c_dma - 8; req->ist.ei1 = dptr_dma; req->ist.ei2 = rptr_dma; /* First 16-bit swap then 64-bit swap */ /* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions * to eliminate all the swapping */ vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64); /* vq command w3 */ vq_cmd_w3.u64 = 0; vq_cmd_w3.s.grp = 0; vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr + offsetof(struct cpt_ctx, k_ctx); /* 16 byte aligned cpt res address */ req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr); *req->completion_addr = COMPLETION_CODE_INIT; req->comp_baddr = c_dma; /* Fill microcode part of instruction */ req->ist.ei0 = vq_cmd_w0.u64; req->ist.ei3 = vq_cmd_w3.u64; req->op = op; *prep_req = req; return 0; } static __rte_always_inline void * cpt_fc_dec_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens, fc_params_t *fc_params, void *op, int *ret_val) { struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr; uint8_t fc_type; void *prep_req = NULL; int ret; fc_type = ctx->fc_type; if (likely(fc_type == FC_GEN)) { ret = cpt_dec_hmac_prep(flags, d_offs, d_lens, fc_params, op, &prep_req); } else if (fc_type == ZUC_SNOW3G) { ret = cpt_zuc_snow3g_dec_prep(flags, d_offs, d_lens, fc_params, op, &prep_req); } else if (fc_type == KASUMI) { ret = cpt_kasumi_dec_prep(d_offs, d_lens, fc_params, op, &prep_req); } else { /* * For AUTH_ONLY case, * MC only supports digest generation and verification * should be done in software by memcmp() */ ret = ERR_EIO; } if (unlikely(!prep_req)) *ret_val = ret; return prep_req; } static __rte_always_inline void *__hot cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens, fc_params_t *fc_params, void *op, int *ret_val) { struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr; uint8_t fc_type; void *prep_req = NULL; int ret; fc_type = ctx->fc_type; /* Common api for rest of the ops */ if (likely(fc_type == FC_GEN)) { ret = cpt_enc_hmac_prep(flags, d_offs, d_lens, fc_params, op, &prep_req); } else if (fc_type == ZUC_SNOW3G) { ret = cpt_zuc_snow3g_enc_prep(flags, d_offs, d_lens, fc_params, op, &prep_req); } else if (fc_type == KASUMI) { ret = cpt_kasumi_enc_prep(flags, d_offs, d_lens, fc_params, op, &prep_req); } else if (fc_type == HASH_HMAC) { ret = cpt_digest_gen_prep(flags, d_lens, fc_params, op, &prep_req); } else { ret = ERR_EIO; } if (unlikely(!prep_req)) *ret_val = ret; return prep_req; } static __rte_always_inline int cpt_fc_auth_set_key(void *ctx, auth_type_t type, uint8_t *key, uint16_t key_len, uint16_t mac_len) { struct cpt_ctx *cpt_ctx = ctx; mc_fc_context_t *fctx = &cpt_ctx->fctx; uint64_t *ctrl_flags = NULL; if ((type >= ZUC_EIA3) && (type <= KASUMI_F9_ECB)) { uint32_t keyx[4]; if (key_len != 16) return -1; /* No support for AEAD yet */ if (cpt_ctx->enc_cipher) return -1; /* For ZUC/SNOW3G/Kasumi */ switch (type) { case SNOW3G_UIA2: cpt_ctx->snow3g = 1; gen_key_snow3g(key, keyx); memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len); cpt_ctx->fc_type = ZUC_SNOW3G; cpt_ctx->zsk_flags = 0x1; break; case ZUC_EIA3: cpt_ctx->snow3g = 0; memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len); memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32); cpt_ctx->fc_type = ZUC_SNOW3G; cpt_ctx->zsk_flags = 0x1; break; case KASUMI_F9_ECB: /* Kasumi ECB mode */ cpt_ctx->k_ecb = 1; memcpy(cpt_ctx->k_ctx.ci_key, key, key_len); cpt_ctx->fc_type = KASUMI; cpt_ctx->zsk_flags = 0x1; break; case KASUMI_F9_CBC: memcpy(cpt_ctx->k_ctx.ci_key, key, key_len); cpt_ctx->fc_type = KASUMI; cpt_ctx->zsk_flags = 0x1; break; default: return -1; } cpt_ctx->mac_len = 4; cpt_ctx->hash_type = type; return 0; } if (!