/*- * BSD LICENSE * * Copyright(c) 2016-2017 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include "rte_openssl_pmd_private.h" #define DES_BLOCK_SIZE 8 static uint8_t cryptodev_driver_id; static int cryptodev_openssl_remove(struct rte_vdev_device *vdev); /*----------------------------------------------------------------------------*/ /** * Increment counter by 1 * Counter is 64 bit array, big-endian */ static void ctr_inc(uint8_t *ctr) { uint64_t *ctr64 = (uint64_t *)ctr; *ctr64 = __builtin_bswap64(*ctr64); (*ctr64)++; *ctr64 = __builtin_bswap64(*ctr64); } /* *------------------------------------------------------------------------------ * Session Prepare *------------------------------------------------------------------------------ */ /** Get xform chain order */ static enum openssl_chain_order openssl_get_chain_order(const struct rte_crypto_sym_xform *xform) { enum openssl_chain_order res = OPENSSL_CHAIN_NOT_SUPPORTED; if (xform != NULL) { if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) { if (xform->next == NULL) res = OPENSSL_CHAIN_ONLY_AUTH; else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) res = OPENSSL_CHAIN_AUTH_CIPHER; } if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) { if (xform->next == NULL) res = OPENSSL_CHAIN_ONLY_CIPHER; else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) res = OPENSSL_CHAIN_CIPHER_AUTH; } if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) res = OPENSSL_CHAIN_COMBINED; } return res; } /** Get session cipher key from input cipher key */ static void get_cipher_key(uint8_t *input_key, int keylen, uint8_t *session_key) { memcpy(session_key, input_key, keylen); } /** Get key ede 24 bytes standard from input key */ static int get_cipher_key_ede(uint8_t *key, int keylen, uint8_t *key_ede) { int res = 0; /* Initialize keys - 24 bytes: [key1-key2-key3] */ switch (keylen) { case 24: memcpy(key_ede, key, 24); break; case 16: /* K3 = K1 */ memcpy(key_ede, key, 16); memcpy(key_ede + 16, key, 8); break; case 8: /* K1 = K2 = K3 (DES compatibility) */ memcpy(key_ede, key, 8); memcpy(key_ede + 8, key, 8); memcpy(key_ede + 16, key, 8); break; default: OPENSSL_LOG_ERR("Unsupported key size"); res = -EINVAL; } return res; } /** Get adequate openssl function for input cipher algorithm */ static uint8_t get_cipher_algo(enum rte_crypto_cipher_algorithm sess_algo, size_t keylen, const EVP_CIPHER **algo) { int res = 0; if (algo != NULL) { switch (sess_algo) { case RTE_CRYPTO_CIPHER_3DES_CBC: switch (keylen) { case 16: *algo = EVP_des_ede_cbc(); break; case 24: *algo = EVP_des_ede3_cbc(); break; default: res = -EINVAL; } break; case RTE_CRYPTO_CIPHER_3DES_CTR: break; case RTE_CRYPTO_CIPHER_AES_CBC: switch (keylen) { case 16: *algo = EVP_aes_128_cbc(); break; case 24: *algo = EVP_aes_192_cbc(); break; case 32: *algo = EVP_aes_256_cbc(); break; default: res = -EINVAL; } break; case RTE_CRYPTO_CIPHER_AES_CTR: switch (keylen) { case 16: *algo = EVP_aes_128_ctr(); break; case 24: *algo = EVP_aes_192_ctr(); break; case 32: *algo = EVP_aes_256_ctr(); break; default: res = -EINVAL; } break; default: res = -EINVAL; break; } } else { res = -EINVAL; } return res; } /** Get adequate openssl function for input auth algorithm */ static uint8_t get_auth_algo(enum rte_crypto_auth_algorithm sessalgo, const EVP_MD **algo) { int res = 0; if (algo != NULL) { switch (sessalgo) { case RTE_CRYPTO_AUTH_MD5: case RTE_CRYPTO_AUTH_MD5_HMAC: *algo = EVP_md5(); break; case RTE_CRYPTO_AUTH_SHA1: case RTE_CRYPTO_AUTH_SHA1_HMAC: *algo = EVP_sha1(); break; case RTE_CRYPTO_AUTH_SHA224: case RTE_CRYPTO_AUTH_SHA224_HMAC: *algo = EVP_sha224(); break; case RTE_CRYPTO_AUTH_SHA256: case RTE_CRYPTO_AUTH_SHA256_HMAC: *algo = EVP_sha256(); break; case RTE_CRYPTO_AUTH_SHA384: case RTE_CRYPTO_AUTH_SHA384_HMAC: *algo = EVP_sha384(); break; case RTE_CRYPTO_AUTH_SHA512: case RTE_CRYPTO_AUTH_SHA512_HMAC: *algo = EVP_sha512(); break; default: res = -EINVAL; break; } } else { res = -EINVAL; } return res; } /** Get adequate openssl function for input cipher algorithm */ static uint8_t get_aead_algo(enum rte_crypto_aead_algorithm sess_algo, size_t keylen, const EVP_CIPHER **algo) { int res = 0; if (algo != NULL) { switch (sess_algo) { case RTE_CRYPTO_AEAD_AES_GCM: switch (keylen) { case 16: *algo = EVP_aes_128_gcm(); break; case 24: *algo = EVP_aes_192_gcm(); break; case 32: *algo = EVP_aes_256_gcm(); break; default: res = -EINVAL; } break; default: res = -EINVAL; break; } } else { res = -EINVAL; } return res; } /** Set session cipher parameters */ static int openssl_set_session_cipher_parameters(struct openssl_session *sess, const struct rte_crypto_sym_xform *xform) { /* Select cipher direction */ sess->cipher.direction = xform->cipher.op; /* Select cipher key */ sess->cipher.key.length = xform->cipher.key.length; /* Set IV parameters */ sess->iv.offset = xform->cipher.iv.offset; sess->iv.length = xform->cipher.iv.length; /* Select cipher algo */ switch (xform->cipher.algo) { case RTE_CRYPTO_CIPHER_3DES_CBC: case RTE_CRYPTO_CIPHER_AES_CBC: case RTE_CRYPTO_CIPHER_AES_CTR: sess->cipher.mode = OPENSSL_CIPHER_LIB; sess->cipher.algo = xform->cipher.algo; sess->cipher.ctx = EVP_CIPHER_CTX_new(); if (get_cipher_algo(sess->cipher.algo, sess->cipher.key.length, &sess->cipher.evp_algo) != 0) return -EINVAL; get_cipher_key(xform->cipher.key.data, sess->cipher.key.length, sess->cipher.key.data); break; case RTE_CRYPTO_CIPHER_3DES_CTR: sess->cipher.mode = OPENSSL_CIPHER_DES3CTR; sess->cipher.ctx = EVP_CIPHER_CTX_new(); if (get_cipher_key_ede(xform->cipher.key.data, sess->cipher.key.length, sess->cipher.key.data) != 0) return -EINVAL; break; case RTE_CRYPTO_CIPHER_DES_DOCSISBPI: sess->cipher.algo = xform->cipher.algo; sess->chain_order = OPENSSL_CHAIN_CIPHER_BPI; sess->cipher.ctx = EVP_CIPHER_CTX_new(); sess->cipher.evp_algo = EVP_des_cbc(); sess->cipher.bpi_ctx = EVP_CIPHER_CTX_new(); /* IV will be ECB encrypted whether direction is encrypt or decrypt */ if (EVP_EncryptInit_ex(sess->cipher.bpi_ctx, EVP_des_ecb(), NULL, xform->cipher.key.data, 0) != 1) return -EINVAL; get_cipher_key(xform->cipher.key.data, sess->cipher.key.length, sess->cipher.key.data); break; default: sess->cipher.algo = RTE_CRYPTO_CIPHER_NULL; return -ENOTSUP; } return 0; } /* Set session auth parameters */ static int openssl_set_session_auth_parameters(struct openssl_session *sess, const struct rte_crypto_sym_xform *xform) { /* Select auth generate/verify */ sess->auth.operation = xform->auth.op; sess->auth.algo = xform->auth.algo; /* Select auth algo */ switch (xform->auth.algo) { case RTE_CRYPTO_AUTH_AES_GMAC: sess->chain_order = OPENSSL_CHAIN_COMBINED; /* Set IV parameters */ sess->iv.offset = xform->auth.iv.offset; sess->iv.length = xform->auth.iv.length; /* * OpenSSL requires GMAC to be a GCM operation * with no cipher data length */ sess->cipher.mode = OPENSSL_CIPHER_LIB; if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE) sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_ENCRYPT; else sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_DECRYPT; sess->cipher.key.length = xform->auth.key.length; sess->cipher.ctx = EVP_CIPHER_CTX_new(); if (get_aead_algo(RTE_CRYPTO_AEAD_AES_GCM, sess->cipher.key.length, &sess->cipher.evp_algo) != 0) return -EINVAL; get_cipher_key(xform->auth.key.data, xform->auth.key.length, sess->cipher.key.data); break; case RTE_CRYPTO_AUTH_MD5: case RTE_CRYPTO_AUTH_SHA1: case RTE_CRYPTO_AUTH_SHA224: case RTE_CRYPTO_AUTH_SHA256: case RTE_CRYPTO_AUTH_SHA384: case RTE_CRYPTO_AUTH_SHA512: sess->auth.mode = OPENSSL_AUTH_AS_AUTH; if (get_auth_algo(xform->auth.algo, &sess->auth.auth.evp_algo) != 0) return -EINVAL; sess->auth.auth.ctx = EVP_MD_CTX_create(); break; case RTE_CRYPTO_AUTH_MD5_HMAC: case RTE_CRYPTO_AUTH_SHA1_HMAC: case RTE_CRYPTO_AUTH_SHA224_HMAC: case RTE_CRYPTO_AUTH_SHA256_HMAC: case RTE_CRYPTO_AUTH_SHA384_HMAC: case RTE_CRYPTO_AUTH_SHA512_HMAC: sess->auth.mode = OPENSSL_AUTH_AS_HMAC; sess->auth.hmac.ctx = EVP_MD_CTX_create(); if (get_auth_algo(xform->auth.algo, &sess->auth.hmac.evp_algo) != 0) return -EINVAL; sess->auth.hmac.pkey = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, xform->auth.key.data, xform->auth.key.length); break; default: return -ENOTSUP; } sess->auth.digest_length = xform->auth.digest_length; return 0; } /* Set session AEAD parameters */ static int openssl_set_session_aead_parameters(struct openssl_session *sess, const struct rte_crypto_sym_xform *xform) { /* Select cipher direction */ sess->cipher.direction = xform->cipher.op; /* Select cipher key */ sess->cipher.key.length = xform->aead.key.length; /* Set IV parameters */ sess->iv.offset = xform->aead.iv.offset; sess->iv.length = xform->aead.iv.length; /* Select auth generate/verify */ sess->auth.operation = xform->auth.op; sess->auth.algo = xform->auth.algo; /* Select