/* SPDX-License-Identifier: BSD-3-Clause * Copyright (c) 2015-2018 Atomic Rules LLC */ #include #include "ark_ethdev_rx.h" #include "ark_global.h" #include "ark_logs.h" #include "ark_mpu.h" #include "ark_udm.h" #define ARK_RX_META_SIZE 32 #define ARK_RX_META_OFFSET (RTE_PKTMBUF_HEADROOM - ARK_RX_META_SIZE) #define ARK_RX_MAX_NOCHAIN (RTE_MBUF_DEFAULT_DATAROOM) /* Forward declarations */ struct ark_rx_queue; struct ark_rx_meta; static void dump_mbuf_data(struct rte_mbuf *mbuf, uint16_t lo, uint16_t hi); static void ark_ethdev_rx_dump(const char *name, struct ark_rx_queue *queue); static uint32_t eth_ark_rx_jumbo(struct ark_rx_queue *queue, struct ark_rx_meta *meta, struct rte_mbuf *mbuf0, uint32_t cons_index); static inline int eth_ark_rx_seed_mbufs(struct ark_rx_queue *queue); /* ************************************************************************* */ struct ark_rx_queue { /* array of mbufs to populate */ struct rte_mbuf **reserve_q; /* array of physical addresses of the mbuf data pointer */ /* This point is a virtual address */ rte_iova_t *paddress_q; struct rte_mempool *mb_pool; struct ark_udm_t *udm; struct ark_mpu_t *mpu; uint32_t queue_size; uint32_t queue_mask; uint32_t seed_index; /* step 1 set with empty mbuf */ uint32_t cons_index; /* step 3 consumed by driver */ /* The queue Id is used to identify the HW Q */ uint16_t phys_qid; /* The queue Index is used within the dpdk device structures */ uint16_t queue_index; uint32_t pad1; /* separate cache line */ /* second cache line - fields only used in slow path */ MARKER cacheline1 __rte_cache_min_aligned; volatile uint32_t prod_index; /* step 2 filled by FPGA */ } __rte_cache_aligned; /* ************************************************************************* */ static int eth_ark_rx_hw_setup(struct rte_eth_dev *dev, struct ark_rx_queue *queue, uint16_t rx_queue_id __rte_unused, uint16_t rx_queue_idx) { rte_iova_t queue_base; rte_iova_t phys_addr_q_base; rte_iova_t phys_addr_prod_index; queue_base = rte_malloc_virt2iova(queue); phys_addr_prod_index = queue_base + offsetof(struct ark_rx_queue, prod_index); phys_addr_q_base = rte_malloc_virt2iova(queue->paddress_q); /* Verify HW */ if (ark_mpu_verify(queue->mpu, sizeof(rte_iova_t))) { PMD_DRV_LOG(ERR, "Illegal configuration rx queue\n"); return -1; } /* Stop and Reset and configure MPU */ ark_mpu_configure(queue->mpu, phys_addr_q_base, queue->queue_size, 0); ark_udm_write_addr(queue->udm, phys_addr_prod_index); /* advance the valid pointer, but don't start until the queue starts */ ark_mpu_reset_stats(queue->mpu); /* The seed is the producer index for the HW */ ark_mpu_set_producer(queue->mpu, queue->seed_index); dev->data->rx_queue_state[rx_queue_idx] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } static inline void eth_ark_rx_update_cons_index(struct ark_rx_queue *queue, uint32_t cons_index) { queue->cons_index = cons_index; eth_ark_rx_seed_mbufs(queue); ark_mpu_set_producer(queue->mpu, queue->seed_index); } /* ************************************************************************* */ int eth_ark_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mb_pool) { static int warning1; /* = 0 */ struct ark_adapter *ark = (struct ark_adapter *)dev->data->dev_private; struct ark_rx_queue *queue; uint32_t i; int status; /* Future works: divide the Q's evenly with multi-ports */ int port = dev->data->port_id; int qidx = port + queue_idx; /* We may already be setup, free memory prior to re-allocation */ if (dev->data->rx_queues[queue_idx] != NULL) { eth_ark_dev_rx_queue_release(dev->data->rx_queues[queue_idx]); dev->data->rx_queues[queue_idx] = NULL; } if (rx_conf != NULL && warning1 == 0) { warning1 = 1; PMD_DRV_LOG(INFO, "Arkville ignores rte_eth_rxconf argument.