(cpt_ctx->fc_type == FC_GEN && !type)) { if (!cpt_ctx->fc_type || !cpt_ctx->enc_cipher) cpt_ctx->fc_type = HASH_HMAC; } ctrl_flags = (uint64_t *)&fctx->enc.enc_ctrl.flags; *ctrl_flags = rte_be_to_cpu_64(*ctrl_flags); /* For GMAC auth, cipher must be NULL */ if (type == GMAC_TYPE) CPT_P_ENC_CTRL(fctx).enc_cipher = 0; CPT_P_ENC_CTRL(fctx).hash_type = cpt_ctx->hash_type = type; CPT_P_ENC_CTRL(fctx).mac_len = cpt_ctx->mac_len = mac_len; if (key_len) { cpt_ctx->hmac = 1; memset(cpt_ctx->auth_key, 0, sizeof(cpt_ctx->auth_key)); memcpy(cpt_ctx->auth_key, key, key_len); cpt_ctx->auth_key_len = key_len; memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad)); memset(fctx->hmac.opad, 0, sizeof(fctx->hmac.opad)); memcpy(fctx->hmac.opad, key, key_len); CPT_P_ENC_CTRL(fctx).auth_input_type = 1; } *ctrl_flags = rte_cpu_to_be_64(*ctrl_flags); return 0; } static __rte_always_inline int fill_sess_aead(struct rte_crypto_sym_xform *xform, struct cpt_sess_misc *sess) { struct rte_crypto_aead_xform *aead_form; cipher_type_t enc_type = 0; /* NULL Cipher type */ auth_type_t auth_type = 0; /* NULL Auth type */ uint32_t cipher_key_len = 0; uint8_t zsk_flag = 0, aes_gcm = 0; aead_form = &xform->aead; void *ctx; if (aead_form->op == RTE_CRYPTO_AEAD_OP_ENCRYPT && aead_form->algo == RTE_CRYPTO_AEAD_AES_GCM) { sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT; sess->cpt_op |= CPT_OP_AUTH_GENERATE; } else if (aead_form->op == RTE_CRYPTO_AEAD_OP_DECRYPT && aead_form->algo == RTE_CRYPTO_AEAD_AES_GCM) { sess->cpt_op |= CPT_OP_CIPHER_DECRYPT; sess->cpt_op |= CPT_OP_AUTH_VERIFY; } else { CPT_LOG_DP_ERR("Unknown cipher operation\n"); return -1; } switch (aead_form->algo) { case RTE_CRYPTO_AEAD_AES_GCM: enc_type = AES_GCM; cipher_key_len = 16; aes_gcm = 1; break; case RTE_CRYPTO_AEAD_AES_CCM: CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u", aead_form->algo); return -1; default: CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified", aead_form->algo); return -1; } if (aead_form->key.length < cipher_key_len) { CPT_LOG_DP_ERR("Invalid cipher params keylen %lu", (unsigned int long)aead_form->key.length); return -1; } sess->zsk_flag = zsk_flag; sess->aes_gcm = aes_gcm; sess->mac_len = aead_form->digest_length; sess->iv_offset = aead_form->iv.offset; sess->iv_length = aead_form->iv.length; sess->aad_length = aead_form->aad_length; ctx = (void *)((uint8_t *)sess + sizeof(struct cpt_sess_misc)), cpt_fc_ciph_set_key(ctx, enc_type, aead_form->key.data, aead_form->key.length, NULL); cpt_fc_auth_set_key(ctx, auth_type, NULL, 0, aead_form->digest_length); return 0; } static __rte_always_inline int fill_sess_cipher(struct rte_crypto_sym_xform *xform, struct cpt_sess_misc *sess) { struct rte_crypto_cipher_xform *c_form; cipher_type_t enc_type = 0; /* NULL Cipher type */ uint32_t cipher_key_len = 0; uint8_t zsk_flag = 0, aes_gcm = 0, aes_ctr = 0, is_null = 0; if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) return -1; c_form = &xform->cipher; if (c_form->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT; else if (c_form->op == RTE_CRYPTO_CIPHER_OP_DECRYPT) sess->cpt_op |= CPT_OP_CIPHER_DECRYPT; else { CPT_LOG_DP_ERR("Unknown cipher operation\n"); return -1; } switch (c_form->algo) { case RTE_CRYPTO_CIPHER_AES_CBC: enc_type = AES_CBC; cipher_key_len = 16; break; case RTE_CRYPTO_CIPHER_3DES_CBC: enc_type = DES3_CBC; cipher_key_len = 24; break; case RTE_CRYPTO_CIPHER_DES_CBC: /* DES is implemented using 3DES in hardware */ enc_type = DES3_CBC; cipher_key_len = 8; break; case RTE_CRYPTO_CIPHER_AES_CTR: enc_type = AES_CTR; cipher_key_len = 16; aes_ctr = 1; break; case RTE_CRYPTO_CIPHER_NULL: enc_type = 0; is_null = 1; break; case RTE_CRYPTO_CIPHER_KASUMI_F8: enc_type = KASUMI_F8_ECB; cipher_key_len = 16; zsk_flag = K_F8; break; case RTE_CRYPTO_CIPHER_SNOW3G_UEA2: enc_type = SNOW3G_UEA2; cipher_key_len = 16; zsk_flag = ZS_EA; break; case RTE_CRYPTO_CIPHER_ZUC_EEA3: enc_type = ZUC_EEA3; cipher_key_len = 16; zsk_flag = ZS_EA; break; case RTE_CRYPTO_CIPHER_AES_XTS: enc_type = AES_XTS; cipher_key_len = 16; break; case RTE_CRYPTO_CIPHER_3DES_ECB: enc_type = DES3_ECB; cipher_key_len = 24; break; case RTE_CRYPTO_CIPHER_AES_ECB: enc_type = AES_ECB; cipher_key_len = 16; break; case RTE_CRYPTO_CIPHER_3DES_CTR: case RTE_CRYPTO_CIPHER_AES_F8: case RTE_CRYPTO_CIPHER_ARC4: CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u", c_form->algo); return -1; default: CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified", c_form->algo); return -1; } if (c_form->key.length < cipher_key_len) { CPT_LOG_DP_ERR("Invalid cipher params keylen %lu", (unsigned long) c_form->key.length); return -1; } sess->zsk_flag = zsk_flag; sess->aes_gcm = aes_gcm; sess->aes_ctr = aes_ctr; sess->iv_offset = c_form->iv.offset; sess->iv_length = c_form->iv.length; sess->is_null = is_null; cpt_fc_ciph_set_key(SESS_PRIV(sess), enc_type, c_form->key.data, c_form->key.length, NULL); return 0; } static __rte_always_inline int fill_sess_auth(struct rte_crypto_sym_xform *xform, struct cpt_sess_misc *sess) { struct rte_crypto_auth_xform *a_form; auth_type_t auth_type = 0; /* NULL Auth type */ uint8_t zsk_flag = 0, aes_gcm = 0, is_null = 0; if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) goto error_out; a_form = &xform->auth; if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY) sess->cpt_op |= CPT_OP_AUTH_VERIFY; else if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE) sess->cpt_op |= CPT_OP_AUTH_GENERATE; else { CPT_LOG_DP_ERR("Unknown auth operation"); return -1; } if (a_form->key.length > 64) { CPT_LOG_DP_ERR("Auth key length is big"); return -1; } switch (a_form->algo) { case RTE_CRYPTO_AUTH_SHA1_HMAC: /* Fall through */ case RTE_CRYPTO_AUTH_SHA1: auth_type = SHA1_TYPE; break; case RTE_CRYPTO_AUTH_SHA256_HMAC: case RTE_CRYPTO_AUTH_SHA256: auth_type = SHA2_SHA256; break; case RTE_CRYPTO_AUTH_SHA512_HMAC: case RTE_CRYPTO_AUTH_SHA512: auth_type = SHA2_SHA512; break; case RTE_CRYPTO_AUTH_AES_GMAC: auth_type = GMAC_TYPE; aes_gcm = 1; break; case RTE_CRYPTO_AUTH_SHA224_HMAC: case RTE_CRYPTO_AUTH_SHA224: auth_type = SHA2_SHA224; break; case RTE_CRYPTO_AUTH_SHA384_HMAC: case RTE_CRYPTO_AUTH_SHA384: auth_type = SHA2_SHA384; break; case RTE_CRYPTO_AUTH_MD5_HMAC: case RTE_CRYPTO_AUTH_MD5: auth_type = MD5_TYPE; break; case RTE_CRYPTO_AUTH_KASUMI_F9: auth_type = KASUMI_F9_ECB; /* * Indicate that direction needs to be taken out * from end of src */ zsk_flag = K_F9; break; case RTE_CRYPTO_AUTH_SNOW3G_UIA2: auth_type = SNOW3G_UIA2; zsk_flag = ZS_IA; break; case RTE_CRYPTO_AUTH_ZUC_EIA3: auth_type = ZUC_EIA3; zsk_flag = ZS_IA; break; case RTE_CRYPTO_AUTH_NULL: auth_type = 0; is_null = 1; break; case RTE_CRYPTO_AUTH_AES_XCBC_MAC: case RTE_CRYPTO_AUTH_AES_CMAC: case RTE_CRYPTO_AUTH_AES_CBC_MAC: CPT_LOG_DP_ERR("Crypto: Unsupported hash algo %u", a_form->algo); goto error_out; default: CPT_LOG_DP_ERR("Crypto: Undefined Hash algo %u specified", a_form->algo); goto error_out; } sess->zsk_flag = zsk_flag; sess->aes_gcm = aes_gcm; sess->mac_len = a_form->digest_length; sess->is_null = is_null; if (zsk_flag) { sess->auth_iv_offset = a_form->iv.offset; sess->auth_iv_length = a_form->iv.length; } cpt_fc_auth_set_key(SESS_PRIV(sess), auth_type, a_form->key.data, a_form->key.length, a_form->digest_length); return 0; error_out: return -1; } static __rte_always_inline int fill_sess_gmac(struct rte_crypto_sym_xform *xform, struct cpt_sess_misc *sess) { struct rte_crypto_auth_xform *a_form; cipher_type_t enc_type = 0; /* NULL Cipher type */ auth_type_t auth_type = 0; /* NULL Auth type */ uint8_t zsk_flag = 0, aes_gcm = 0; void *ctx; if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) return -1; a_form = &xform->auth; if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE) sess->cpt_op |= CPT_OP_ENCODE; else if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY) sess->cpt_op |= CPT_OP_DECODE; else { CPT_LOG_DP_ERR("Unknown auth operation"); return -1; } switch (a_form->algo) { case RTE_CRYPTO_AUTH_AES_GMAC: enc_type = AES_GCM; auth_type = GMAC_TYPE; break; default: CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified", a_form->algo); return -1; } sess->zsk_flag = zsk_flag; sess->aes_gcm = aes_gcm; sess->is_gmac = 1; sess->iv_offset = a_form->iv.offset; sess->iv_length = a_form->iv.length; sess->mac_len = a_form->digest_length; ctx = (void *)((uint8_t *)sess + sizeof(struct cpt_sess_misc)), cpt_fc_ciph_set_key(ctx, enc_type, a_form->key.data, a_form->key.length, NULL); cpt_fc_auth_set_key(ctx, auth_type, NULL, 0, a_form->digest_length); return 0; } static __rte_always_inline void * alloc_op_meta(struct rte_mbuf *m_src, buf_ptr_t *buf, int32_t len, struct rte_mempool *cpt_meta_pool) { uint8_t *mdata; #ifndef CPT_ALWAYS_USE_SEPARATE_BUF if (likely(m_src && (m_src->nb_segs == 1))) { int32_t tailroom; phys_addr_t mphys; /* Check if tailroom is sufficient to hold meta data */ tailroom = rte_pktmbuf_tailroom(m_src); if (likely(tailroom > len + 8)) { mdata = (uint8_t *)m_src->buf_addr + m_src->buf_len; mphys = m_src->buf_physaddr + m_src->buf_len; mdata -= len; mphys -= len; buf->vaddr = mdata; buf->dma_addr = mphys; buf->size = len; /* Indicate that this is a mbuf allocated mdata */ mdata = (uint8_t *)((uint64_t)mdata | 1ull); return mdata; } } #else RTE_SET_USED(m_src); #endif if (unlikely(rte_mempool_get(cpt_meta_pool, (void **)&mdata) < 0)) return NULL; buf->vaddr = mdata; buf->dma_addr = rte_mempool_virt2iova(mdata); buf->size = len; return mdata; } /** * cpt_free_metabuf - free metabuf to mempool. * @param instance: pointer to instance. * @param objp: pointer to the metabuf. */ static __rte_always_inline void free_op_meta(void *mdata, struct rte_mempool *cpt_meta_pool) { bool nofree = ((uintptr_t)mdata & 1ull); if (likely(nofree)) return; rte_mempool_put(cpt_meta_pool, mdata); } static __rte_always_inline uint32_t prepare_iov_from_pkt(struct rte_mbuf *pkt, iov_ptr_t *iovec, uint32_t start_offset) { uint16_t index = 0; void *seg_data = NULL; phys_addr_t seg_phys; int32_t seg_size = 0; if (!pkt) { iovec->buf_cnt = 0; return 0; } if (!start_offset) { seg_data = rte_pktmbuf_mtod(pkt, void *); seg_phys = rte_pktmbuf_mtophys(pkt); seg_size = pkt->data_len; } else { while (start_offset >= pkt->data_len) { start_offset -= pkt->data_len; pkt = pkt->next; } seg_data = rte_pktmbuf_mtod_offset(pkt, void *, start_offset); seg_phys = rte_pktmbuf_mtophys_offset(pkt, start_offset); seg_size = pkt->data_len - start_offset; if (!seg_size) return 1; } /* first seg */ iovec->bufs[index].vaddr = seg_data; iovec->bufs[index].dma_addr = seg_phys; iovec->bufs[index].size = seg_size; index++; pkt = pkt->next; while (unlikely(pkt != NULL)) { seg_data = rte_pktmbuf_mtod(pkt, void *); seg_phys = rte_pktmbuf_mtophys(pkt); seg_size = pkt->data_len; if (!seg_size) break; iovec->bufs[index].vaddr = seg_data; iovec->bufs[index].dma_addr = seg_phys; iovec->bufs[index].size = seg_size; index++; pkt = pkt->next; } iovec->buf_cnt = index; return 0; } static __rte_always_inline uint32_t prepare_iov_from_pkt_inplace(struct rte_mbuf *pkt, fc_params_t *param, uint32_t *flags) { uint16_t index = 0; void *seg_data = NULL; phys_addr_t seg_phys; uint32_t seg_size = 0; iov_ptr_t *iovec; seg_data = rte_pktmbuf_mtod(pkt, void *); seg_phys = rte_pktmbuf_mtophys(pkt); seg_size = pkt->data_len; /* first seg */ if (likely(!pkt->next)) { uint32_t headroom, tailroom; *flags |= SINGLE_BUF_INPLACE; headroom = rte_pktmbuf_headroom(pkt); tailroom = rte_pktmbuf_tailroom(pkt); if (likely((headroom >= 24) && (tailroom >= 8))) { /* In 83XX this is prerequivisit for Direct mode */ *flags |= SINGLE_BUF_HEADTAILROOM; } param->bufs[0].vaddr = seg_data; param->bufs[0].dma_addr = seg_phys; param->bufs[0].size = seg_size; return 0; } iovec = param->src_iov; iovec->bufs[index].vaddr = seg_data; iovec->bufs[index].dma_addr = seg_phys; iovec->bufs[index].size = seg_size; index++; pkt = pkt->next; while (unlikely(pkt != NULL)) { seg_data = rte_pktmbuf_mtod(pkt, void *); seg_phys = rte_pktmbuf_mtophys(pkt); seg_size = pkt->data_len; if (!seg_size) break; iovec->bufs[index].vaddr = seg_data; iovec->bufs[index].dma_addr = seg_phys; iovec->bufs[index].size = seg_size; index++; pkt = pkt->next; } iovec->buf_cnt = index; return 0; } static __rte_always_inline void * fill_fc_params(struct rte_crypto_op *cop, struct cpt_sess_misc *sess_misc, void **mdata_ptr, int *op_ret) { uint32_t space = 0; struct rte_crypto_sym_op *sym_op = cop->sym; void *mdata; uintptr_t *op; uint32_t mc_hash_off; uint32_t flags = 0; uint64_t d_offs, d_lens; void *prep_req = NULL; struct rte_mbuf *m_src, *m_dst; uint8_t cpt_op = sess_misc->cpt_op; uint8_t zsk_flag = sess_misc->zsk_flag; uint8_t aes_gcm = sess_misc->aes_gcm; uint16_t mac_len = sess_misc->mac_len; #ifdef CPT_ALWAYS_USE_SG_MODE uint8_t inplace = 0; #else uint8_t inplace = 1; #endif fc_params_t fc_params; char src[SRC_IOV_SIZE]; char dst[SRC_IOV_SIZE]; uint32_t iv_buf[4]; struct cptvf_meta_info *cpt_m_info = (struct cptvf_meta_info *)(*mdata_ptr); if (likely(sess_misc->iv_length)) { flags |= VALID_IV_BUF; fc_params.iv_buf = rte_crypto_op_ctod_offset(cop, uint8_t *, sess_misc->iv_offset); if (sess_misc->aes_ctr && unlikely(sess_misc->iv_length != 16)) { memcpy((uint8_t *)iv_buf, rte_crypto_op_ctod_offset(cop, uint8_t *, sess_misc->iv_offset), 12); iv_buf[3] = rte_cpu_to_be_32(0x1); fc_params.iv_buf = iv_buf; } } if (zsk_flag) { fc_params.auth_iv_buf = rte_crypto_op_ctod_offset(cop, uint8_t *, sess_misc->auth_iv_offset); if (zsk_flag == K_F9) { CPT_LOG_DP_ERR("Should not reach here for " "kasumi F9\n"); } if (zsk_flag != ZS_EA) inplace = 0; } m_src = sym_op->m_src; m_dst = sym_op->m_dst; if (aes_gcm) { uint8_t *salt; uint8_t *aad_data; uint16_t aad_len; d_offs = sym_op->aead.data.offset; d_lens = sym_op->aead.data.length; mc_hash_off = sym_op->aead.data.offset + sym_op->aead.data.length; aad_data = sym_op->aead.aad.data; aad_len = sess_misc->aad_length; if (likely((aad_data + aad_len) == rte_pktmbuf_mtod_offset(m_src, uint8_t *, sym_op->aead.data.offset))) { d_offs = (d_offs - aad_len) | (d_offs << 16); d_lens = (d_lens + aad_len) | (d_lens << 32); } else { fc_params.aad_buf.vaddr = sym_op->aead.aad.data; fc_params.aad_buf.dma_addr = sym_op->aead.aad.phys_addr; fc_params.aad_buf.size = aad_len; flags |= VALID_AAD_BUF; inplace = 0; d_offs = d_offs << 16; d_lens = d_lens << 32; } salt = fc_params.iv_buf; if (unlikely(*(uint32_t *)salt != sess_misc->salt)) { cpt_fc_salt_update(SESS_PRIV(sess_misc), salt); sess_misc->salt = *(uint32_t *)salt; } fc_params.iv_buf = salt + 4; if (likely(mac_len)) { struct rte_mbuf *m = (cpt_op & CPT_OP_ENCODE) ? m_dst : m_src; if (!m) m = m_src; /* hmac immediately following data is best case */ if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) + mc_hash_off != (uint8_t *)sym_op->aead.digest.data)) { flags |= VALID_MAC_BUF; fc_params.mac_buf.size = sess_misc->mac_len; fc_params.mac_buf.vaddr = sym_op->aead.digest.data; fc_params.mac_buf.dma_addr = sym_op->aead.digest.phys_addr; inplace = 0; } } } else { d_offs = sym_op->cipher.data.offset; d_lens = sym_op->cipher.data.length; mc_hash_off = sym_op->cipher.data.offset + sym_op->cipher.data.length; d_offs = (d_offs << 16) | sym_op->auth.data.offset; d_lens = (d_lens << 32) | sym_op->auth.data.length; if (mc_hash_off < (sym_op->auth.data.offset + sym_op->auth.data.length)){ mc_hash_off = (sym_op->auth.data.offset + sym_op->auth.data.length); } /* for gmac, salt should be updated like in gcm */ if (unlikely(sess_misc->is_gmac)) { uint8_t *salt; salt = fc_params.iv_buf; if (unlikely(*(uint32_t *)salt != sess_misc->salt)) { cpt_fc_salt_update(SESS_PRIV(sess_misc), salt); sess_misc->salt = *(uint32_t *)salt; } fc_params.iv_buf = salt + 4; } if (likely(mac_len)) { struct rte_mbuf *m; m = (cpt_op & CPT_OP_ENCODE) ? m_dst : m_src; if (!m) m = m_src; /* hmac immediately following data is best case */ if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) + mc_hash_off != (uint8_t *)sym_op->auth.digest.data)) { flags |= VALID_MAC_BUF; fc_params.mac_buf.size = sess_misc->mac_len; fc_params.mac_buf.vaddr = sym_op->auth.digest.data; fc_params.mac_buf.dma_addr = sym_op->auth.digest.phys_addr; inplace = 0; } } } fc_params.ctx_buf.vaddr = SESS_PRIV(sess_misc); fc_params.ctx_buf.dma_addr = sess_misc->ctx_dma_addr; if (unlikely(sess_misc->is_null || sess_misc->cpt_op == CPT_OP_DECODE)) inplace = 0; if (likely(!m_dst && inplace)) { /* Case of single buffer without AAD buf or * separate mac buf in place and * not air crypto */ fc_params.dst_iov = fc_params.src_iov = (void *)src; if (unlikely(prepare_iov_from_pkt_inplace(m_src, &fc_params, &flags))) { CPT_LOG_DP_ERR("Prepare inplace src iov failed"); *op_ret = -1; return NULL; } } else { /* Out of place processing */ fc_params.src_iov = (void *)src; fc_params.dst_iov = (void *)dst; /* Store SG I/O in the api for reuse */ if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) { CPT_LOG_DP_ERR("Prepare src iov failed"); *op_ret = -1; return NULL; } if (unlikely(m_dst != NULL)) { uint32_t pkt_len; /* Try to make room as much as src has */ m_dst = sym_op->m_dst; pkt_len = rte_pktmbuf_pkt_len(m_dst); if (unlikely(pkt_len < rte_pktmbuf_pkt_len(m_src))) { pkt_len = rte_pktmbuf_pkt_len(m_src) - pkt_len; if (!rte_pktmbuf_append(m_dst, pkt_len)) { CPT_LOG_DP_ERR("Not enough space in " "m_dst %p, need %u" " more", m_dst, pkt_len); return NULL; } } if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) { CPT_LOG_DP_ERR("Prepare dst iov failed for " "m_dst %p", m_dst); return NULL; } } else { fc_params.dst_iov = (void *)src; } } if (likely(flags & SINGLE_BUF_HEADTAILROOM)) mdata = alloc_op_meta(m_src, &fc_params.meta_buf, cpt_m_info->cptvf_op_sb_mlen, cpt_m_info->cptvf_meta_pool); else mdata = alloc_op_meta(NULL, &fc_params.meta_buf, cpt_m_info->cptvf_op_mlen, cpt_m_info->cptvf_meta_pool); if (unlikely(mdata == NULL)) { CPT_LOG_DP_ERR("Error allocating meta buffer for request"); return NULL; } op = (uintptr_t *)((uintptr_t)mdata & (uintptr_t)~1ull); op[0] = (uintptr_t)mdata; op[1] = (uintptr_t)cop; op[2] = op[3] = 0; /* Used to indicate auth verify */ space += 4 * sizeof(uint64_t); fc_params.meta_buf.vaddr = (uint8_t *)op + space; fc_params.meta_buf.dma_addr += space; fc_params.meta_buf.size -= space; /* Finally prepare the instruction */ if (cpt_op & CPT_OP_ENCODE) prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, &fc_params, op, op_ret); else prep_req = cpt_fc_dec_hmac_prep(flags, d_offs, d_lens, &fc_params, op, op_ret); if (unlikely(!prep_req)) free_op_meta(mdata, cpt_m_info->cptvf_meta_pool); *mdata_ptr = mdata; return prep_req; } static __rte_always_inline void compl_auth_verify(struct rte_crypto_op *op, uint8_t *gen_mac, uint64_t mac_len) { uint8_t *mac; struct rte_crypto_sym_op *sym_op = op->sym; if (sym_op->auth.digest.data) mac = sym_op->auth.digest.data; else mac = rte_pktmbuf_mtod_offset(sym_op->m_src, uint8_t *, sym_op->auth.data.length + sym_op->auth.data.offset); if (!mac) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; return; } if (memcmp(mac, gen_mac, mac_len)) op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; else op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; } static __rte_always_inline int instance_session_cfg(struct rte_crypto_sym_xform *xform, void *sess) { struct rte_crypto_sym_xform *chain; CPT_PMD_INIT_FUNC_TRACE(); if (cpt_is_algo_supported(xform)) goto err; chain = xform; while (chain) { switch (chain->type) { case RTE_CRYPTO_SYM_XFORM_AEAD: if (fill_sess_aead(chain, sess)) goto err; break; case RTE_CRYPTO_SYM_XFORM_CIPHER: if (fill_sess_cipher(chain, sess)) goto err; break; case RTE_CRYPTO_SYM_XFORM_AUTH: if (chain->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) { if (fill_sess_gmac(chain, sess)) goto err; } else { if (fill_sess_auth(chain, sess)) goto err; } break; default: CPT_LOG_DP_ERR("Invalid crypto xform type"); break; } chain = chain->next; } return 0; err: return -1; } static __rte_always_inline void find_kasumif9_direction_and_length(uint8_t *src, uint32_t counter_num_bytes, uint32_t *addr_length_in_bits, uint8_t *addr_direction) { uint8_t found = 0; uint32_t pos; uint8_t last_byte; while (!found && counter_num_bytes > 0) { counter_num_bytes--; if (src[counter_num_bytes] == 0x00) continue; pos = rte_bsf32(src[counter_num_bytes]); if (pos == 7) { if (likely(counter_num_bytes > 0)) { last_byte = src[counter_num_bytes - 1]; *addr_direction = last_byte & 0x1; *addr_length_in_bits = counter_num_bytes * 8 - 1; } } else { last_byte = src[counter_num_bytes]; *addr_direction = (last_byte >> (pos + 1)) & 0x1; *addr_length_in_bits = counter_num_bytes * 8 + (8 - (pos + 2)); } found = 1; } } /* * This handles all auth only except AES_GMAC */ static __rte_always_inline void * fill_digest_params(struct rte_crypto_op *cop, struct cpt_sess_misc *sess, void **mdata_ptr, int *op_ret) { uint32_t space = 0; struct rte_crypto_sym_op *sym_op = cop->sym; void *mdata; phys_addr_t mphys; uint64_t *op; uint32_t auth_range_off; uint32_t flags = 0; uint64_t d_offs = 0, d_lens; void *prep_req = NULL; struct rte_mbuf *m_src, *m_dst; uint16_t auth_op = sess->cpt_op & CPT_OP_AUTH_MASK; uint8_t zsk_flag = sess->zsk_flag; uint16_t mac_len = sess->mac_len; fc_params_t