// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0) /* Copyright (C) 2014-2017 aQuantia Corporation. */ /* File hw_atl_utils_fw2x.c: Definition of firmware 2.x functions for * Atlantic hardware abstraction layer. */ #include #include "../atl_hw_regs.h" #include "../atl_types.h" #include "hw_atl_utils.h" #include "hw_atl_llh.h" #define HW_ATL_FW2X_MPI_EFUSE_ADDR 0x364 #define HW_ATL_FW2X_MPI_MBOX_ADDR 0x360 #define HW_ATL_FW2X_MPI_RPC_ADDR 0x334 #define HW_ATL_FW2X_MPI_CONTROL_ADDR 0x368 #define HW_ATL_FW2X_MPI_CONTROL2_ADDR 0x36C #define HW_ATL_FW2X_MPI_LED_ADDR 0x31c #define HW_ATL_FW2X_MPI_STATE_ADDR 0x370 #define HW_ATL_FW2X_MPI_STATE2_ADDR 0x374 #define HW_ATL_FW2X_CAP_SLEEP_PROXY BIT(CAPS_HI_SLEEP_PROXY) #define HW_ATL_FW2X_CAP_WOL BIT(CAPS_HI_WOL) #define HW_ATL_FW2X_CAP_EEE_1G_MASK BIT(CAPS_HI_1000BASET_FD_EEE) #define HW_ATL_FW2X_CAP_EEE_2G5_MASK BIT(CAPS_HI_2P5GBASET_FD_EEE) #define HW_ATL_FW2X_CAP_EEE_5G_MASK BIT(CAPS_HI_5GBASET_FD_EEE) #define HW_ATL_FW2X_CAP_EEE_10G_MASK BIT(CAPS_HI_10GBASET_FD_EEE) #define HAL_ATLANTIC_WOL_FILTERS_COUNT 8 #define HAL_ATLANTIC_UTILS_FW2X_MSG_WOL 0x0E #define HW_ATL_FW_FEATURE_LED 0x03010026 struct fw2x_msg_wol_pattern { u8 mask[16]; u32 crc; } __attribute__((__packed__)); struct fw2x_msg_wol { u32 msg_id; u8 hw_addr[6]; u8 magic_packet_enabled; u8 filter_count; struct fw2x_msg_wol_pattern filter[HAL_ATLANTIC_WOL_FILTERS_COUNT]; u8 link_up_enabled; u8 link_down_enabled; u16 reserved; u32 link_up_timeout; u32 link_down_timeout; } __attribute__((__packed__)); static int aq_fw2x_set_link_speed(struct aq_hw_s *self, u32 speed); static int aq_fw2x_set_state(struct aq_hw_s *self, enum hal_atl_utils_fw_state_e state); static int aq_fw2x_init(struct aq_hw_s *self) { int err = 0; struct hw_aq_atl_utils_mbox mbox; /* check 10 times by 1ms */ AQ_HW_WAIT_FOR(0U != (self->mbox_addr = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_MBOX_ADDR)), 1000U, 10U); AQ_HW_WAIT_FOR(0U != (self->rpc_addr = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_RPC_ADDR)), 1000U, 100U); /* Read caps */ hw_atl_utils_mpi_read_stats(self, &mbox); self->caps_lo = mbox.info.caps_lo; return err; } static int aq_fw2x_deinit(struct aq_hw_s *self) { int err = aq_fw2x_set_link_speed(self, 0); if (!err) err = aq_fw2x_set_state(self, MPI_DEINIT); return err; } static enum hw_atl_fw2x_rate link_speed_mask_2fw2x_ratemask(u32 speed) { enum hw_atl_fw2x_rate rate = 0; if (speed & AQ_NIC_RATE_10G) rate |= FW2X_RATE_10G; if (speed & AQ_NIC_RATE_5G) rate |= FW2X_RATE_5G; if (speed & AQ_NIC_RATE_5G5R) rate |= FW2X_RATE_5G; if (speed & AQ_NIC_RATE_2G5) rate |= FW2X_RATE_2G5; if (speed & AQ_NIC_RATE_1G) rate |= FW2X_RATE_1G; if (speed & AQ_NIC_RATE_100M) rate |= FW2X_RATE_100M; return rate; } static u32 fw2x_to_eee_mask(u32 speed) { u32 rate = 0; if (speed & HW_ATL_FW2X_CAP_EEE_10G_MASK) rate |= AQ_NIC_RATE_EEE_10G; if (speed & HW_ATL_FW2X_CAP_EEE_5G_MASK) rate |= AQ_NIC_RATE_EEE_5G; if (speed & HW_ATL_FW2X_CAP_EEE_2G5_MASK) rate |= AQ_NIC_RATE_EEE_2G5; if (speed & HW_ATL_FW2X_CAP_EEE_1G_MASK) rate |= AQ_NIC_RATE_EEE_1G; return rate; } static int aq_fw2x_set_link_speed(struct aq_hw_s *self, u32 speed) { u32 val = link_speed_mask_2fw2x_ratemask(speed); aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL_ADDR, val); return 0; } static void aq_fw2x_set_mpi_flow_control(struct