\n"); } if (RTE_PKTMBUF_HEADROOM < ARK_RX_META_SIZE) { PMD_DRV_LOG(ERR, "Error: DPDK Arkville requires head room > %d bytes (%s)\n", ARK_RX_META_SIZE, __func__); return -1; /* ERROR CODE */ } if (!rte_is_power_of_2(nb_desc)) { PMD_DRV_LOG(ERR, "DPDK Arkville configuration queue size must be power of two %u (%s)\n", nb_desc, __func__); return -1; /* ERROR CODE */ } /* Allocate queue struct */ queue = rte_zmalloc_socket("Ark_rxqueue", sizeof(struct ark_rx_queue), 64, socket_id); if (queue == 0) { PMD_DRV_LOG(ERR, "Failed to allocate memory in %s\n", __func__); return -ENOMEM; } /* NOTE zmalloc is used, no need to 0 indexes, etc. */ queue->mb_pool = mb_pool; queue->phys_qid = qidx; queue->queue_index = queue_idx; queue->queue_size = nb_desc; queue->queue_mask = nb_desc - 1; queue->reserve_q = rte_zmalloc_socket("Ark_rx_queue mbuf", nb_desc * sizeof(struct rte_mbuf *), 64, socket_id); queue->paddress_q = rte_zmalloc_socket("Ark_rx_queue paddr", nb_desc * sizeof(rte_iova_t), 64, socket_id); if (queue->reserve_q == 0 || queue->paddress_q == 0) { PMD_DRV_LOG(ERR, "Failed to allocate queue memory in %s\n", __func__); rte_free(queue->reserve_q); rte_free(queue->paddress_q); rte_free(queue); return -ENOMEM; } dev->data->rx_queues[queue_idx] = queue; queue->udm = RTE_PTR_ADD(ark->udm.v, qidx * ARK_UDM_QOFFSET); queue->mpu = RTE_PTR_ADD(ark->mpurx.v, qidx * ARK_MPU_QOFFSET); /* populate mbuf reserve */ status = eth_ark_rx_seed_mbufs(queue); /* MPU Setup */ if (status == 0) status = eth_ark_rx_hw_setup(dev, queue, qidx, queue_idx); if (unlikely(status != 0)) { struct rte_mbuf *mbuf; PMD_DRV_LOG(ERR, "Failed to initialize RX queue %d %s\n", qidx, __func__); /* Free the mbufs allocated */ for (i = 0, mbuf = queue->reserve_q[0]; i < nb_desc; ++i, mbuf++) { rte_pktmbuf_free(mbuf); } rte_free(queue->reserve_q); rte_free(queue->paddress_q); rte_free(queue); return -1; /* ERROR CODE */ } return 0; } /* ************************************************************************* */ uint16_t eth_ark_recv_pkts_noop(void *rx_queue __rte_unused, struct rte_mbuf **rx_pkts __rte_unused, uint16_t nb_pkts __rte_unused) { return 0; } /* ************************************************************************* */ uint16_t eth_ark_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct ark_rx_queue *queue; register uint32_t cons_index, prod_index; uint16_t nb; struct rte_mbuf *mbuf; struct ark_rx_meta *meta; queue = (struct ark_rx_queue *)rx_queue; if (unlikely(queue == 0)) return 0; if (unlikely(nb_pkts == 0)) return 0; prod_index = queue->prod_index; cons_index = queue->cons_index; nb = 0; while (prod_index != cons_index) { mbuf = queue->reserve_q[cons_index & queue->queue_mask]; /* prefetch mbuf */ rte_mbuf_prefetch_part1(mbuf); rte_mbuf_prefetch_part2(mbuf); /* META DATA embedded in headroom */ meta = RTE_PTR_ADD(mbuf->buf_addr, ARK_RX_META_OFFSET); mbuf->port = meta->port; mbuf->pkt_len = meta->pkt_len; mbuf->data_len = meta->pkt_len; mbuf->timestamp = meta->timestamp; mbuf->udata64 = meta->user_data; if (ARK_RX_DEBUG) { /* debug sanity checks */ if ((meta->pkt_len > (1024 * 16)) || (meta->pkt_len == 0)) { PMD_RX_LOG(DEBUG, "RX: Bad Meta Q: %u" " cons: %" PRIU32 " prod: %" PRIU32 " seed_index %" PRIU32 "\n", queue->phys_qid, cons_index, queue->prod_index, queue->seed_index); PMD_RX_LOG(DEBUG, " : UDM" " prod: %" PRIU32 " len: %u\n", queue->udm->rt_cfg.prod_idx, meta->pkt_len); ark_mpu_dump(queue->mpu, " ", queue->phys_qid); dump_mbuf_data(mbuf, 0, 256); /* its FUBAR so fix it */ mbuf->pkt_len = 63; meta->pkt_len = 63; } /* seqn is only set under debug */ mbuf->seqn = cons_index; } if (unlikely(meta->pkt_len > ARK_RX_MAX_NOCHAIN)) cons_index = eth_ark_rx_jumbo (queue, meta, mbuf, cons_index + 1); else cons_index += 1; rx_pkts[nb] = mbuf; nb++; if (nb >= nb_pkts) break; } if (unlikely(nb != 0)) /* report next free to FPGA */ eth_ark_rx_update_cons_index(queue, cons_index); return