params; char src[SRC_IOV_SIZE]; uint8_t iv_buf[16]; memset(¶ms, 0, sizeof(fc_params_t)); struct cptvf_meta_info *cpt_m_info = (struct cptvf_meta_info *)(*mdata_ptr); m_src = sym_op->m_src; /* For just digest lets force mempool alloc */ mdata = alloc_op_meta(NULL, ¶ms.meta_buf, cpt_m_info->cptvf_op_mlen, cpt_m_info->cptvf_meta_pool); if (mdata == NULL) { CPT_LOG_DP_ERR("Error allocating meta buffer for request"); *op_ret = -ENOMEM; return NULL; } mphys = params.meta_buf.dma_addr; op = mdata; op[0] = (uintptr_t)mdata; op[1] = (uintptr_t)cop; op[2] = op[3] = 0; /* Used to indicate auth verify */ space += 4 * sizeof(uint64_t); auth_range_off = sym_op->auth.data.offset; flags = VALID_MAC_BUF; params.src_iov = (void *)src; if (unlikely(zsk_flag)) { /* * Since for Zuc, Kasumi, Snow3g offsets are in bits * we will send pass through even for auth only case, * let MC handle it */ d_offs = auth_range_off; auth_range_off = 0; params.auth_iv_buf = rte_crypto_op_ctod_offset(cop, uint8_t *, sess->auth_iv_offset); if (zsk_flag == K_F9) { uint32_t length_in_bits, num_bytes; uint8_t *src, direction = 0; uint32_t counter_num_bytes; memcpy(iv_buf, rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *), 8); /* * This is kasumi f9, take direction from * source buffer */ length_in_bits = cop->sym->auth.data.length; num_bytes = (length_in_bits >> 3); counter_num_bytes = num_bytes; src = rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *); find_kasumif9_direction_and_length(src, counter_num_bytes, &length_in_bits, &direction); length_in_bits -= 64; cop->sym->auth.data.offset += 64; d_offs = cop->sym->auth.data.offset; auth_range_off = d_offs / 8; cop->sym->auth.data.length = length_in_bits; /* Store it at end of auth iv */ iv_buf[8] = direction; params.auth_iv_buf = iv_buf; } } d_lens = sym_op->auth.data.length; params.ctx_buf.vaddr = SESS_PRIV(sess); params.ctx_buf.dma_addr = sess->ctx_dma_addr; if (auth_op == CPT_OP_AUTH_GENERATE) { if (sym_op->auth.digest.data) { /* * Digest to be generated * in separate buffer */ params.mac_buf.size = sess->mac_len; params.mac_buf.vaddr = sym_op->auth.digest.data; params.mac_buf.dma_addr = sym_op->auth.digest.phys_addr; } else { uint32_t off = sym_op->auth.data.offset + sym_op->auth.data.length; int32_t dlen, space; m_dst = sym_op->m_dst ? sym_op->m_dst : sym_op->m_src; dlen = rte_pktmbuf_pkt_len(m_dst); space = off + mac_len - dlen; if (space > 0) if (!rte_pktmbuf_append(m_dst, space)) { CPT_LOG_DP_ERR("Failed to extend " "mbuf by %uB", space); goto err; } params.mac_buf.vaddr = rte_pktmbuf_mtod_offset(m_dst, void *, off); params.mac_buf.dma_addr = rte_pktmbuf_mtophys_offset(m_dst, off); params.mac_buf.size = mac_len; } } else { /* Need space for storing generated mac */ params.mac_buf.vaddr = (uint8_t *)mdata + space; params.mac_buf.dma_addr = mphys + space; params.mac_buf.size = mac_len; space += RTE_ALIGN_CEIL(mac_len, 8); op[2] = (uintptr_t)params.mac_buf.vaddr; op[3] = mac_len; } params.meta_buf.vaddr = (uint8_t *)mdata + space; params.meta_buf.dma_addr = mphys + space; params.meta_buf.size -= space; /* Out of place processing */ params.src_iov = (void *)src; /*Store SG I/O in the api for reuse */ if (prepare_iov_from_pkt(m_src, params.src_iov, auth_range_off)) { CPT_LOG_DP_ERR("Prepare src iov failed"); *op_ret = -1; goto err; } prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, ¶ms, op, op_ret); *mdata_ptr = mdata; return prep_req; err: if (unlikely(!prep_req)) free_op_meta(mdata, cpt_m_info->cptvf_meta_pool); return NULL; } #endif /*_CPT_UCODE_H_ */