/* SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2016 Freescale Semiconductor, Inc. All rights reserved. * Copyright 2017-2018 NXP * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* RTA header files */ #include #include #include #include #include #include enum rta_sec_era rta_sec_era; int dpaa_logtype_sec; static uint8_t cryptodev_driver_id; static __thread struct rte_crypto_op **dpaa_sec_ops; static __thread int dpaa_sec_op_nb; static int dpaa_sec_attach_sess_q(struct dpaa_sec_qp *qp, dpaa_sec_session *sess); static inline void dpaa_sec_op_ending(struct dpaa_sec_op_ctx *ctx) { if (!ctx->fd_status) { ctx->op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; } else { DPAA_SEC_DP_WARN("SEC return err: 0x%x", ctx->fd_status); ctx->op->status = RTE_CRYPTO_OP_STATUS_ERROR; } /* report op status to sym->op and then free the ctx memeory */ rte_mempool_put(ctx->ctx_pool, (void *)ctx); } static inline struct dpaa_sec_op_ctx * dpaa_sec_alloc_ctx(dpaa_sec_session *ses) { struct dpaa_sec_op_ctx *ctx; int retval; retval = rte_mempool_get(ses->ctx_pool, (void **)(&ctx)); if (!ctx || retval) { DPAA_SEC_DP_WARN("Alloc sec descriptor failed!"); return NULL; } /* * Clear SG memory. There are 16 SG entries of 16 Bytes each. * one call to dcbz_64() clear 64 bytes, hence calling it 4 times * to clear all the SG entries. dpaa_sec_alloc_ctx() is called for * each packet, memset is costlier than dcbz_64(). */ dcbz_64(&ctx->job.sg[SG_CACHELINE_0]); dcbz_64(&ctx->job.sg[SG_CACHELINE_1]); dcbz_64(&ctx->job.sg[SG_CACHELINE_2]); dcbz_64(&ctx->job.sg[SG_CACHELINE_3]); ctx->ctx_pool = ses->ctx_pool; ctx->vtop_offset = (size_t) ctx - rte_mempool_virt2iova(ctx); return ctx; } static inline rte_iova_t dpaa_mem_vtop(void *vaddr) { const struct rte_memseg *ms; ms = rte_mem_virt2memseg(vaddr, NULL); if (ms) return ms->iova + RTE_PTR_DIFF(vaddr, ms->addr); return (size_t)NULL; } static inline void * dpaa_mem_ptov(rte_iova_t paddr) { void *va; va = (void *)dpaax_iova_table_get_va(paddr); if (likely(va)) return va; return rte_mem_iova2virt(paddr); } static void ern_sec_fq_handler(struct qman_portal *qm __rte_unused, struct qman_fq *fq, const struct qm_mr_entry *msg) { DPAA_SEC_DP_ERR("sec fq %d error, RC = %x, seqnum = %x\n", fq->fqid, msg->ern.rc, msg->ern.seqnum); } /* initialize the queue with dest chan as caam chan so that * all the packets in this queue could be dispatched into caam */ static int dpaa_sec_init_rx(struct qman_fq *fq_in, rte_iova_t hwdesc, uint32_t fqid_out) { struct qm_mcc_initfq fq_opts; uint32_t flags; int ret = -1; /* Clear FQ options */ memset(&fq_opts, 0x00, sizeof(struct qm_mcc_initfq)); flags = QMAN_INITFQ_FLAG_SCHED; fq_opts.we_mask = QM_INITFQ_WE_DESTWQ | QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CONTEXTB; qm_fqd_context_a_set64(&fq_opts.fqd, hwdesc); fq_opts.fqd.context_b = fqid_out; fq_opts.fqd.dest.channel = qm_channel_caam; fq_opts.fqd.dest.wq = 0; fq_in->cb.ern = ern_sec_fq_handler; DPAA_SEC_DEBUG("in-%x out-%x", fq_in->fqid, fqid_out); ret = qman_init_fq(fq_in, flags, &fq_opts); if (unlikely(ret != 0)) DPAA_SEC_ERR("qman_init_fq failed %d", ret); return ret; } /* something is put into in_fq and caam put the crypto result into out_fq */ static enum qman_cb_dqrr_result dqrr_out_fq_cb_rx(struct qman_portal *qm __always_unused, struct qman_fq *fq __always_unused, const struct qm_dqrr_entry *dqrr) { const struct qm_fd *fd; struct dpaa_sec_job *job; struct dpaa_sec_op_ctx *ctx; if (dpaa_sec_op_nb >= DPAA_SEC_BURST) return qman_cb_dqrr_defer; if (!(dqrr->stat & QM_DQRR_STAT_FD_VALID)) return qman_cb_dqrr_consume; fd = &dqrr->fd; /* sg is embedded in an op ctx, * sg[0] is for output * sg[1] for input */ job = dpaa_mem_ptov(qm_fd_addr_get64(fd)); ctx = container_of(job, struct dpaa_sec_op_ctx, job); ctx->fd_status = fd->status; if (ctx->op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) { struct qm_sg_entry *sg_out; uint32_t len; sg_out = &job->sg[0]; hw_sg_to_cpu(sg_out); len = sg_out->length; ctx->op->sym->m_src->pkt_len = len; ctx->op->sym->m_src->data_len = len; } dpaa_sec_ops[dpaa_sec_op_nb++] = ctx->op; dpaa_sec_op_ending(ctx); return qman_cb_dqrr_consume; } /* caam result is put into this queue */ static int dpaa_sec_init_tx(struct qman_fq *fq) { int ret; struct qm_mcc_initfq opts; uint32_t flags; flags = QMAN_FQ_FLAG_NO_ENQUEUE | QMAN_FQ_FLAG_LOCKED | QMAN_FQ_FLAG_DYNAMIC_FQID; ret = qman_create_fq(0, flags, fq); if (unlikely(ret)) { DPAA_SEC_ERR("qman_create_fq failed"); return ret; } memset(&opts, 0, sizeof(opts)); opts.we_mask = QM_INITFQ_WE_DESTWQ | QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CONTEXTB; /* opts.fqd.dest.channel = dpaa_sec_pool_chan; */ fq->cb.dqrr = dqrr_out_fq_cb_rx; fq->cb.ern = ern_sec_fq_handler; ret = qman_init_fq(fq, 0, &opts); if (unlikely(ret)) { DPAA_SEC_ERR("unable to init caam source fq!"); return ret; } return ret; } static inline int is_cipher_only(dpaa_sec_session *ses) { return ((ses->cipher_alg != RTE_CRYPTO_CIPHER_NULL) && (ses->auth_alg == RTE_CRYPTO_AUTH_NULL)); } static inline int is_auth_only(dpaa_sec_session *ses) { return ((ses->cipher_alg == RTE_CRYPTO_CIPHER_NULL) && (ses->auth_alg != RTE_CRYPTO_AUTH_NULL)); } static inline int is_aead(dpaa_sec_session *ses) { return ((ses->cipher_alg == 0) && (ses->auth_alg == 0) && (ses->aead_alg != 0)); } static inline int is_auth_cipher(dpaa_sec_session *ses) { return ((ses->cipher_alg != RTE_CRYPTO_CIPHER_NULL) && (ses->auth_alg != RTE_CRYPTO_AUTH_NULL) && (ses->proto_alg != RTE_SECURITY_PROTOCOL_IPSEC)); } static inline int is_proto_ipsec(dpaa_sec_session *ses) { return (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC); } static inline int is_encode(dpaa_sec_session *ses) { return ses->dir == DIR_ENC; } static inline int is_decode(dpaa_sec_session *ses) { return ses->dir == DIR_DEC; } static inline void caam_auth_alg(dpaa_sec_session *ses, struct alginfo *alginfo_a) { switch (ses->auth_alg) { case RTE_CRYPTO_AUTH_NULL: alginfo_a->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_HMAC_NULL : 0; ses->digest_length = 0; break; case RTE_CRYPTO_AUTH_MD5_HMAC: alginfo_a->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_HMAC_MD5_96 : OP_ALG_ALGSEL_MD5; alginfo_a->algmode = OP_ALG_AAI_HMAC; break; case RTE_CRYPTO_AUTH_SHA1_HMAC: alginfo_a->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_HMAC_SHA1_96 : OP_ALG_ALGSEL_SHA1; alginfo_a->algmode = OP_ALG_AAI_HMAC; break; case RTE_CRYPTO_AUTH_SHA224_HMAC: alginfo_a->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_HMAC_SHA1_160 : OP_ALG_ALGSEL_SHA224; alginfo_a->algmode = OP_ALG_AAI_HMAC; break; case RTE_CRYPTO_AUTH_SHA256_HMAC: alginfo_a->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_HMAC_SHA2_256_128 : OP_ALG_ALGSEL_SHA256; alginfo_a->algmode = OP_ALG_AAI_HMAC; break; case RTE_CRYPTO_AUTH_SHA384_HMAC: alginfo_a->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_HMAC_SHA2_384_192 : OP_ALG_ALGSEL_SHA384; alginfo_a->algmode = OP_ALG_AAI_HMAC; break; case RTE_CRYPTO_AUTH_SHA512_HMAC: alginfo_a->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_HMAC_SHA2_512_256 : OP_ALG_ALGSEL_SHA512; alginfo_a->algmode = OP_ALG_AAI_HMAC; break; default: DPAA_SEC_ERR("unsupported auth alg %u", ses->auth_alg); } } static inline void caam_cipher_alg(dpaa_sec_session *ses, struct alginfo *alginfo_c) { switch (ses->cipher_alg) { case RTE_CRYPTO_CIPHER_NULL: alginfo_c->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_NULL : 0; break; case RTE_CRYPTO_CIPHER_AES_CBC: alginfo_c->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_AES_CBC : OP_ALG_ALGSEL_AES; alginfo_c->algmode = OP_ALG_AAI_CBC; break; case RTE_CRYPTO_CIPHER_3DES_CBC: alginfo_c->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_3DES : OP_ALG_ALGSEL_3DES; alginfo_c->algmode = OP_ALG_AAI_CBC; break; case RTE_CRYPTO_CIPHER_AES_CTR: alginfo_c->algtype = (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ? OP_PCL_IPSEC_AES_CTR : OP_ALG_ALGSEL_AES; alginfo_c->algmode = OP_ALG_AAI_CTR; break; default: DPAA_SEC_ERR("unsupported cipher alg %d", ses->cipher_alg); } } static inline void caam_aead_alg(dpaa_sec_session *ses, struct alginfo *alginfo) { switch (ses->aead_alg) { case RTE_CRYPTO_AEAD_AES_GCM: alginfo->algtype = OP_ALG_ALGSEL_AES; alginfo->algmode = OP_ALG_AAI_GCM; break; default: DPAA_SEC_ERR("unsupported AEAD alg %d", ses->aead_alg); } } /* prepare ipsec proto command block of the session */ static int dpaa_sec_prep_ipsec_cdb(dpaa_sec_session *ses) { struct alginfo cipherdata = {0}, authdata = {0}; struct sec_cdb *cdb = &ses->cdb; int32_t shared_desc_len = 0; int err; #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN int swap = false; #else int swap = true; #endif caam_cipher_alg(ses, &cipherdata); if (cipherdata.algtype == (unsigned int)DPAA_SEC_ALG_UNSUPPORT) { DPAA_SEC_ERR("not supported cipher alg"); return -ENOTSUP; } cipherdata.key = (size_t)ses->cipher_key.data; cipherdata.keylen = ses->cipher_key.length; cipherdata.key_enc_flags = 0; cipherdata.key_type = RTA_DATA_IMM; caam_auth_alg(ses, &authdata); if (authdata.algtype == (unsigned int)DPAA_SEC_ALG_UNSUPPORT) { DPAA_SEC_ERR("not supported auth alg"); return -ENOTSUP; } authdata.key = (size_t)ses->auth_key.data; authdata.keylen = ses->auth_key.length; authdata.key_enc_flags = 0; authdata.key_type = RTA_DATA_IMM; cdb->sh_desc[0] = cipherdata.keylen; cdb->sh_desc[1] = authdata.keylen; err = rta_inline_query(IPSEC_AUTH_VAR_AES_DEC_BASE_DESC_LEN, MIN_JOB_DESC_SIZE, (unsigned int *)cdb->sh_desc, &cdb->sh_desc[2], 2); if (err < 0) { DPAA_SEC_ERR("Crypto: Incorrect key lengths"); return err; } if (cdb->sh_desc[2] & 1) cipherdata.key_type = RTA_DATA_IMM; else { cipherdata.key = (size_t)dpaa_mem_vtop( (void *)(size_t)cipherdata.key); cipherdata.key_type = RTA_DATA_PTR; } if (cdb->sh_desc[2] & (1<<1)) authdata.key_type = RTA_DATA_IMM; else { authdata.key = (size_t)dpaa_mem_vtop( (void *)(size_t)authdata.key); authdata.key_type = RTA_DATA_PTR; } cdb->sh_desc[0] = 0; cdb->sh_desc[1] = 0; cdb->sh_desc[2] = 0; if (ses->dir == DIR_ENC) { shared_desc_len = cnstr_shdsc_ipsec_new_encap( cdb->sh_desc, true, swap, SHR_SERIAL, &ses->encap_pdb, (uint8_t *)&ses->ip4_hdr, &cipherdata, &authdata); } else if (ses->dir == DIR_DEC) { shared_desc_len = cnstr_shdsc_ipsec_new_decap( cdb->sh_desc, true, swap, SHR_SERIAL, &ses->decap_pdb, &cipherdata, &authdata); } return shared_desc_len; } /* prepare command block of the session */ static int dpaa_sec_prep_cdb(dpaa_sec_session *ses) { struct alginfo alginfo_c = {0}, alginfo_a = {0}, alginfo = {0}; int32_t shared_desc_len = 0; struct sec_cdb *cdb = &ses->cdb; int err; #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN int swap = false; #else int swap = true; #endif memset(cdb, 0, sizeof(struct sec_cdb)); if (is_proto_ipsec(ses)) { shared_desc_len = dpaa_sec_prep_ipsec_cdb(ses); } else if (is_cipher_only(ses)) { caam_cipher_alg(ses, &alginfo_c); if (alginfo_c.algtype == (unsigned int)DPAA_SEC_ALG_UNSUPPORT) { DPAA_SEC_ERR("not supported cipher alg"); return -ENOTSUP; } alginfo_c.key = (size_t)ses->cipher_key.data; alginfo_c.keylen = ses->cipher_key.length; alginfo_c.key_enc_flags = 0; alginfo_c.key_type = RTA_DATA_IMM; shared_desc_len = cnstr_shdsc_blkcipher( cdb->sh_desc, true, swap, &alginfo_c, NULL, ses->iv.length, ses->dir); } else if (is_auth_only(ses)) { caam_auth_alg(ses, &alginfo_a); if (alginfo_a.algtype == (unsigned int)DPAA_SEC_ALG_UNSUPPORT) { DPAA_SEC_ERR("not supported auth alg"); return -ENOTSUP; } alginfo_a.key = (size_t)ses->auth_key.data; alginfo_a.keylen = ses->auth_key.length; alginfo_a.key_enc_flags = 0; alginfo_a.key_type = RTA_DATA_IMM; shared_desc_len = cnstr_shdsc_hmac(cdb->sh_desc, true, swap, &alginfo_a, !ses->dir, ses->digest_length); } else if (is_aead(ses)) { caam_aead_alg(ses, &alginfo); if (alginfo.algtype == (unsigned int)DPAA_SEC_ALG_UNSUPPORT) { DPAA_SEC_ERR("not supported aead alg"); return -ENOTSUP; } alginfo.key = (size_t)ses->aead_key.data; alginfo.keylen = ses->aead_key.length; alginfo.key_enc_flags = 0; alginfo.key_type = RTA_DATA_IMM; if (ses->dir == DIR_ENC) shared_desc_len = cnstr_shdsc_gcm_encap( cdb->sh_desc, true, swap, &alginfo, ses->iv.length, ses->digest_length); else shared_desc_len = cnstr_shdsc_gcm_decap( cdb->sh_desc, true, swap, &alginfo, ses->iv.length, ses->digest_length); } else { caam_cipher_alg(ses, &alginfo_c); if (alginfo_c.algtype == (unsigned int)DPAA_SEC_ALG_UNSUPPORT) { DPAA_SEC_ERR("not supported cipher alg"); return -ENOTSUP; } alginfo_c.key = (size_t)ses->cipher_key.data; alginfo_c.keylen = ses->cipher_key.length; alginfo_c.key_enc_flags = 0; alginfo_c.key_type = RTA_DATA_IMM; caam_auth_alg(ses, &alginfo_a); if (alginfo_a.algtype == (unsigned int)DPAA_SEC_ALG_UNSUPPORT) { DPAA_SEC_ERR("not supported auth alg"); return -ENOTSUP; } alginfo_a.key = (size_t)ses->auth_key.data; alginfo_a.keylen = ses->auth_key.length; alginfo_a.key_enc_flags = 0; alginfo_a.key_type = RTA_DATA_IMM; cdb->sh_desc[0] = alginfo_c.keylen; cdb->sh_desc[1] = alginfo_a.keylen; err = rta_inline_query(IPSEC_AUTH_VAR_AES_DEC_BASE_DESC_LEN, MIN_JOB_DESC_SIZE, (unsigned int *)cdb->sh_desc, &cdb->sh_desc[2], 2); if (err < 0) { DPAA_SEC_ERR("Crypto: Incorrect key lengths"); return err; } if (cdb->sh_desc[2] & 1) alginfo_c.key_type = RTA_DATA_IMM; else { alginfo_c.key = (size_t)dpaa_mem_vtop( (void *)(size_t)alginfo_c.key); alginfo_c.key_type = RTA_DATA_PTR; } if (cdb->sh_desc[2] & (1<<1)) alginfo_a.key_type = RTA_DATA_IMM; else { alginfo_a.key = (size_t)dpaa_mem_vtop( (void *)(size_t)alginfo_a.key); alginfo_a.key_type = RTA_DATA_PTR; } cdb->sh_desc[0] = 0; cdb->sh_desc[1] = 0; cdb->sh_desc[2] = 0; /* Auth_only_len is set as 0 here and it will be * overwritten in fd for each packet. */ shared_desc_len = cnstr_shdsc_authenc(cdb->sh_desc, true, swap, &alginfo_c, &alginfo_a, ses->iv.length, 0, ses->digest_length, ses->dir); } if (shared_desc_len < 0) { DPAA_SEC_ERR("error in preparing command block"); return shared_desc_len; } cdb->sh_hdr.hi.field.idlen = shared_desc_len; cdb->sh_hdr.hi.word = rte_cpu_to_be_32(cdb->sh_hdr.hi.word); cdb->sh_hdr.lo.word = rte_cpu_to_be_32(cdb->sh_hdr.lo.word); return 0; } /* qp is lockless, should be accessed by only one thread */ static int dpaa_sec_deq(struct dpaa_sec_qp *qp, struct rte_crypto_op **ops, int nb_ops) { struct qman_fq *fq; unsigned int pkts = 0; int num_rx_bufs, ret; struct qm_dqrr_entry *dq; uint32_t vdqcr_flags = 0; fq = &qp->outq; /* * Until request for four buffers, we provide exact number of buffers. * Otherwise we do not set the QM_VDQCR_EXACT flag. * Not setting QM_VDQCR_EXACT flag can provide two more buffers than * requested, so we request two less in this case. */ if (nb_ops < 4) { vdqcr_flags = QM_VDQCR_EXACT; num_rx_bufs = nb_ops; } else { num_rx_bufs = nb_ops > DPAA_MAX_DEQUEUE_NUM_FRAMES ? (DPAA_MAX_DEQUEUE_NUM_FRAMES - 2) : (nb_ops - 2); } ret = qman_set_vdq(fq, num_rx_bufs, vdqcr_flags); if (ret) return 0; do { const struct qm_fd *fd; struct dpaa_sec_job *job; struct dpaa_sec_op_ctx *ctx; struct rte_crypto_op *op; dq = qman_dequeue(fq); if (!dq) continue; fd = &dq->fd; /* sg is embedded in an op ctx, * sg[0] is for output * sg[1] for input */ job = dpaa_mem_ptov(qm_fd_addr_get64(fd)); ctx = container_of(job, struct dpaa_sec_op_ctx, job); ctx->fd_status = fd->status; op = ctx->op; if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) { struct qm_sg_entry *sg_out; uint32_t len; sg_out = &job->sg[0]; hw_sg_to_cpu(sg_out); len = sg_out->length; op->sym->m_src->pkt_len = len; op->sym->m_src->data_len = len; } if (!ctx->fd_status) { op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; } else { DPAA_SEC_DP_WARN("SEC return err:0x%x", ctx->fd_status); op->status = RTE_CRYPTO_OP_STATUS_ERROR; } ops[pkts++] = op; /* report op status to sym->op and then free the ctx memeory */ rte_mempool_put(ctx->ctx_pool, (void *)ctx); qman_dqrr_consume(fq, dq); } while (fq->flags & QMAN_FQ_STATE_VDQCR); return pkts; } static inline struct dpaa_sec_job * build_auth_only_sg(struct rte_crypto_op *op, dpaa_sec_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct rte_mbuf *mbuf = sym->m_src; struct dpaa_sec_job *cf; struct dpaa_sec_op_ctx *ctx; struct qm_sg_entry *sg, *out_sg, *in_sg; phys_addr_t start_addr; uint8_t *old_digest, extra_segs; if (is_decode(ses)) extra_segs = 3; else extra_segs = 2; if ((mbuf->nb_segs + extra_segs) > MAX_SG_ENTRIES) { DPAA_SEC_DP_ERR("Auth: Max sec segs supported is %d", MAX_SG_ENTRIES); return NULL; } ctx = dpaa_sec_alloc_ctx(ses); if (!ctx) return NULL; cf = &ctx->job; ctx->op = op; old_digest = ctx->digest; /* output */ out_sg = &cf->sg[0]; qm_sg_entry_set64(out_sg, sym->auth.digest.phys_addr); out_sg->length = ses->digest_length; cpu_to_hw_sg(out_sg); /* input */ in_sg = &cf->sg[1]; /* need to extend the input to a compound frame */ in_sg->extension = 1; in_sg->final = 1; in_sg->length = sym->auth.data.length; qm_sg_entry_set64(in_sg, dpaa_mem_vtop(&cf->sg[2])); /* 1st seg */ sg = in_sg + 1; qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf)); sg->length = mbuf->data_len - sym->auth.data.offset; sg->offset = sym->auth.data.offset; /* Successive segs */ mbuf = mbuf->next; while (mbuf) { cpu_to_hw_sg(sg); sg++; qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf)); sg->length = mbuf->data_len; mbuf = mbuf->next; } if (is_decode(ses)) { /* Digest verification case */ cpu_to_hw_sg(sg); sg++; rte_memcpy(old_digest, sym->auth.digest.data, ses->digest_length); start_addr = dpaa_mem_vtop(old_digest); qm_sg_entry_set64(sg, start_addr); sg->length = ses->digest_length; in_sg->length += ses->digest_length; } else { /* Digest calculation case */ sg->length -= ses->digest_length; } sg->final = 1; cpu_to_hw_sg(sg); cpu_to_hw_sg(in_sg); return cf; } /** * packet looks like: * |<----data_len------->| * |ip_header|ah_header|icv|payload| * ^ * | * mbuf->pkt.data */ static inline struct dpaa_sec_job * build_auth_only(struct rte_crypto_op *op, dpaa_sec_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct rte_mbuf *mbuf = sym->m_src; struct dpaa_sec_job *cf; struct dpaa_sec_op_ctx *ctx; struct qm_sg_entry *sg; rte_iova_t start_addr; uint8_t *old_digest; ctx = dpaa_sec_alloc_ctx(ses); if (!ctx) return NULL; cf = &ctx->job; ctx->op = op; old_digest = ctx->digest; start_addr = rte_pktmbuf_iova(mbuf); /* output */ sg = &cf->sg[0]; qm_sg_entry_set64(sg, sym->auth.digest.phys_addr); sg->length = ses->digest_length; cpu_to_hw_sg(sg); /* input */ sg = &cf->sg[1]; if (is_decode(ses)) { /* need to extend the input to a compound frame */ sg->extension = 1; qm_sg_entry_set64(sg, dpaa_mem_vtop(&cf->sg[2])); sg->length = sym->auth.data.length + ses->digest_length; sg->final = 1; cpu_to_hw_sg(sg); sg = &cf->sg[2]; /* hash result or digest, save digest first */ rte_memcpy(old_digest, sym->auth.digest.data, ses->digest_length); qm_sg_entry_set64(sg, start_addr + sym->auth.data.offset); sg->length = sym->auth.data.length; cpu_to_hw_sg(sg); /* let's check digest by hw */ start_addr = dpaa_mem_vtop(old_digest); sg++; qm_sg_entry_set64(sg, start_addr); sg->length = ses->digest_length; sg->final = 1; cpu_to_hw_sg(sg); } else { qm_sg_entry_set64(sg, start_addr + sym->auth.data.offset); sg->length = sym->auth.data.length; sg->final = 1; cpu_to_hw_sg(sg); } return cf; } static inline struct dpaa_sec_job * build_cipher_only_sg(struct rte_crypto_op *op, dpaa_sec_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct dpaa_sec_job *cf; struct dpaa_sec_op_ctx *ctx; struct qm_sg_entry *sg, *out_sg, *in_sg; struct rte_mbuf *mbuf; uint8_t req_segs; uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, ses->iv.offset); if (sym->m_dst) { mbuf = sym->m_dst; req_segs = mbuf->nb_segs + sym->m_src->nb_segs + 3; } else { mbuf = sym->m_src; req_segs = mbuf->nb_segs * 2 + 3; } if (req_segs > MAX_SG_ENTRIES) { DPAA_SEC_DP_ERR("Cipher: Max sec segs supported is %d", MAX_SG_ENTRIES); return NULL; } ctx = dpaa_sec_alloc_ctx(ses); if (!ctx) return NULL; cf = &ctx->job; ctx->op = op; /* output */ out_sg = &cf->sg[0]; out_sg->extension = 1; out_sg->length = sym->cipher.data.length; qm_sg_entry_set64(out_sg, dpaa_mem_vtop(&cf->sg[2])); cpu_to_hw_sg(out_sg); /* 1st seg */ sg = &cf->sg[2]; qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf)); sg->length = mbuf->data_len - sym->cipher.data.offset; sg->offset = sym->cipher.data.offset; /* Successive segs */ mbuf = mbuf->next; while (mbuf) { cpu_to_hw_sg(sg); sg++; qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf)); sg->length = mbuf->data_len; mbuf = mbuf->next; } sg->final = 1; cpu_to_hw_sg(sg); /* input */ mbuf = sym->m_src; in_sg = &cf->sg[1]; in_sg->extension = 1; in_sg->final = 1; in_sg->length = sym->cipher.data.length + ses->iv.length; sg++; qm_sg_entry_set64(in_sg, dpaa_mem_vtop(sg)); cpu_to_hw_sg(in_sg); /* IV */ qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr)); sg->length = ses->iv.length; cpu_to_hw_sg(sg); /* 1st seg */ sg++; qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf)); sg->length = mbuf->data_len - sym->cipher.data.offset; sg->offset = sym->cipher.data.offset; /* Successive segs */ mbuf = mbuf->next; while (mbuf) { cpu_to_hw_sg(sg); sg++; qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf)); sg->length = mbuf->data_len; mbuf = mbuf->next; } sg->final = 1; cpu_to_hw_sg(sg); return cf; } static inline struct dpaa_sec_job * build_cipher_only(struct rte_crypto_op *op, dpaa_sec_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct dpaa_sec_job *cf; struct dpaa_sec_op_ctx *ctx; struct qm_sg_entry *sg; rte_iova_t src_start_addr, dst_start_addr; uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, ses->iv.offset); ctx = dpaa_sec_alloc_ctx(ses); if (!ctx) return NULL; cf = &ctx->job; ctx->op = op; src_start_addr = rte_pktmbuf_iova(sym->m_src); if (sym->m_dst) dst_start_addr = rte_pktmbuf_iova(sym->m_dst); else dst_start_addr = src_start_addr; /* output */ sg = &cf->sg[0]; qm_sg_entry_set64(sg, dst_start_addr + sym->cipher.data.offset); sg->length = sym->cipher.data.length + ses->iv.length; cpu_to_hw_sg(sg); /* input */ sg = &cf->sg[1]; /* need to extend the input to a compound frame */ sg->extension = 1; sg->final = 1; sg->length = sym->cipher.data.length + ses->iv.length; qm_sg_entry_set64(sg, dpaa_mem_vtop(&cf->sg[2])); cpu_to_hw_sg(sg); sg = &cf->sg[2]; qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr)); sg->length = ses->iv.length; cpu_to_hw_sg(sg); sg++; qm_sg_entry_set64(sg, src_start_addr + sym->cipher.data.offset); sg->length = sym->cipher.data.length; sg->final = 1; cpu_to_hw_sg(sg); return cf; } static inline struct dpaa_sec_job * build_cipher_auth_gcm_sg(struct rte_crypto_op *op, dpaa_sec_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct dpaa_sec_job *cf; struct dpaa_sec_op_ctx *ctx; struct qm_sg_entry *sg, *out_sg, *in_sg; struct rte_mbuf *mbuf; uint8_t req_segs; uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, ses->iv.offset); if (sym->m_dst) { mbuf = sym->m_dst; req_segs = mbuf->nb_segs + sym->m_src->nb_segs + 4; } else { mbuf = sym->m_src; req_segs = mbuf->nb_segs * 2 + 4; } if (ses->auth_only_len) req_segs++; if (req_segs > MAX_SG_ENTRIES) { DPAA_SEC_DP_ERR("AEAD: Max sec segs supported is %d", MAX_SG_ENTRIES); return NULL; } ctx = dpaa_sec_alloc_ctx(ses); if (!ctx) return NULL; cf = &ctx->job; ctx->op = op; rte_prefetch0(cf->sg); /* output */ out_sg = &cf->sg[0]; out_sg->extension = 1; if (is_encode(ses)) out_sg->length = sym->aead.data.length + ses->auth_only_len + ses->digest_length; else out_sg->length = sym->aead.data.length + ses->auth_only_len; /* output sg entries */ sg = &cf->sg[2]; qm_sg_entry_set64(out_sg, dpaa_mem_vtop(sg)); cpu_to_hw_sg(out_sg); /* 1st seg */ qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf)); sg->length = mbuf->data_len - sym->aead.data.offset + ses->auth_only_len; sg->offset = sym->aead.data.offset - ses->auth_only_len; /* Successive segs */ mbuf = mbuf->next; while (mbuf) { cpu_to_hw_sg(sg); sg++; qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf)); sg->length = mbuf->data_len; mbuf = mbuf->next; } sg->length -= ses->digest_length; if (is_encode(ses)) { cpu_to_hw_sg(sg); /* set auth output */ sg++; qm_sg_entry_set64(sg, sym->aead.digest.phys_addr); sg->length = ses->digest_length; } sg->final = 1; cpu_to_hw_sg(sg); /* input */ mbuf = sym->m_src; in_sg = &cf->sg[1]; in_sg->extension = 1; in_sg->final = 1; if (is_encode(ses)) in_sg->length = ses->iv.length + sym->aead.data.length + ses->auth_only_len; else in_sg->length = ses->iv.length + sym->aead.data.length + ses->auth_only_len + ses->digest_length; /* input sg entries */ sg++; qm_sg_entry_set64(in_sg, dpaa_mem_vtop(sg)); cpu_to_hw_sg(in_sg); /* 1st seg IV */ qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr)); sg->length = ses->iv.length; cpu_to_hw_sg(sg); /* 2nd seg auth only */ if (ses->auth_only_len) { sg++; qm_sg_entry_set64(sg, dpaa_mem_vtop(sym->aead.aad.data)); sg->length = ses->auth_only_len; cpu_to_hw_sg(sg); } /* 3rd seg */ sg++; qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf)); sg->length = mbuf->data_len - sym->aead.data.offset; sg->offset = sym->aead.data.offset; /* Successive segs */ mbuf = mbuf->next; while (mbuf) { cpu_to_hw_sg(sg); sg++; qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf)); sg->length = mbuf->data_len; mbuf = mbuf->next; } if (is_decode(ses)) { cpu_to_hw_sg(sg); sg++; memcpy(ctx->digest, sym->aead.digest.data, ses->digest_length); qm_sg_entry_set64(sg, dpaa_mem_vtop(ctx->digest)); sg->length = ses->digest_length; } sg->final = 1; cpu_to_hw_sg(sg); return cf; } static inline struct dpaa_sec_job * build_cipher_auth_gcm(struct rte_crypto_op *op, dpaa_sec_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct dpaa_sec_job *cf; struct dpaa_sec_op_ctx *ctx; struct qm_sg_entry *sg; uint32_t length = 0; rte_iova_t src_start_addr, dst_start_addr; uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, ses->iv.offset); src_start_addr = sym->m_src->buf_iova + sym->m_src->data_off; if (sym->m_dst) dst_start_addr = sym->m_dst->buf_iova + sym->m_dst->data_off; else dst_start_addr = src_start_addr; ctx = dpaa_sec_alloc_ctx(ses); if (!ctx) return NULL; cf = &ctx->job; ctx->op = op; /* input */ rte_prefetch0(cf->sg); sg = &cf->sg[2]; qm_sg_entry_set64(&cf->sg[1], dpaa_mem_vtop(sg)); if (is_encode(ses)) { qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr)); sg->length = ses->iv.length; length += sg->length; cpu_to_hw_sg(sg); sg++; if (ses->auth_only_len) { qm_sg_entry_set64(sg, dpaa_mem_vtop(sym->aead.aad.data)); sg->length = ses->auth_only_len; length += sg->length; cpu_to_hw_sg(sg); sg++; } qm_sg_entry_set64(sg, src_start_addr + sym->aead.data.offset); sg->length = sym->aead.data.length; length += sg->length; sg->final = 1; cpu_to_hw_sg(sg); } else { qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr)); sg->length = ses->iv.length; length += sg->length; cpu_to_hw_sg(sg); sg++; if (ses->auth_only_len) { qm_sg_entry_set64(sg, dpaa_mem_vtop(sym->aead.aad.data)); sg->length = ses->auth_only_len; length += sg->length; cpu_to_hw_sg(sg); sg++; } qm_sg_entry_set64(sg, src_start_addr + sym->aead.data.offset); sg->length = sym->aead.data.length; length += sg->length; cpu_to_hw_sg(sg); memcpy(ctx->digest, sym->aead.digest.data, ses->digest_length); sg++; qm_sg_entry_set64(sg, dpaa_mem_vtop(ctx->digest)); sg->length = ses->digest_length; length += sg->length; sg->final = 1; cpu_to_hw_sg(sg); } /* input compound frame */ cf->sg[1].length = length; cf->sg[1].extension = 1; cf->sg[1].final = 1; cpu_to_hw_sg(&cf->sg[1]); /* output */ sg++; qm_sg_entry_set64(&cf->sg[0], dpaa_mem_vtop(sg)); qm_sg_entry_set64(sg, dst_start_addr + sym->aead.data.offset - ses->auth_only_len); sg->length = sym->aead.data.length + ses->auth_only_len; length = sg->length; if (is_encode(ses)) { cpu_to_hw_sg(sg); /* set auth output */ sg++; qm_sg_entry_set64(sg, sym->aead.digest.phys_addr); sg->length = ses->digest_length; length += sg->length; } sg->final = 1; cpu_to_hw_sg(sg); /* output compound frame */ cf->sg[0].length = length; cf->sg[0].extension = 1; cpu_to_hw_sg(&cf->sg[0]); return cf; } static inline struct dpaa_sec_job * build_cipher_auth_sg(struct rte_crypto_op *op, dpaa_sec_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct dpaa_sec_job *cf; struct dpaa_sec_op_ctx *ctx; struct qm_sg_entry *sg, *out_sg, *in_sg; struct rte_mbuf *mbuf; uint8_t req_segs; uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, ses->iv.offset); if (sym->m_dst) { mbuf = sym->m_dst; req_segs = mbuf->nb_segs + sym->m_src->nb_segs + 4; } else { mbuf = sym->m_src; req_segs = mbuf->nb_segs * 2 + 4; } if (req_segs > MAX_SG_ENTRIES) { DPAA_SEC_DP_ERR("Cipher-Auth: Max sec segs supported is %d", MAX_SG_ENTRIES); return NULL; } ctx = dpaa_sec_alloc_ctx(ses); if (!ctx) return NULL; cf = &ctx->job; ctx->op = op; rte_prefetch0(cf->sg); /* output */ out_sg = &cf->sg[0]; out_sg->extension = 1; if (is_encode(ses)) out_sg->length = sym->auth.data.length + ses->digest_length; else out_sg->length = sym->auth.data.length; /* output sg entries */ sg = &cf->sg[2]; qm_sg_entry_set64(out_sg, dpaa_mem_vtop(sg)); cpu_to_hw_sg(out_sg); /* 1st seg */ qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf)); sg->length = mbuf->data_len - sym->auth.data.offset; sg->offset = sym->auth.data.offset; /* Successive segs */ mbuf = mbuf->next; while (mbuf) { cpu_to_hw_sg(sg); sg++; qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf)); sg->length = mbuf->data_len; mbuf = mbuf->next; } sg->length -= ses->digest_length; if (is_encode(ses)) { cpu_to_hw_sg(sg); /* set auth output */ sg++; qm_sg_entry_set64(sg, sym->auth.digest.phys_addr); sg->length = ses->digest_length; } sg->final = 1; cpu_to_hw_sg(sg); /* input */ mbuf = sym->m_src; in_sg = &cf->sg[1]; in_sg->extension = 1; in_sg->final = 1; if (is_encode(ses)) in_sg->length = ses->iv.length + sym->auth.data.length; else in_sg->length = ses->iv.length + sym->auth.data.length + ses->digest_length; /* input sg entries */ sg++; qm_sg_entry_set64(in_sg, dpaa_mem_vtop(sg)); cpu_to_hw_sg(in_sg); /* 1st seg IV */ qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr)); sg->length = ses->iv.length; cpu_to_hw_sg(sg); /* 2nd seg */ sg++; qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf)); sg->length = mbuf->data_len - sym->auth.data.offset; sg->offset = sym->auth.data.offset; /* Successive segs */ mbuf = mbuf->next; while (mbuf) { cpu_to_hw_sg(sg); sg++; qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf)); sg->length = mbuf->data_len; mbuf = mbuf->next; } sg->length -= ses->digest_length; if (is_decode(ses)) { cpu_to_hw_sg(sg); sg++; memcpy(ctx->digest, sym->auth.digest.data, ses->digest_length); qm_sg_entry_set64(sg, dpaa_mem_vtop(ctx->digest)); sg->length = ses->digest_length; } sg->final = 1; cpu_to_hw_sg(sg); return cf; } static inline struct dpaa_sec_job * build_cipher_auth(struct rte_crypto_op *op, dpaa_sec_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct dpaa_sec_job *cf; struct dpaa_sec_op_ctx *ctx; struct qm_sg_entry *sg; rte_iova_t src_start_addr, dst_start_addr; uint32_t length = 0; uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, ses->iv.offset); src_start_addr = sym->m_src->buf_iova + sym->m_src->data_off; if (sym->m_dst) dst_start_addr = sym->m_dst->buf_iova + sym->m_dst->data_off; else dst_start_addr = src_start_addr; ctx = dpaa_sec_alloc_ctx(ses); if (!ctx) return NULL; cf = &ctx->job; ctx->op = op; /* input */ rte_prefetch0(cf->sg); sg = &cf->sg[2]; qm_sg_entry_set64(&cf->sg[1], dpaa_mem_vtop(sg)); if (is_encode(ses)) { qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr)); sg->length = ses->iv.length; length += sg->length; cpu_to_hw_sg(sg); sg++; qm_sg_entry_set64(sg, src_start_addr + sym->auth.data.offset); sg->length = sym->auth.data.length; length += sg->length; sg->final = 1; cpu_to_hw_sg(sg); } else { qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr)); sg->length = ses->iv.length; length += sg->length; cpu_to_hw_sg(sg); sg++; qm_sg_entry_set64(sg, src_start_addr + sym->auth.data.offset); sg->length = sym->auth.data.length; length += sg->length; cpu_to_hw_sg(sg); memcpy(ctx->digest, sym->auth.digest.data, ses->digest_length); sg++; qm_sg_entry_set64(sg, dpaa_mem_vtop(ctx->digest)); sg->length = ses->digest_length; length += sg->length; sg->final = 1; cpu_to_hw_sg(sg); } /* input compound frame */ cf->sg[1].length = length; cf->sg[1].extension = 1; cf->sg[1].final = 1; cpu_to_hw_sg(&cf->sg[1]); /* output */ sg++; qm_sg_entry_set64(&cf->sg[0], dpaa_mem_vtop(sg)); qm_sg_entry_set64(sg, dst_start_addr + sym->cipher.data.offset); sg->length = sym->cipher.data.length; length = sg->length; if (is_encode(ses)) { cpu_to_hw_sg(sg); /* set auth output */ sg++; qm_sg_entry_set64(sg, sym->auth.digest.phys_addr); sg->length = ses->digest_length; length += sg->length; } sg->final = 1; cpu_to_hw_sg(sg); /* output compound frame */ cf->sg[0].length = length; cf->sg[0].extension = 1; cpu_to_hw_sg(&cf->sg[0]); return cf; } static inline struct dpaa_sec_job * build_proto(struct rte_crypto_op *op, dpaa_sec_session *ses) { struct rte_crypto_sym_op *sym = op->sym; struct dpaa_sec_job *cf; struct dpaa_sec_op_ctx *ctx; struct qm_sg_entry *sg; phys_addr_t src_start_addr, dst_start_addr; ctx = dpaa_sec_alloc_ctx(ses); if (!ctx) return NULL; cf = &ctx->job; ctx->op = op; src_start_addr = rte_pktmbuf_mtophys(sym->m_src); if (sym->m_dst) dst_start_addr = rte_pktmbuf_mtophys(sym->m_dst); else dst_start_addr = src_start_addr; /* input */ sg = &cf->sg[1]; qm_sg_entry_set64(sg, src_start_addr); sg->length = sym->m_src->pkt_len; sg->final = 1; cpu_to_hw_sg(sg); sym->m_src->packet_type &= ~RTE_PTYPE_L4_MASK; /* output */ sg = &cf->sg[0]; qm_sg_entry_set64(sg, dst_start_addr); sg->length = sym->m_src->buf_len - sym->m_src->data_off; cpu_to_hw_sg(sg); return cf; } static uint16_t dpaa_sec_enqueue_burst(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops) { /* Function to transmit the frames to given device and queuepair */ uint32_t loop; struct dpaa_sec_qp *dpaa_qp = (struct dpaa_sec_qp *)qp; uint16_t num_tx = 0; struct qm_fd fds[DPAA_SEC_BURST], *fd; uint32_t frames_to_send; struct rte_crypto_op *op; struct dpaa_sec_job *cf; dpaa_sec_session *ses; uint32_t auth_only_len; struct qman_fq *inq[DPAA_SEC_BURST]; while (nb_ops) { frames_to_send = (nb_ops > DPAA_SEC_BURST) ? DPAA_SEC_BURST : nb_ops; for (loop = 0; loop < frames_to_send; loop++) { op = *(ops++); switch (op->sess_type) { case RTE_CRYPTO_OP_WITH_SESSION: ses = (dpaa_sec_session *) get_sym_session_private_data( op->sym->session, cryptodev_driver_id); break; case RTE_CRYPTO_OP_SECURITY_SESSION: ses = (dpaa_sec_session *) get_sec_session_private_data( op->sym->sec_session); break; default: DPAA_SEC_DP_ERR( "sessionless crypto op not supported"); frames_to_send = loop; nb_ops = loop; goto send_pkts; } if (unlikely(!ses->qp)) { if (dpaa_sec_attach_sess_q(qp, ses)) { frames_to_send = loop; nb_ops = loop; goto send_pkts; } } else if (unlikely(ses->qp != qp)) { DPAA_SEC_DP_ERR("Old:sess->qp = %p" " New qp = %p\n", ses->qp, qp); frames_to_send = loop; nb_ops = loop; goto send_pkts; } auth_only_len = op->sym->auth.data.length - op->sym->cipher.data.length; if (rte_pktmbuf_is_contiguous(op->sym->m_src)) { if (is_proto_ipsec(ses)) { cf = build_proto(op, ses); } else if (is_auth_only(ses)) { cf = build_auth_only(op, ses); } else if (is_cipher_only(ses)) { cf = build_cipher_only(op, ses); } else if (is_aead(ses)) { cf = build_cipher_auth_gcm(op, ses); auth_only_len = ses->auth_only_len; } else if (is_auth_cipher(ses)) { cf = build_cipher_auth(op, ses); } else { DPAA_SEC_DP_ERR("not supported ops"); frames_to_send = loop; nb_ops = loop; goto send_pkts; } } else { if (is_auth_only(ses)) { cf = build_auth_only_sg(op, ses); } else if (is_cipher_only(ses)) { cf = build_cipher_only_sg(op, ses); } else if (is_aead(ses)) { cf = build_cipher_auth_gcm_sg(op, ses); auth_only_len = ses->auth_only_len; } else if (is_auth_cipher(ses)) { cf = build_cipher_auth_sg(op, ses); } else { DPAA_SEC_DP_ERR("not supported ops"); frames_to_send = loop; nb_ops = loop; goto send_pkts; } } if (unlikely(!cf)) { frames_to_send = loop; nb_ops = loop; goto send_pkts; } fd = &fds[loop]; inq[loop] = ses->inq; fd->opaque_addr = 0; fd->cmd = 0; qm_fd_addr_set64(fd, dpaa_mem_vtop(cf->sg)); fd->_format1 = qm_fd_compound; fd->length29 = 2 * sizeof(struct qm_sg_entry); /* Auth_only_len is set as 0 in descriptor and it is * overwritten here in the fd.cmd which will update * the DPOVRD reg. */ if (auth_only_len) fd->cmd = 0x80000000 | auth_only_len; } send_pkts: loop = 0; while (loop < frames_to_send) { loop += qman_enqueue_multi_fq(&inq[loop], &fds[loop], frames_to_send - loop); } nb_ops -= frames_to_send; num_tx += frames_to_send; } dpaa_qp->tx_pkts += num_tx; dpaa_qp->tx_errs += nb_ops - num_tx; return num_tx; } static uint16_t dpaa_sec_dequeue_burst(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops) { uint16_t num_rx; struct dpaa_sec_qp *dpaa_qp = (struct dpaa_sec_qp *)qp; num_rx = dpaa_sec_deq(dpaa_qp, ops, nb_ops); dpaa_qp->rx_pkts += num_rx; dpaa_qp->rx_errs += nb_ops - num_rx; DPAA_SEC_DP_DEBUG("SEC Received %d Packets\n", num_rx); return num_rx; } /** Release queue pair */ static int dpaa_sec_queue_pair_release(struct rte_cryptodev *dev, uint16_t qp_id) { struct dpaa_sec_dev_private *internals; struct dpaa_sec_qp *qp = NULL; PMD_INIT_FUNC_TRACE(); DPAA_SEC_DEBUG("dev =%p, queue =%d", dev, qp_id); internals = dev->data->dev_private; if (qp_id >= internals->max_nb_queue_pairs) { DPAA_SEC_ERR("Max supported qpid %d", internals->max_nb_queue_pairs); return -EINVAL; } qp = &internals->qps[qp_id]; qp->internals = NULL; dev->data->queue_pairs[qp_id] = NULL; return 0; } /** Setup a queue pair */ static int dpaa_sec_queue_pair_setup(struct rte_cryptodev *dev, uint16_t qp_id, __rte_unused const struct rte_cryptodev_qp_conf *qp_conf, __rte_unused int socket_id, __rte_unused struct rte_mempool *session_pool) { struct dpaa_sec_dev_private *internals; struct dpaa_sec_qp *qp = NULL; DPAA_SEC_DEBUG("dev =%p, queue =%d, conf =%p", dev, qp_id, qp_conf); internals = dev->data->dev_private; if (qp_id >= internals->max_nb_queue_pairs) { DPAA_SEC_ERR("Max supported qpid %d", internals->max_nb_queue_pairs); return -EINVAL; } qp = &internals->qps[qp_id]; qp->internals = internals; dev->data->queue_pairs[qp_id] = qp; return 0; } /** Return the number of allocated queue pairs */ static uint32_t dpaa_sec_queue_pair_count(struct rte_cryptodev *dev) { PMD_INIT_FUNC_TRACE(); return dev->data->nb_queue_pairs; } /** Returns the size of session structure */ static unsigned int dpaa_sec_sym_session_get_size(struct rte_cryptodev *dev __rte_unused) { PMD_INIT_FUNC_TRACE(); return sizeof(dpaa_sec_session); } static int dpaa_sec_cipher_init(struct rte_cryptodev *dev __rte_unused, struct rte_crypto_sym_xform *xform, dpaa_sec_session *session) { session->cipher_alg = xform->cipher.algo; session->iv.length = xform->cipher.iv.length; session->iv.offset = xform->cipher.iv.offset; session->cipher_key.data = rte_zmalloc(NULL, xform->cipher.key.length, RTE_CACHE_LINE_SIZE); if (session->cipher_key.data == NULL && xform->cipher.key.length > 0) { DPAA_SEC_ERR("No Memory for cipher key"); return -ENOMEM; } session->cipher_key.length = xform->cipher.key.length; memcpy(session->cipher_key.data, xform->cipher.key.data, xform->cipher.key.length); session->dir = (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ? DIR_ENC : DIR_DEC; return 0; } static int dpaa_sec_auth_init(struct rte_cryptodev *dev __rte_unused, struct rte_crypto_sym_xform *xform, dpaa_sec_session *session) { session->auth_alg = xform->auth.algo; session->auth_key.data = rte_zmalloc(NULL, xform->auth.key.length, RTE_CACHE_LINE_SIZE); if (session->auth_key.data == NULL && xform->auth.key.length > 0) { DPAA_SEC_ERR("No Memory for auth key"); return -ENOMEM; } session->auth_key.length = xform->auth.key.length; session->digest_length = xform->auth.digest_length; memcpy(session->auth_key.data, xform->auth.key.data, xform->auth.key.length); session->dir = (xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) ? DIR_ENC : DIR_DEC; return 0; } static int dpaa_sec_aead_init(struct rte_cryptodev *dev __rte_unused, struct rte_crypto_sym_xform *xform, dpaa_sec_session *session) { session->aead_alg = xform->aead.algo; session->iv.length = xform->aead.iv.length; session->iv.offset = xform->aead.iv.offset; session->auth_only_len = xform->aead.aad_length; session->aead_key.data = rte_zmalloc(NULL, xform->aead.key.length, RTE_CACHE_LINE_SIZE); if (session->aead_key.data == NULL && xform->aead.key.length > 0) { DPAA_SEC_ERR("No Memory for aead key\n"); return -ENOMEM; } session->aead_key.length = xform->aead.key.length; session->digest_length = xform->aead.digest_length; memcpy(session->aead_key.data, xform->aead.key.data, xform->aead.key.length); session->dir = (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) ? DIR_ENC : DIR_DEC; return 0; } static struct qman_fq * dpaa_sec_attach_rxq(struct dpaa_sec_dev_private *qi) { unsigned int i; for (i = 0; i < qi->max_nb_sessions; i++) { if (qi->inq_attach[i] == 0) { qi->inq_attach[i] = 1; return &qi->inq[i]; } } DPAA_SEC_WARN("All ses session in use %x", qi->max_nb_sessions); return NULL; } static int dpaa_sec_detach_rxq(struct dpaa_sec_dev_private *qi, struct qman_fq *fq) { unsigned int i; for (i = 0; i < qi->max_nb_sessions; i++) { if (&qi->inq[i] == fq) { qman_retire_fq(fq, NULL); qman_oos_fq(fq); qi->inq_attach[i] = 0; return 0; } } return -1; } static int dpaa_sec_attach_sess_q(struct dpaa_sec_qp *qp, dpaa_sec_session *sess) { int ret; sess->qp = qp; ret = dpaa_sec_prep_cdb(sess); if (ret) { DPAA_SEC_ERR("Unable to prepare sec cdb"); return -1; } if (unlikely(!RTE_PER_LCORE(dpaa_io))) { ret = rte_dpaa_portal_init((void *)0); if (ret) { DPAA_SEC_ERR("Failure in affining portal"); return ret; } } ret = dpaa_sec_init_rx(sess->inq, dpaa_mem_vtop(&sess->cdb), qman_fq_fqid(&qp->outq)); if (ret) DPAA_SEC_ERR("Unable to init sec queue"); return ret; } static int dpaa_sec_set_session_parameters(struct rte_cryptodev *dev, struct rte_crypto_sym_xform *xform, void *sess) { struct dpaa_sec_dev_private *internals = dev->data->dev_private; dpaa_sec_session *session = sess; PMD_INIT_FUNC_TRACE(); if (unlikely(sess == NULL)) { DPAA_SEC_ERR("invalid session struct"); return -EINVAL; } memset(session, 0, sizeof(dpaa_sec_session)); /* Default IV length = 0 */ session->iv.length = 0; /* Cipher Only */ if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER && xform->next == NULL) { session->auth_alg = RTE_CRYPTO_AUTH_NULL; dpaa_sec_cipher_init(dev, xform, session); /* Authentication Only */ } else if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH && xform->next == NULL) { session->cipher_alg = RTE_CRYPTO_CIPHER_NULL; dpaa_sec_auth_init(dev, xform, session); /* Cipher then Authenticate */ } else if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER && xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) { if (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { dpaa_sec_cipher_init(dev, xform, session); dpaa_sec_auth_init(dev, xform->next, session); } else { DPAA_SEC_ERR("Not supported: Auth then Cipher"); return -EINVAL; } /* Authenticate then Cipher */ } else if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH && xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) { if (xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT) { dpaa_sec_auth_init(dev, xform, session); dpaa_sec_cipher_init(dev, xform->next, session); } else { DPAA_SEC_ERR("Not supported: Auth then Cipher"); return -EINVAL; } /* AEAD operation for AES-GCM kind of Algorithms */ } else if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD && xform->next == NULL) { dpaa_sec_aead_init(dev, xform, session); } else { DPAA_SEC_ERR("Invalid crypto type"); return -EINVAL; } session->ctx_pool = internals->ctx_pool; rte_spinlock_lock(&internals->lock); session->inq = dpaa_sec_attach_rxq(internals); rte_spinlock_unlock(&internals->lock); if (session->inq == NULL) { DPAA_SEC_ERR("unable to attach sec queue"); goto err1; } return 0; err1: rte_free(session->cipher_key.data); rte_free(session->auth_key.data); memset(session, 0, sizeof(dpaa_sec_session)); return -EINVAL; } static int dpaa_sec_sym_session_configure(struct rte_cryptodev *dev, struct