nb; } /* ************************************************************************* */ static uint32_t eth_ark_rx_jumbo(struct ark_rx_queue *queue, struct ark_rx_meta *meta, struct rte_mbuf *mbuf0, uint32_t cons_index) { struct rte_mbuf *mbuf_prev; struct rte_mbuf *mbuf; uint16_t remaining; uint16_t data_len; uint16_t segments; /* first buf populated by called */ mbuf_prev = mbuf0; segments = 1; data_len = RTE_MIN(meta->pkt_len, RTE_MBUF_DEFAULT_DATAROOM); remaining = meta->pkt_len - data_len; mbuf0->data_len = data_len; /* HW guarantees that the data does not exceed prod_index! */ while (remaining != 0) { data_len = RTE_MIN(remaining, RTE_MBUF_DEFAULT_DATAROOM + RTE_PKTMBUF_HEADROOM); remaining -= data_len; segments += 1; mbuf = queue->reserve_q[cons_index & queue->queue_mask]; mbuf_prev->next = mbuf; mbuf_prev = mbuf; mbuf->data_len = data_len; mbuf->data_off = 0; if (ARK_RX_DEBUG) mbuf->seqn = cons_index; /* for debug only */ cons_index += 1; } mbuf0->nb_segs = segments; return cons_index; } /* Drain the internal queue allowing hw to clear out. */ static void eth_ark_rx_queue_drain(struct ark_rx_queue *queue) { register uint32_t cons_index; struct rte_mbuf *mbuf; cons_index = queue->cons_index; /* NOT performance optimized, since this is a one-shot call */ while ((cons_index ^ queue->prod_index) & queue->queue_mask) { mbuf = queue->reserve_q[cons_index & queue->queue_mask]; rte_pktmbuf_free(mbuf); cons_index++; eth_ark_rx_update_cons_index(queue, cons_index); } } uint32_t eth_ark_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t queue_id) { struct ark_rx_queue *queue; queue = dev->data->rx_queues[queue_id]; return (queue->prod_index - queue->cons_index); /* mod arith */ } /* ************************************************************************* */ int eth_ark_rx_start_queue(struct rte_eth_dev *dev, uint16_t queue_id) { struct ark_rx_queue *queue; queue = dev->data->rx_queues[queue_id]; if (queue == 0) return -1; dev->data->rx_queue_state[queue_id] = RTE_ETH_QUEUE_STATE_STARTED; ark_mpu_set_producer(queue->mpu, queue->seed_index); ark_mpu_start(queue->mpu); ark_udm_queue_enable(queue->udm, 1); return 0; } /* ************************************************************************* */ /* Queue can be restarted. data remains */ int eth_ark_rx_stop_queue(struct rte_eth_dev *dev, uint16_t queue_id) { struct ark_rx_queue *queue; queue = dev->data->rx_queues[queue_id]; if (queue == 0) return -1; ark_udm_queue_enable(queue->udm, 0); dev->data->rx_queue_state[queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } /* ************************************************************************* */ static inline int eth_ark_rx_seed_mbufs(struct ark_rx_queue *queue) { uint32_t limit = queue->cons_index + queue->queue_size; uint32_t seed_index = queue->seed_index; uint32_t count = 0; uint32_t seed_m = queue->seed_index & queue->queue_mask; uint32_t nb = limit - seed_index; /* Handle wrap around -- remainder is filled on the next call */ if (unlikely(seed_m + nb > queue->queue_size)) nb = queue->queue_size - seed_m; struct rte_mbuf **mbufs = &queue->reserve_q[seed_m]; int status = rte_pktmbuf_alloc_bulk(queue->mb_pool, mbufs, nb); if (unlikely(status != 0)) return -1; if (ARK_RX_DEBUG) { /* DEBUG */ while (count != nb) { struct rte_mbuf *mbuf_init = queue->reserve_q[seed_m + count]; memset(mbuf_init->buf_addr, -1, 512); *((uint32_t *)mbuf_init->buf_addr) = seed_index + count; *(uint16_t *)RTE_PTR_ADD(mbuf_init->buf_addr, 4) = queue->phys_qid; count++; } count = 0; } /* DEBUG */ queue->seed_index += nb; /* Duff's device https://en.wikipedia.org/wiki/Duff's_device */ switch (nb % 4) { case 0: while (count != nb) { queue->paddress_q[seed_m++] = (*mbufs++)->buf_iova; count++; /* FALLTHROUGH */ case 3: queue->paddress_q[seed_m++] = (*mbufs++)->buf_iova; count++; /* FALLTHROUGH */ case 2: queue->paddress_q[seed_m++] = (*mbufs++)->buf_iova; count++; /* FALLTHROUGH */ case 1: queue->paddress_q[seed_m++] = (*mbufs++)->buf_iova; count++; /* FALLTHROUGH */ } /* while (count != nb) */ } /* switch */ return 0; } void eth_ark_rx_dump_queue(struct rte_eth_dev *dev, uint16_t queue_id, const char *msg) { struct ark_rx_queue *queue; queue = dev->data->rx_queues[queue_id]; ark_ethdev_rx_dump(msg, queue); } /* ************************************************************************* */ /* Call on device closed no user API, queue is stopped */ void eth_ark_dev_rx_queue_release(void *vqueue) { struct ark_rx_queue *queue; uint32_t i; queue = (struct ark_rx_queue *)vqueue; if (queue == 0) return; ark_udm_queue_enable(queue->udm, 0); /* Stop the MPU since pointer are going away */ ark_mpu_stop(queue->mpu); /* Need to clear out mbufs here, dropping packets along the way */ eth_ark_rx_queue_drain(queue); for (i = 0; i < queue->queue_size; ++i) rte_pktmbuf_free(queue->reserve_q[i]); rte_free(queue->reserve_q); rte_free(queue->paddress_q); rte_free(queue); } void eth_rx_queue_stats_get(void *vqueue, struct rte_eth_stats *stats) { struct ark_rx_queue *queue; struct ark_udm_t *udm; queue = vqueue; if (queue == 0) return; udm = queue->udm; uint64_t ibytes = ark_udm_bytes(udm); uint64_t ipackets = ark_udm_packets(udm); uint64_t idropped = ark_udm_dropped(queue->udm); stats->q_ipackets[queue->queue_index] = ipackets; stats->q_ibytes[queue->queue_index] = ibytes; stats->q_errors[queue->queue_index] = idropped; stats->ipackets += ipackets; stats->ibytes += ibytes; stats->imissed += idropped; } void eth_rx_queue_stats_reset(void *vqueue) { struct ark_rx_queue *queue; queue = vqueue; if (queue == 0) return; ark_mpu_reset_stats(queue->mpu); ark_udm_queue_stats_reset(queue->udm); } void eth_ark_udm_force_close(struct rte_eth_dev *dev) { struct ark_adapter *ark = (struct ark_adapter *)dev->data->dev_private; struct ark_rx_queue *queue; uint32_t index; uint16_t i; if (!ark_udm_is_flushed(ark->udm.v)) { /* restart the MPUs */ PMD_DRV_LOG(ERR, "ARK: %s UDM not flushed\n", __func__); for (i = 0; i < dev->data->nb_rx_queues; i++) { queue = (struct ark_rx_queue *)dev->data->rx_queues[i]; if (queue == 0) continue; ark_mpu_start(queue->mpu); /* Add some buffers */ index = 100000 + queue->seed_index; ark_mpu_set_producer(queue->mpu, index); } /* Wait to allow data to pass */ usleep(100); PMD_DEBUG_LOG(DEBUG, "UDM forced flush attempt, stopped = %d\n", ark_udm_is_flushed(ark->udm.v)); } ark_udm_reset(ark->udm.v); } static void ark_ethdev_rx_dump(const char *name, struct ark_rx_queue *queue) { if (queue == NULL) return; PMD_DEBUG_LOG(DEBUG, "RX QUEUE %d -- %s", queue->phys_qid, name); PMD_DEBUG_LOG(DEBUG, ARK_SU32 ARK_SU32 ARK_SU32 ARK_SU32 "\n", "queue_size", queue->queue_size, "seed_index", queue->seed_index, "prod_index", queue->prod_index, "cons_index", queue->cons_index); ark_mpu_dump(queue->mpu, name, queue->phys_qid); ark_mpu_dump_setup(queue->mpu, queue->phys_qid); ark_udm_dump(queue->udm, name); ark_udm_dump_setup(queue->udm, queue->phys_qid); } /* Only used in debug. * This function is a raw memory dump of a portion of an mbuf's memory * region. The usual function, rte_pktmbuf_dump() only shows data * with respect to the data_off field. This function show data * anywhere in the mbuf's buffer. This is useful for examining * data in the headroom or tailroom portion of an mbuf. */ static void dump_mbuf_data(struct rte_mbuf *mbuf, uint16_t lo, uint16_t hi) { uint16_t i, j; PMD_DRV_LOG(INFO, " MBUF: %p len %d, off: %d, seq: %" PRIU32 "\n", mbuf, mbuf->pkt_len, mbuf->data_off, mbuf->seqn); for (i = lo; i < hi; i += 16) { uint8_t *dp = RTE_PTR_ADD(mbuf->buf_addr, i); PMD_DRV_LOG(INFO, " %6d: ", i); for (j = 0; j < 16; j++) PMD_DRV_LOG(INFO, " %02x", dp[j]); PMD_DRV_LOG(INFO, "\n"); } }