auth algo */ switch (xform->aead.algo) { case RTE_CRYPTO_AEAD_AES_GCM: sess->cipher.mode = OPENSSL_CIPHER_LIB; sess->aead_algo = xform->aead.algo; sess->cipher.ctx = EVP_CIPHER_CTX_new(); if (get_aead_algo(sess->aead_algo, sess->cipher.key.length, &sess->cipher.evp_algo) != 0) return -EINVAL; get_cipher_key(xform->cipher.key.data, sess->cipher.key.length, sess->cipher.key.data); sess->chain_order = OPENSSL_CHAIN_COMBINED; break; default: return -ENOTSUP; } sess->auth.aad_length = xform->aead.aad_length; sess->auth.digest_length = xform->aead.digest_length; return 0; } /** Parse crypto xform chain and set private session parameters */ int openssl_set_session_parameters(struct openssl_session *sess, const struct rte_crypto_sym_xform *xform) { const struct rte_crypto_sym_xform *cipher_xform = NULL; const struct rte_crypto_sym_xform *auth_xform = NULL; const struct rte_crypto_sym_xform *aead_xform = NULL; int ret; sess->chain_order = openssl_get_chain_order(xform); switch (sess->chain_order) { case OPENSSL_CHAIN_ONLY_CIPHER: cipher_xform = xform; break; case OPENSSL_CHAIN_ONLY_AUTH: auth_xform = xform; break; case OPENSSL_CHAIN_CIPHER_AUTH: cipher_xform = xform; auth_xform = xform->next; break; case OPENSSL_CHAIN_AUTH_CIPHER: auth_xform = xform; cipher_xform = xform->next; break; case OPENSSL_CHAIN_COMBINED: aead_xform = xform; break; default: return -EINVAL; } /* Default IV length = 0 */ sess->iv.length = 0; /* cipher_xform must be check before auth_xform */ if (cipher_xform) { ret = openssl_set_session_cipher_parameters( sess, cipher_xform); if (ret != 0) { OPENSSL_LOG_ERR( "Invalid/unsupported cipher parameters"); return ret; } } if (auth_xform) { ret = openssl_set_session_auth_parameters(sess, auth_xform); if (ret != 0) { OPENSSL_LOG_ERR( "Invalid/unsupported auth parameters"); return ret; } } if (aead_xform) { ret = openssl_set_session_aead_parameters(sess, aead_xform); if (ret != 0) { OPENSSL_LOG_ERR( "Invalid/unsupported AEAD parameters"); return ret; } } return 0; } /** Reset private session parameters */ void openssl_reset_session(struct openssl_session *sess) { EVP_CIPHER_CTX_free(sess->cipher.ctx); if (sess->chain_order == OPENSSL_CHAIN_CIPHER_BPI) EVP_CIPHER_CTX_free(sess->cipher.bpi_ctx); switch (sess->auth.mode) { case OPENSSL_AUTH_AS_AUTH: EVP_MD_CTX_destroy(sess->auth.auth.ctx); break; case OPENSSL_AUTH_AS_HMAC: EVP_PKEY_free(sess->auth.hmac.pkey); EVP_MD_CTX_destroy(sess->auth.hmac.ctx); break; default: break; } } /** Provide session for operation */ static struct openssl_session * get_session(struct openssl_qp *qp, struct rte_crypto_op *op) { struct openssl_session *sess = NULL; if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) { /* get existing session */ if (likely(op->sym->session != NULL)) sess = (struct openssl_session *) get_session_private_data( op->sym->session, cryptodev_driver_id); } else { /* provide internal session */ void *_sess = NULL; void *_sess_private_data = NULL; if (rte_mempool_get(qp->sess_mp, (void **)&_sess)) return NULL; if (rte_mempool_get(qp->sess_mp, (void **)&_sess_private_data)) return NULL; sess = (struct openssl_session *)_sess_private_data; if (unlikely(openssl_set_session_parameters(sess, op->sym->xform) != 0)) { rte_mempool_put(qp->sess_mp, _sess); rte_mempool_put(qp->sess_mp, _sess_private_data); sess = NULL; } op->sym->session = (struct rte_cryptodev_sym_session *)_sess; set_session_private_data(op->sym->session, cryptodev_driver_id, _sess_private_data); } if (sess == NULL) op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; return sess; } /* *------------------------------------------------------------------------------ * Process Operations *------------------------------------------------------------------------------ */ static inline int process_openssl_encryption_update(struct rte_mbuf *mbuf_src, int offset, uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx) { struct rte_mbuf *m; int dstlen; int l, n = srclen; uint8_t *src; for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); m = m->next) offset -= rte_pktmbuf_data_len(m); if (m == 0) return -1; src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); l = rte_pktmbuf_data_len(m) - offset; if (srclen <= l) { if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0) return -1; *dst += l; return 0; } if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) return -1; *dst += dstlen; n -= l; for (m = m->next; (m != NULL) && (n > 0); m = m->next) { src = rte_pktmbuf_mtod(m, uint8_t *); l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n; if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) return -1; *dst += dstlen; n -= l; } return 0; } static inline int process_openssl_decryption_update(struct rte_mbuf *mbuf_src, int offset, uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx) { struct rte_mbuf *m; int dstlen; int l, n = srclen; uint8_t *src; for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); m = m->next) offset -= rte_pktmbuf_data_len(m); if (m == 0) return -1; src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); l = rte_pktmbuf_data_len(m) - offset; if (srclen <= l) { if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0) return -1; *dst += l; return 0; } if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) return -1; *dst += dstlen; n -= l; for (m = m->next; (m != NULL) && (n > 0); m = m->next) { src = rte_pktmbuf_mtod(m, uint8_t *); l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n; if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) return -1; *dst += dstlen; n -= l; } return 0; } /** Process standard openssl cipher encryption */ static int process_openssl_cipher_encrypt(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset, uint8_t *iv, uint8_t *key, int srclen, EVP_CIPHER_CTX *ctx, const EVP_CIPHER *algo) { int totlen; if (EVP_EncryptInit_ex(ctx, algo, NULL, key, iv) <= 0) goto process_cipher_encrypt_err; EVP_CIPHER_CTX_set_padding(ctx, 0); if (process_openssl_encryption_update(mbuf_src, offset, &dst, srclen, ctx)) goto process_cipher_encrypt_err; if (EVP_EncryptFinal_ex(ctx, dst, &totlen) <= 0) goto process_cipher_encrypt_err; return 0; process_cipher_encrypt_err: OPENSSL_LOG_ERR("Process openssl cipher encrypt failed"); return -EINVAL; } /** Process standard openssl cipher encryption */ static int process_openssl_cipher_bpi_encrypt(uint8_t *src, uint8_t *dst, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx) { uint8_t i; uint8_t encrypted_iv[DES_BLOCK_SIZE]; int encrypted_ivlen; if (EVP_EncryptUpdate(ctx, encrypted_iv, &encrypted_ivlen, iv, DES_BLOCK_SIZE) <= 0) goto process_cipher_encrypt_err; for (i = 0; i < srclen; i++) *(dst + i) = *(src + i) ^ (encrypted_iv[i]); return 0; process_cipher_encrypt_err: OPENSSL_LOG_ERR("Process openssl cipher bpi encrypt failed"); return -EINVAL; } /** Process standard openssl cipher decryption */ static int process_openssl_cipher_decrypt(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset, uint8_t *iv, uint8_t *key, int srclen, EVP_CIPHER_CTX *ctx, const EVP_CIPHER *algo) { int totlen; if (EVP_DecryptInit_ex(ctx, algo, NULL, key, iv) <= 0) goto process_cipher_decrypt_err; EVP_CIPHER_CTX_set_padding(ctx, 0); if (process_openssl_decryption_update(mbuf_src, offset, &dst, srclen, ctx)) goto process_cipher_decrypt_err; if (EVP_DecryptFinal_ex(ctx, dst, &totlen) <= 0) goto process_cipher_decrypt_err; return 0; process_cipher_decrypt_err: OPENSSL_LOG_ERR("Process openssl cipher decrypt failed"); return -EINVAL; } /** Process cipher des 3 ctr encryption, decryption algorithm */ static int process_openssl_cipher_des3ctr(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset, uint8_t *iv, uint8_t *key, int srclen, EVP_CIPHER_CTX *ctx) { uint8_t ebuf[8], ctr[8]; int unused, n; struct rte_mbuf *m; uint8_t *src; int l; for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); m = m->next) offset -= rte_pktmbuf_data_len(m); if (m == 0) goto process_cipher_des3ctr_err; src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); l = rte_pktmbuf_data_len(m) - offset; /* We use 3DES encryption also for decryption. * IV is not important for 3DES ecb */ if (EVP_EncryptInit_ex(ctx, EVP_des_ede3_ecb(), NULL, key, NULL) <= 0) goto process_cipher_des3ctr_err; memcpy(ctr, iv, 8); for (n = 0; n < srclen; n++) { if (n % 8 == 0) { if (EVP_EncryptUpdate(ctx, (unsigned char *)&ebuf, &unused, (const unsigned char *)&ctr, 8) <= 0) goto process_cipher_des3ctr_err; ctr_inc(ctr); } dst[n] = *(src++) ^ ebuf[n % 8]; l--; if (!l) { m = m->next; if (m) { src = rte_pktmbuf_mtod(m, uint8_t *); l = rte_pktmbuf_data_len(m); } } } return 0; process_cipher_des3ctr_err: OPENSSL_LOG_ERR("Process openssl cipher des 3 ede ctr failed"); return -EINVAL; } /** Process auth/encription aes-gcm algorithm */ static int process_openssl_auth_encryption_gcm(struct