rte_crypto_sym_xform *xform, struct rte_cryptodev_sym_session *sess, struct rte_mempool *mempool) { void *sess_private_data; int ret; PMD_INIT_FUNC_TRACE(); if (rte_mempool_get(mempool, &sess_private_data)) { DPAA_SEC_ERR("Couldn't get object from session mempool"); return -ENOMEM; } ret = dpaa_sec_set_session_parameters(dev, xform, sess_private_data); if (ret != 0) { DPAA_SEC_ERR("failed to configure session parameters"); /* Return session to mempool */ rte_mempool_put(mempool, sess_private_data); return ret; } set_sym_session_private_data(sess, dev->driver_id, sess_private_data); return 0; } /** Clear the memory of session so it doesn't leave key material behind */ static void dpaa_sec_sym_session_clear(struct rte_cryptodev *dev, struct rte_cryptodev_sym_session *sess) { struct dpaa_sec_dev_private *qi = dev->data->dev_private; uint8_t index = dev->driver_id; void *sess_priv = get_sym_session_private_data(sess, index); PMD_INIT_FUNC_TRACE(); dpaa_sec_session *s = (dpaa_sec_session *)sess_priv; if (sess_priv) { struct rte_mempool *sess_mp = rte_mempool_from_obj(sess_priv); if (s->inq) dpaa_sec_detach_rxq(qi, s->inq); rte_free(s->cipher_key.data); rte_free(s->auth_key.data); memset(s, 0, sizeof(dpaa_sec_session)); set_sym_session_private_data(sess, index, NULL); rte_mempool_put(sess_mp, sess_priv); } } static int dpaa_sec_set_ipsec_session(__rte_unused struct rte_cryptodev *dev, struct rte_security_session_conf *conf, void *sess) { struct dpaa_sec_dev_private *internals = dev->data->dev_private; struct rte_security_ipsec_xform *ipsec_xform = &conf->ipsec; struct rte_crypto_auth_xform *auth_xform = NULL; struct rte_crypto_cipher_xform *cipher_xform = NULL; dpaa_sec_session *session = (dpaa_sec_session *)sess; PMD_INIT_FUNC_TRACE(); memset(session, 0, sizeof(dpaa_sec_session)); if (ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) { cipher_xform = &conf->crypto_xform->cipher; if (conf->crypto_xform->next) auth_xform = &conf->crypto_xform->next->auth; } else { auth_xform = &conf->crypto_xform->auth; if (conf->crypto_xform->next) cipher_xform = &conf->crypto_xform->next->cipher; } session->proto_alg = conf->protocol; if (cipher_xform && cipher_xform->algo != RTE_CRYPTO_CIPHER_NULL) { session->cipher_key.data = rte_zmalloc(NULL, cipher_xform->key.length, RTE_CACHE_LINE_SIZE); if (session->cipher_key.data == NULL && cipher_xform->key.length > 0) { DPAA_SEC_ERR("No Memory for cipher key"); return -ENOMEM; } memcpy(session->cipher_key.data, cipher_xform->key.data, cipher_xform->key.length); session->cipher_key.length = cipher_xform->key.length; switch (cipher_xform->algo) { case RTE_CRYPTO_CIPHER_AES_CBC: case RTE_CRYPTO_CIPHER_3DES_CBC: case RTE_CRYPTO_CIPHER_AES_CTR: break; default: DPAA_SEC_ERR("Crypto: Unsupported Cipher alg %u", cipher_xform->algo); goto out; } session->cipher_alg = cipher_xform->algo; } else { session->cipher_key.data = NULL; session->cipher_key.length = 0; session->cipher_alg = RTE_CRYPTO_CIPHER_NULL; } if (auth_xform && auth_xform->algo != RTE_CRYPTO_AUTH_NULL) { session->auth_key.data = rte_zmalloc(NULL, auth_xform->key.length, RTE_CACHE_LINE_SIZE); if (session->auth_key.data == NULL && auth_xform->key.length > 0) { DPAA_SEC_ERR("No Memory for auth key"); rte_free(session->cipher_key.data); return -ENOMEM; } memcpy(session->auth_key.data, auth_xform->key.data, auth_xform->key.length); session->auth_key.length = auth_xform->key.length; switch (auth_xform->algo) { case RTE_CRYPTO_AUTH_SHA1_HMAC: case RTE_CRYPTO_AUTH_MD5_HMAC: case RTE_CRYPTO_AUTH_SHA256_HMAC: case RTE_CRYPTO_AUTH_SHA384_HMAC: case RTE_CRYPTO_AUTH_SHA512_HMAC: case RTE_CRYPTO_AUTH_AES_CMAC: break; default: DPAA_SEC_ERR("Crypto: Unsupported auth alg %u", auth_xform->algo); goto out; } session->auth_alg = auth_xform->algo; } else { session->auth_key.data = NULL; session->auth_key.length = 0; session->auth_alg = RTE_CRYPTO_AUTH_NULL; } if (ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) { memset(&session->encap_pdb, 0, sizeof(struct ipsec_encap_pdb) + sizeof(session->ip4_hdr)); session->ip4_hdr.ip_v = IPVERSION; session->ip4_hdr.ip_hl = 5; session->ip4_hdr.ip_len = rte_cpu_to_be_16( sizeof(session->ip4_hdr)); session->ip4_hdr.ip_tos = ipsec_xform->tunnel.ipv4.dscp; session->ip4_hdr.ip_id = 0; session->ip4_hdr.ip_off = 0; session->ip4_hdr.ip_ttl = ipsec_xform->tunnel.ipv4.ttl; session->ip4_hdr.ip_p = (ipsec_xform->proto == RTE_SECURITY_IPSEC_SA_PROTO_ESP) ? IPPROTO_ESP : IPPROTO_AH; session->ip4_hdr.ip_sum = 0; session->ip4_hdr.ip_src = ipsec_xform->tunnel.ipv4.src_ip; session->ip4_hdr.ip_dst = ipsec_xform->tunnel.ipv4.dst_ip; session->ip4_hdr.ip_sum = calc_chksum((uint16_t *) (void *)&session->ip4_hdr, sizeof(struct ip)); session->encap_pdb.options = (IPVERSION << PDBNH_ESP_ENCAP_SHIFT) | PDBOPTS_ESP_OIHI_PDB_INL | PDBOPTS_ESP_IVSRC | PDBHMO_ESP_ENCAP_DTTL | PDBHMO_ESP_SNR; session->encap_pdb.spi = ipsec_xform->spi; session->encap_pdb.ip_hdr_len = sizeof(struct ip); session->dir = DIR_ENC; } else if (ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) { memset(&session->decap_pdb, 0, sizeof(struct ipsec_decap_pdb)); session->decap_pdb.options = sizeof(struct ip) << 16; session->dir = DIR_DEC; } else goto out; session->ctx_pool = internals->ctx_pool; rte_spinlock_lock(&internals->lock); session->inq = dpaa_sec_attach_rxq(internals); rte_spinlock_unlock(&internals->lock); if (session->inq == NULL) { DPAA_SEC_ERR("unable to attach sec queue"); goto out; } return 0; out: rte_free(session->auth_key.data); rte_free(session->cipher_key.data); memset(session, 0, sizeof(dpaa_sec_session)); return -1; } static int dpaa_sec_security_session_create(void *dev, struct rte_security_session_conf *conf, struct rte_security_session *sess, struct rte_mempool *mempool) { void *sess_private_data; struct rte_cryptodev *cdev = (struct rte_cryptodev *)dev; int ret; if (rte_mempool_get(mempool, &sess_private_data)) { DPAA_SEC_ERR("Couldn't get object from session mempool"); return -ENOMEM; } switch (conf->protocol) { case RTE_SECURITY_PROTOCOL_IPSEC: ret = dpaa_sec_set_ipsec_session(cdev, conf, sess_private_data); break; case RTE_SECURITY_PROTOCOL_MACSEC: return -ENOTSUP; default: return -EINVAL; } if (ret != 0) { DPAA_SEC_ERR("failed to configure session parameters"); /* Return session to mempool */ rte_mempool_put(mempool, sess_private_data); return ret; } set_sec_session_private_data(sess, sess_private_data); return ret; } /** Clear the memory of session so it doesn't leave key material behind */ static int dpaa_sec_security_session_destroy(void *dev __rte_unused, struct rte_security_session *sess) { PMD_INIT_FUNC_TRACE(); void *sess_priv = get_sec_session_private_data(sess); dpaa_sec_session *s = (dpaa_sec_session *)sess_priv; if (sess_priv) { struct rte_mempool *sess_mp = rte_mempool_from_obj(sess_priv); rte_free(s->cipher_key.data); rte_free(s->auth_key.data); memset(sess, 0, sizeof(dpaa_sec_session)); set_sec_session_private_data(sess, NULL); rte_mempool_put(sess_mp, sess_priv); } return 0; } static int dpaa_sec_dev_configure(struct rte_cryptodev *dev, struct rte_cryptodev_config *config __rte_unused) { char str[20]; struct dpaa_sec_dev_private *internals; PMD_INIT_FUNC_TRACE(); internals = dev->data->dev_private; snprintf(str, sizeof(str), "ctx_pool_%d", dev->data->dev_id); if (!internals->ctx_pool) { internals->ctx_pool = rte_mempool_create((const char *)str, CTX_POOL_NUM_BUFS, CTX_POOL_BUF_SIZE, CTX_POOL_CACHE_SIZE, 0, NULL, NULL, NULL, NULL, SOCKET_ID_ANY, 0); if (!internals->ctx_pool) { DPAA_SEC_ERR("%s create failed\n", str); return -ENOMEM; } } else DPAA_SEC_INFO("mempool already created for dev_id : %d", dev->data->dev_id); return 0; } static int dpaa_sec_dev_start(struct rte_cryptodev *dev __rte_unused) { PMD_INIT_FUNC_TRACE(); return 0; } static void dpaa_sec_dev_stop(struct rte_cryptodev *dev __rte_unused) { PMD_INIT_FUNC_TRACE(); } static int dpaa_sec_dev_close(struct rte_cryptodev *dev) { struct dpaa_sec_dev_private *internals; PMD_INIT_FUNC_TRACE(); if (dev == NULL) return -ENOMEM; internals = dev->data->dev_private; rte_mempool_free(internals->ctx_pool); internals->ctx_pool = NULL; return 0; } static void dpaa_sec_dev_infos_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info) { struct dpaa_sec_dev_private *internals = dev->data->dev_private; PMD_INIT_FUNC_TRACE(); if (info != NULL) { info->max_nb_queue_pairs = internals->max_nb_queue_pairs; info->feature_flags = dev->feature_flags; info->capabilities = dpaa_sec_capabilities; info->sym.max_nb_sessions = internals->max_nb_sessions; info->driver_id = cryptodev_driver_id; } } static struct rte_cryptodev_ops crypto_ops = { .dev_configure = dpaa_sec_dev_configure, .dev_start = dpaa_sec_dev_start, .dev_stop = dpaa_sec_dev_stop, .dev_close = dpaa_sec_dev_close, .dev_infos_get = dpaa_sec_dev_infos_get, .queue_pair_setup = dpaa_sec_queue_pair_setup, .queue_pair_release = dpaa_sec_queue_pair_release, .queue_pair_count = dpaa_sec_queue_pair_count, .sym_session_get_size = dpaa_sec_sym_session_get_size, .sym_session_configure = dpaa_sec_sym_session_configure, .sym_session_clear = dpaa_sec_sym_session_clear }; static const struct rte_security_capability * dpaa_sec_capabilities_get(void *device __rte_unused) { return dpaa_sec_security_cap; } static const struct rte_security_ops dpaa_sec_security_ops = { .session_create = dpaa_sec_security_session_create, .session_update = NULL, .session_stats_get = NULL, .session_destroy = dpaa_sec_security_session_destroy, .set_pkt_metadata = NULL, .capabilities_get = dpaa_sec_capabilities_get }; static int dpaa_sec_uninit(struct rte_cryptodev *dev) { struct dpaa_sec_dev_private *internals; if (dev == NULL) return -ENODEV; internals = dev->data->dev_private; rte_free(dev->security_ctx); /* In case close has been called, internals->ctx_pool would be NULL */ rte_mempool_free(internals->ctx_pool); rte_free(internals); DPAA_SEC_INFO("Closing DPAA_SEC device %s on numa socket %u", dev->data->name, rte_socket_id()); return 0; } static int dpaa_sec_dev_init(struct rte_cryptodev *cryptodev) { struct dpaa_sec_dev_private *internals; struct rte_security_ctx *security_instance; struct dpaa_sec_qp *qp; uint32_t i, flags; int ret; PMD_INIT_FUNC_TRACE(); cryptodev->driver_id = cryptodev_driver_id; cryptodev->dev_ops = &crypto_ops; cryptodev->enqueue_burst = dpaa_sec_enqueue_burst; cryptodev->dequeue_burst = dpaa_sec_dequeue_burst; cryptodev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_HW_ACCELERATED | RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | RTE_CRYPTODEV_FF_SECURITY | RTE_CRYPTODEV_FF_IN_PLACE_SGL | RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT | RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT | RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT | RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT; internals = cryptodev->data->dev_private; internals->max_nb_queue_pairs = RTE_DPAA_MAX_NB_SEC_QPS; internals->max_nb_sessions = RTE_DPAA_SEC_PMD_MAX_NB_SESSIONS; /* * For secondary processes, we don't initialise any further as primary * has already done this work. Only check we don't need a different * RX function */ if (rte_eal_process_type() != RTE_PROC_PRIMARY) { DPAA_SEC_WARN("Device already init by primary process"); return 0; } /* Initialize security_ctx only for primary process*/ security_instance = rte_malloc("rte_security_instances_ops", sizeof(struct rte_security_ctx), 0); if (security_instance == NULL) return -ENOMEM; security_instance->device = (void *)cryptodev; security_instance->ops = &dpaa_sec_security_ops; security_instance->sess_cnt = 0; cryptodev->security_ctx = security_instance; rte_spinlock_init(&internals->lock); for (i = 0; i < internals->max_nb_queue_pairs; i++) { /* init qman fq for queue pair */ qp = &internals->qps[i]; ret = dpaa_sec_init_tx(&qp->outq); if (ret) { DPAA_SEC_ERR("config tx of queue pair %d", i); goto init_error; } } flags = QMAN_FQ_FLAG_LOCKED | QMAN_FQ_FLAG_DYNAMIC_FQID | QMAN_FQ_FLAG_TO_DCPORTAL; for (i = 0; i < internals->max_nb_sessions; i++) { /* create rx qman fq for sessions*/ ret = qman_create_fq(0, flags, &internals->inq[i]); if (unlikely(ret != 0)) { DPAA_SEC_ERR("sec qman_create_fq failed"); goto init_error; } } RTE_LOG(INFO, PMD, "%s cryptodev init\n", cryptodev->data->name); return 0; init_error: DPAA_SEC_ERR("driver %s: create failed\n", cryptodev->data->name); dpaa_sec_uninit(cryptodev); return -EFAULT; } static int cryptodev_dpaa_sec_probe(struct rte_dpaa_driver *dpaa_drv __rte_unused, struct rte_dpaa_device *dpaa_dev) { struct rte_cryptodev *cryptodev; char cryptodev_name[RTE_CRYPTODEV_NAME_MAX_LEN]; int retval; snprintf(cryptodev_name, sizeof(cryptodev_name), "dpaa_sec-%d", dpaa_dev->id.dev_id); cryptodev = rte_cryptodev_pmd_allocate(cryptodev_name, rte_socket_id()); if (cryptodev == NULL) return -ENOMEM; if (rte_eal_process_type() == RTE_PROC_PRIMARY) { cryptodev->data->dev_private = rte_zmalloc_socket( "cryptodev private structure", sizeof(struct dpaa_sec_dev_private), RTE_CACHE_LINE_SIZE, rte_socket_id()); if (cryptodev->data->dev_private == NULL) rte_panic("Cannot allocate memzone for private " "device data"); } dpaa_dev->crypto_dev = cryptodev; cryptodev->device = &dpaa_dev->device; /* init user callbacks */ TAILQ_INIT(&(cryptodev->link_intr_cbs)); /* if sec device version is not configured */ if (!rta_get_sec_era()) { const struct device_node *caam_node; for_each_compatible_node(caam_node, NULL, "fsl,sec-v4.0") { const uint32_t *prop = of_get_property(caam_node, "fsl,sec-era", NULL); if (prop) { rta_set_sec_era( INTL_SEC_ERA(rte_cpu_to_be_32(*prop))); break; } } } /* Invoke PMD device initialization function */ retval = dpaa_sec_dev_init(cryptodev); if (retval == 0) return 0; /* In case of error, cleanup is done */ if (rte_eal_process_type() == RTE_PROC_PRIMARY) rte_free(cryptodev->data->dev_private); rte_cryptodev_pmd_release_device(cryptodev); return -ENXIO; } static int cryptodev_dpaa_sec_remove(struct rte_dpaa_device *dpaa_dev) { struct rte_cryptodev *cryptodev; int ret; cryptodev = dpaa_dev->crypto_dev; if (cryptodev == NULL) return -ENODEV; ret = dpaa_sec_uninit(cryptodev); if (ret) return ret; return rte_cryptodev_pmd_destroy(cryptodev); } static struct rte_dpaa_driver rte_dpaa_sec_driver = { .drv_type = FSL_DPAA_CRYPTO, .driver = { .name = "DPAA SEC PMD" }, .probe = cryptodev_dpaa_sec_probe, .remove = cryptodev_dpaa_sec_remove, }; static struct cryptodev_driver dpaa_sec_crypto_drv; RTE_PMD_REGISTER_DPAA(CRYPTODEV_NAME_DPAA_SEC_PMD, rte_dpaa_sec_driver); RTE_PMD_REGISTER_CRYPTO_DRIVER(dpaa_sec_crypto_drv, rte_dpaa_sec_driver.driver, cryptodev_driver_id); RTE_INIT(dpaa_sec_init_log) { dpaa_logtype_sec = rte_log_register("pmd.crypto.dpaa"); if (dpaa_logtype_sec >= 0) rte_log_set_level(dpaa_logtype_sec, RTE_LOG_NOTICE); }