rte_mbuf *mbuf_src, int offset, int srclen, uint8_t *aad, int aadlen, uint8_t *iv, int ivlen, uint8_t *key, uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx, const EVP_CIPHER *algo) { int len = 0, unused = 0; uint8_t empty[] = {}; if (EVP_EncryptInit_ex(ctx, algo, NULL, NULL, NULL) <= 0) goto process_auth_encryption_gcm_err; if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, ivlen, NULL) <= 0) goto process_auth_encryption_gcm_err; if (EVP_EncryptInit_ex(ctx, NULL, NULL, key, iv) <= 0) goto process_auth_encryption_gcm_err; if (aadlen > 0) if (EVP_EncryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0) goto process_auth_encryption_gcm_err; if (srclen > 0) if (process_openssl_encryption_update(mbuf_src, offset, &dst, srclen, ctx)) goto process_auth_encryption_gcm_err; /* Workaround open ssl bug in version less then 1.0.1f */ if (EVP_EncryptUpdate(ctx, empty, &unused, empty, 0) <= 0) goto process_auth_encryption_gcm_err; if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0) goto process_auth_encryption_gcm_err; if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, tag) <= 0) goto process_auth_encryption_gcm_err; return 0; process_auth_encryption_gcm_err: OPENSSL_LOG_ERR("Process openssl auth encryption gcm failed"); return -EINVAL; } static int process_openssl_auth_decryption_gcm(struct rte_mbuf *mbuf_src, int offset, int srclen, uint8_t *aad, int aadlen, uint8_t *iv, int ivlen, uint8_t *key, uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx, const EVP_CIPHER *algo) { int len = 0, unused = 0; uint8_t empty[] = {}; if (EVP_DecryptInit_ex(ctx, algo, NULL, NULL, NULL) <= 0) goto process_auth_decryption_gcm_err; if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, ivlen, NULL) <= 0) goto process_auth_decryption_gcm_err; if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, tag) <= 0) goto process_auth_decryption_gcm_err; if (EVP_DecryptInit_ex(ctx, NULL, NULL, key, iv) <= 0) goto process_auth_decryption_gcm_err; if (aadlen > 0) if (EVP_DecryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0) goto process_auth_decryption_gcm_err; if (srclen > 0) if (process_openssl_decryption_update(mbuf_src, offset, &dst, srclen, ctx)) goto process_auth_decryption_gcm_err; /* Workaround open ssl bug in version less then 1.0.1f */ if (EVP_DecryptUpdate(ctx, empty, &unused, empty, 0) <= 0) goto process_auth_decryption_gcm_err; if (EVP_DecryptFinal_ex(ctx, dst, &len) <= 0) goto process_auth_decryption_gcm_final_err; return 0; process_auth_decryption_gcm_err: OPENSSL_LOG_ERR("Process openssl auth description gcm failed"); return -EINVAL; process_auth_decryption_gcm_final_err: return -EFAULT; } /** Process standard openssl auth algorithms */ static int process_openssl_auth(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset, __rte_unused uint8_t *iv, __rte_unused EVP_PKEY * pkey, int srclen, EVP_MD_CTX *ctx, const EVP_MD *algo) { size_t dstlen; struct rte_mbuf *m; int l, n = srclen; uint8_t *src; for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); m = m->next) offset -= rte_pktmbuf_data_len(m); if (m == 0) goto process_auth_err; if (EVP_DigestInit_ex(ctx, algo, NULL) <= 0) goto process_auth_err; src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); l = rte_pktmbuf_data_len(m) - offset; if (srclen <= l) { if (EVP_DigestUpdate(ctx, (char *)src, srclen) <= 0) goto process_auth_err; goto process_auth_final; } if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0) goto process_auth_err; n -= l; for (m = m->next; (m != NULL) && (n > 0); m = m->next) { src = rte_pktmbuf_mtod(m, uint8_t *); l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n; if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0) goto process_auth_err; n -= l; } process_auth_final: if (EVP_DigestFinal_ex(ctx, dst, (unsigned int *)&dstlen) <= 0) goto process_auth_err; return 0; process_auth_err: OPENSSL_LOG_ERR("Process openssl auth failed"); return -EINVAL; } /** Process standard openssl auth algorithms with hmac */ static int process_openssl_auth_hmac(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset, __rte_unused uint8_t *iv, EVP_PKEY *pkey, int srclen, EVP_MD_CTX *ctx, const EVP_MD *algo) { size_t dstlen; struct rte_mbuf *m; int l, n = srclen; uint8_t *src; for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); m = m->next) offset -= rte_pktmbuf_data_len(m); if (m == 0) goto process_auth_err; if (EVP_DigestSignInit(ctx, NULL, algo, NULL, pkey) <= 0) goto process_auth_err; src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); l = rte_pktmbuf_data_len(m) - offset; if (srclen <= l) { if (EVP_DigestSignUpdate(ctx, (char *)src, srclen) <= 0) goto process_auth_err; goto process_auth_final; } if (EVP_DigestSignUpdate(ctx, (char *)src, l) <= 0) goto process_auth_err; n -= l; for (m = m->next; (m != NULL) && (n > 0); m = m->next) { src = rte_pktmbuf_mtod(m, uint8_t *); l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n; if (EVP_DigestSignUpdate(ctx, (char *)src, l) <= 0) goto process_auth_err; n -= l; } process_auth_final: if (EVP_DigestSignFinal(ctx, dst, &dstlen) <= 0) goto process_auth_err; return 0; process_auth_err: OPENSSL_LOG_ERR("Process openssl auth failed"); return -EINVAL; } /*----------------------------------------------------------------------------*/ /** Process auth/cipher combined operation */ static void process_openssl_combined_op (struct rte_crypto_op *op, struct openssl_session *sess, struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst) { /* cipher */ uint8_t *dst = NULL, *iv, *tag, *aad; int srclen, ivlen, aadlen, status = -1; uint32_t offset; /* * Segmented destination buffer is not supported for * encryption/decryption */ if (!rte_pktmbuf_is_contiguous(mbuf_dst)) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; return; } iv = rte_crypto_op_ctod_offset(op, uint8_t *, sess->iv.offset); ivlen = sess->iv.length; if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) { srclen = 0; offset = op->sym->auth.data.offset; aadlen = op->sym->auth.data.length; aad = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *, op->sym->auth.data.offset); tag = op->sym->auth.digest.data; if (tag == NULL) tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, offset + aadlen); } else { srclen = op->sym->aead.data.length; dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, op->sym->aead.data.offset); offset = op->sym->aead.data.offset; aad = op->sym->aead.aad.data; aadlen = sess->auth.aad_length; tag = op->sym->aead.digest.data; if (tag == NULL) tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, offset + srclen); } if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) status = process_openssl_auth_encryption_gcm( mbuf_src, offset, srclen, aad, aadlen, iv, ivlen, sess->cipher.key.data, dst, tag, sess->cipher.ctx, sess->cipher.evp_algo); else status = process_openssl_auth_decryption_gcm( mbuf_src, offset, srclen, aad, aadlen, iv, ivlen, sess->cipher.key.data, dst, tag, sess->cipher.ctx, sess->cipher.evp_algo); if (status != 0) { if (status == (-EFAULT) && sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; else op->status = RTE_CRYPTO_OP_STATUS_ERROR; } } /** Process cipher operation */ static void process_openssl_cipher_op (struct rte_crypto_op *op, struct openssl_session *sess, struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst) { uint8_t *dst, *iv; int srclen, status; /* * Segmented destination buffer is not supported for * encryption/decryption */ if (!rte_pktmbuf_is_contiguous(mbuf_dst)) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; return; } srclen = op->sym->cipher.data.length; dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, op->sym->cipher.data.offset); iv = rte_crypto_op_ctod_offset(op, uint8_t *, sess->iv.offset); if (sess->cipher.mode == OPENSSL_CIPHER_LIB) if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) status = process_openssl_cipher_encrypt(mbuf_src, dst, op->sym->cipher.data.offset, iv, sess->cipher.key.data, srclen, sess->cipher.ctx, sess->cipher.evp_algo); else status = process_openssl_cipher_decrypt(mbuf_src, dst, op->sym->cipher.data.offset, iv, sess->cipher.key.data, srclen, sess->cipher.ctx, sess->cipher.evp_algo); else status = process_openssl_cipher_des3ctr(mbuf_src, dst, op->sym->cipher.data.offset, iv, sess->cipher.key.data, srclen, sess->cipher.ctx); if (status != 0) op->status = RTE_CRYPTO_OP_STATUS_ERROR; } /** Process cipher operation */ static void process_openssl_docsis_bpi_op(struct rte_crypto_op *op, struct openssl_session *sess, struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst) { uint8_t *src, *dst, *iv; uint8_t block_size, last_block_len; int srclen, status = 0; srclen = op->sym->cipher.data.length; src = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *, op->sym->cipher.data.offset); dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, op->sym->cipher.data.offset); iv = rte_crypto_op_ctod_offset(op, uint8_t *, sess->iv.offset); block_size = DES_BLOCK_SIZE; last_block_len = srclen % block_size; if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { /* Encrypt only with ECB mode XOR IV */ if (srclen < block_size) { status = process_openssl_cipher_bpi_encrypt(src, dst, iv, srclen, sess->cipher.bpi_ctx); } else { srclen -= last_block_len; /* Encrypt with the block aligned stream with CBC mode */ status = process_openssl_cipher_encrypt(mbuf_src, dst, op->sym->cipher.data.offset, iv, sess->cipher.key.data, srclen, sess->cipher.ctx, sess->cipher.evp_algo); if (last_block_len) { /* Point at last block */ dst += srclen; /* * IV is the last encrypted block from * the previous operation */ iv = dst - block_size; src += srclen; srclen = last_block_len; /* Encrypt the last frame with ECB mode */ status |= process_openssl_cipher_bpi_encrypt(src, dst, iv, srclen, sess->cipher.bpi_ctx); } } } else { /* Decrypt only with ECB mode (encrypt, as it is same operation) */ if (srclen < block_size) { status = process_openssl_cipher_bpi_encrypt(src, dst, iv, srclen, sess->cipher.bpi_ctx); } else { if (last_block_len) { /* Point at last block */ dst += srclen - last_block_len; src += srclen - last_block_len; /* * IV is the last full block */ iv = src - block_size; /* * Decrypt the last frame with ECB mode * (encrypt, as it is the same operation) */ status = process_openssl_cipher_bpi_encrypt(src, dst, iv, last_block_len, sess->cipher.bpi_ctx); /* Prepare parameters for CBC mode op */ iv = rte_crypto_op_ctod_offset(op, uint8_t *, sess->iv.offset); dst += last_block_len - srclen; srclen -= last_block_len; } /* Decrypt with CBC mode */ status |= process_openssl_cipher_decrypt(mbuf_src, dst, op->sym->cipher.data.offset, iv, sess->cipher.key.data, srclen, sess->cipher.ctx, sess->cipher.evp_algo); } } if (status != 0) op->status = RTE_CRYPTO_OP_STATUS_ERROR; } /** Process auth operation */ static void process_openssl_auth_op (struct rte_crypto_op *op, struct openssl_session *sess, struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst) { uint8_t *dst; int srclen, status; srclen = op->sym->auth.data.length; if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) dst = (uint8_t *)rte_pktmbuf_append(mbuf_src, sess->auth.digest_length); else { dst = op->sym->auth.digest.data; if (dst == NULL) dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, op->sym->auth.data.offset + op->sym->auth.data.length); } switch (sess->auth.mode) { case OPENSSL_AUTH_AS_AUTH: status = process_openssl_auth(mbuf_src, dst, op->sym->auth.data.offset, NULL, NULL, srclen, sess->auth.auth.ctx, sess->auth.auth.evp_algo); break; case OPENSSL_AUTH_AS_HMAC: status = process_openssl_auth_hmac(mbuf_src, dst, op->sym->auth.data.offset, NULL, sess->auth.hmac.pkey, srclen, sess->auth.hmac.ctx, sess->auth.hmac.evp_algo); break; default: status = -1; break; } if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) { if (memcmp(dst, op->sym->auth.digest.data, sess->auth.digest_length) != 0) { op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; } /* Trim area used for digest from mbuf. */ rte_pktmbuf_trim(mbuf_src, sess->auth.digest_length); } if (status != 0) op->status = RTE_CRYPTO_OP_STATUS_ERROR; } /** Process crypto operation for mbuf */ static int process_op(const struct openssl_qp *qp, struct rte_crypto_op *op, struct openssl_session *sess) { struct rte_mbuf *msrc, *mdst; int retval; msrc = op->sym->m_src; mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src; op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; switch (sess->chain_order) { case OPENSSL_CHAIN_ONLY_CIPHER: process_openssl_cipher_op(op, sess, msrc, mdst); break; case OPENSSL_CHAIN_ONLY_AUTH: process_openssl_auth_op(op, sess, msrc, mdst); break; case OPENSSL_CHAIN_CIPHER_AUTH: process_openssl_cipher_op(op, sess, msrc, mdst); process_openssl_auth_op(op, sess, mdst, mdst); break; case OPENSSL_CHAIN_AUTH_CIPHER: process_openssl_auth_op(op, sess, msrc, mdst); process_openssl_cipher_op(op, sess, msrc, mdst); break; case OPENSSL_CHAIN_COMBINED: process_openssl_combined_op(op, sess, msrc, mdst); break; case OPENSSL_CHAIN_CIPHER_BPI: process_openssl_docsis_bpi_op(op, sess, msrc, mdst); break; default: op->status = RTE_CRYPTO_OP_STATUS_ERROR; break; } /* Free session if a session-less crypto op */ if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) { openssl_reset_session(sess); memset(sess, 0, sizeof(struct openssl_session)); memset(op->sym->session, 0, rte_cryptodev_get_header_session_size()); rte_mempool_put(qp->sess_mp, sess); rte_mempool_put(qp->sess_mp, op->sym->session); op->sym->session = NULL; } if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED) op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) retval = rte_ring_enqueue(qp->processed_ops, (void *)op); else retval = -1; return retval; } /* *------------------------------------------------------------------------------ * PMD Framework *------------------------------------------------------------------------------ */ /** Enqueue burst */ static uint16_t openssl_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { struct openssl_session *sess; struct openssl_qp *qp = queue_pair; int i, retval; for (i = 0; i < nb_ops; i++) { sess = get_session(qp, ops[i]); if (unlikely(sess == NULL)) goto enqueue_err; retval = process_op(qp, ops[i], sess); if (unlikely(retval < 0)) goto enqueue_err; } qp->stats.enqueued_count += i; return i; enqueue_err: qp->stats.enqueue_err_count++; return i; } /** Dequeue burst */ static uint16_t openssl_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { struct openssl_qp *qp = queue_pair; unsigned int nb_dequeued = 0; nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops, (void **)ops, nb_ops, NULL); qp->stats.dequeued_count += nb_dequeued; return nb_dequeued; } /** Create OPENSSL crypto device */ static int cryptodev_openssl_create(const char *name, struct rte_vdev_device *vdev, struct rte_crypto_vdev_init_params *init_params) { struct rte_cryptodev *dev; struct openssl_private *internals; if (init_params->name[0] == '\0') snprintf(init_params->name, sizeof(init_params->name), "%s", name); dev = rte_cryptodev_vdev_pmd_init(init_params->name, sizeof(struct openssl_private), init_params->socket_id, vdev); if (dev == NULL) { OPENSSL_LOG_ERR("failed to create cryptodev vdev"); goto init_error; } dev->driver_id = cryptodev_driver_id; dev->dev_ops = rte_openssl_pmd_ops; /* register rx/tx burst functions for data path */ dev->dequeue_burst = openssl_pmd_dequeue_burst; dev->enqueue_burst = openssl_pmd_enqueue_burst; dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | RTE_CRYPTODEV_FF_CPU_AESNI | RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER; /* Set vector instructions mode supported */ internals = dev->data->dev_private; internals->max_nb_qpairs = init_params->max_nb_queue_pairs; internals->max_nb_sessions = init_params->max_nb_sessions; return 0; init_error: OPENSSL_LOG_ERR("driver %s: cryptodev_openssl_create failed", init_params->name); cryptodev_openssl_remove(vdev); return -EFAULT; } /** Initialise OPENSSL crypto device */ static int cryptodev_openssl_probe(struct rte_vdev_device *vdev) { struct rte_crypto_vdev_init_params init_params = { RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_QUEUE_PAIRS, RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_SESSIONS, rte_socket_id(), {0} }; const char *name; const char *input_args; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; input_args = rte_vdev_device_args(vdev); rte_cryptodev_vdev_parse_init_params(&init_params, input_args); RTE_LOG(INFO, PMD, "Initialising %s on NUMA node %d\n", name, init_params.socket_id); if (init_params.name[0] != '\0') RTE_LOG(INFO, PMD, " User defined name = %s\n", init_params.name); RTE_LOG(INFO, PMD, " Max number of queue pairs = %d\n", init_params.max_nb_queue_pairs); RTE_LOG(INFO, PMD, " Max number of sessions = %d\n", init_params.max_nb_sessions); return cryptodev_openssl_create(name, vdev, &init_params); } /** Uninitialise OPENSSL crypto device */ static int cryptodev_openssl_remove(struct rte_vdev_device *vdev) { const char *name; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; RTE_LOG(INFO, PMD, "Closing OPENSSL crypto device %s on numa socket %u\n", name, rte_socket_id()); return 0; } static struct rte_vdev_driver cryptodev_openssl_pmd_drv = { .probe = cryptodev_openssl_probe, .remove = cryptodev_openssl_remove }; RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_OPENSSL_PMD, cryptodev_openssl_pmd_drv); RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_OPENSSL_PMD, "max_nb_queue_pairs= " "max_nb_sessions= " "socket_id="); RTE_PMD_REGISTER_CRYPTO_DRIVER(cryptodev_openssl_pmd_drv, cryptodev_driver_id);