aq_hw_s *self, u32 *mpi_state) { if (self->aq_nic_cfg->flow_control & AQ_NIC_FC_RX) *mpi_state |= BIT(CAPS_HI_PAUSE); else *mpi_state &= ~BIT(CAPS_HI_PAUSE); if (self->aq_nic_cfg->flow_control & AQ_NIC_FC_TX) *mpi_state |= BIT(CAPS_HI_ASYMMETRIC_PAUSE); else *mpi_state &= ~BIT(CAPS_HI_ASYMMETRIC_PAUSE); } static int aq_fw2x_set_state(struct aq_hw_s *self, enum hal_atl_utils_fw_state_e state) { u32 mpi_state = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR); switch (state) { case MPI_INIT: mpi_state &= ~BIT(CAPS_HI_LINK_DROP); aq_fw2x_set_mpi_flow_control(self, &mpi_state); break; case MPI_DEINIT: mpi_state |= BIT(CAPS_HI_LINK_DROP); break; case MPI_RESET: case MPI_POWER: /* No actions */ break; } aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_state); return 0; } static int aq_fw2x_update_link_status(struct aq_hw_s *self) { u32 mpi_state = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE_ADDR); u32 speed = mpi_state & (FW2X_RATE_100M | FW2X_RATE_1G | FW2X_RATE_2G5 | FW2X_RATE_5G | FW2X_RATE_10G); struct aq_hw_link_status_s *link_status = &self->aq_link_status; if (speed) { if (speed & FW2X_RATE_10G) link_status->mbps = 10000; else if (speed & FW2X_RATE_5G) link_status->mbps = 5000; else if (speed & FW2X_RATE_2G5) link_status->mbps = 2500; else if (speed & FW2X_RATE_1G) link_status->mbps = 1000; else if (speed & FW2X_RATE_100M) link_status->mbps = 100; else link_status->mbps = 10000; } else { link_status->mbps = 0; } return 0; } static int aq_fw2x_get_mac_permanent(struct aq_hw_s *self, u8 *mac) { int err = 0; u32 h = 0U; u32 l = 0U; u32 mac_addr[2] = { 0 }; u32 efuse_addr = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_EFUSE_ADDR); if (efuse_addr != 0) { err = hw_atl_utils_fw_downld_dwords(self, efuse_addr + (40U * 4U), mac_addr, ARRAY_SIZE(mac_addr)); if (err) return err; mac_addr[0] = rte_constant_bswap32(mac_addr[0]); mac_addr[1] = rte_constant_bswap32(mac_addr[1]); } ether_addr_copy((struct ether_addr *)mac_addr, (struct ether_addr *)mac); if ((mac[0] & 0x01U) || ((mac[0] | mac[1] | mac[2]) == 0x00U)) { unsigned int rnd = (uint32_t)rte_rand(); //get_random_bytes(&rnd, sizeof(unsigned int)); l = 0xE3000000U | (0xFFFFU & rnd) | (0x00 << 16); h = 0x8001300EU; mac[5] = (u8)(0xFFU & l); l >>= 8; mac[4] = (u8)(0xFFU & l); l >>= 8; mac[3] = (u8)(0xFFU & l); l >>= 8; mac[2] = (u8)(0xFFU & l); mac[1] = (u8)(0xFFU & h); h >>= 8; mac[0] = (u8)(0xFFU & h); } return err; } static int aq_fw2x_update_stats(struct aq_hw_s *self) { int err = 0; u32 mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR); u32 orig_stats_val = mpi_opts & BIT(CAPS_HI_STATISTICS); /* Toggle statistics bit for FW to update */ mpi_opts = mpi_opts ^ BIT(CAPS_HI_STATISTICS); aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts); /* Wait FW to report back */ AQ_HW_WAIT_FOR(orig_stats_val != (aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE2_ADDR) & BIT(CAPS_HI_STATISTICS)), 1U, 10000U); if (err) return err; return hw_atl_utils_update_stats(self); } static int aq_fw2x_get_temp(struct aq_hw_s *self, int *temp) { int err = 0; u32 mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR); u32 temp_val = mpi_opts & BIT(CAPS_HI_TEMPERATURE); u32 temp_res; /* Toggle statistics bit for FW to 0x36C.18 (CAPS_HI_TEMPERATURE) */ mpi_opts = mpi_opts ^ BIT(CAPS_HI_TEMPERATURE); aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts); /* Wait FW to report back */ AQ_HW_WAIT_FOR(temp_val != (aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE2_ADDR) & BIT(CAPS_HI_TEMPERATURE)), 1U, 10000U); err = hw_atl_utils_fw_downld_dwords(self, self->mbox_addr + offsetof(struct hw_aq_atl_utils_mbox, info) + offsetof(struct hw_aq_info, phy_temperature), &temp_res, sizeof(temp_res) / sizeof(u32)); if (err) return err; *temp = temp_res * 100 / 256; return 0; } static int aq_fw2x_get_cable_len(struct aq_hw_s *self, int *cable_len) { int err = 0; u32 cable_len_res; err = hw_atl_utils_fw_downld_dwords(self, self->mbox_addr + offsetof(struct hw_aq_atl_utils_mbox, info) + offsetof(struct hw_aq_info, phy_temperature), &cable_len_res, sizeof(cable_len_res) / sizeof(u32)); if (err) return err; *cable_len = (cable_len_res >> 16) & 0xFF; return 0; } #ifndef ETH_ALEN #define ETH_ALEN 6 #endif static int aq_fw2x_set_sleep_proxy(struct aq_hw_s *self, u8 *mac) { int err = 0; struct hw_aq_atl_utils_fw_rpc *rpc = NULL; struct offload_info *cfg = NULL; unsigned int rpc_size = 0U; u32 mpi_opts; rpc_size = sizeof(rpc->msg_id) + sizeof(*cfg); err = hw_atl_utils_fw_rpc_wait(self, &rpc); if (err < 0) goto err_exit; memset(rpc, 0, rpc_size); cfg = (struct offload_info *)(&rpc->msg_id + 1); memcpy(cfg->mac_addr, mac, ETH_ALEN); cfg->len = sizeof(*cfg); /* Clear bit 0x36C.23 */ mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR); mpi_opts &= ~HW_ATL_FW2X_CAP_SLEEP_PROXY; aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts); err = hw_atl_utils_fw_rpc_call(self, rpc_size); if (err < 0) goto err_exit; /* Set bit 0x36C.23 */ mpi_opts |= HW_ATL_FW2X_CAP_SLEEP_PROXY; aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts); AQ_HW_WAIT_FOR((aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE2_ADDR) & HW_ATL_FW2X_CAP_SLEEP_PROXY), 1U, 10000U); err_exit: return err; } static int aq_fw2x_set_wol_params(struct aq_hw_s *self, u8 *mac) { int err = 0; struct fw2x_msg_wol *msg = NULL; u32 mpi_opts; struct hw_aq_atl_utils_fw_rpc *rpc = NULL; err = hw_atl_utils_fw_rpc_wait(self, &rpc); if (err < 0) goto err_exit; msg = (struct fw2x_msg_wol *)rpc; msg->msg_id = HAL_ATLANTIC_UTILS_FW2X_MSG_WOL; msg->magic_packet_enabled = true; memcpy(msg->hw_addr, mac, ETH_ALEN); mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR); mpi_opts &= ~(HW_ATL_FW2X_CAP_SLEEP_PROXY | HW_ATL_FW2X_CAP_WOL); aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts); err = hw_atl_utils_fw_rpc_call(self, sizeof(*msg)); if (err < 0) goto err_exit; /* Set bit 0x36C.24 */ mpi_opts |= HW_ATL_FW2X_CAP_WOL; aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts); AQ_HW_WAIT_FOR((aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE2_ADDR) & HW_ATL_FW2X_CAP_WOL), 1U, 10000U); err_exit: return err; } static int aq_fw2x_set_power(struct aq_hw_s *self, unsigned int power_state __rte_unused, u8 *mac) { int err = 0; if (self->aq_nic_cfg->wol & AQ_NIC_WOL_ENABLED) { err = aq_fw2x_set_sleep_proxy(self, mac); if (err < 0) goto err_exit; err = aq_fw2x_set_wol_params(self, mac); if (err < 0) goto err_exit; } err_exit: return err; } static int aq_fw2x_set_eee_rate(struct aq_hw_s *self, u32 speed) { u32 mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR); mpi_opts &= ~(HW_ATL_FW2X_CAP_EEE_1G_MASK | HW_ATL_FW2X_CAP_EEE_2G5_MASK | HW_ATL_FW2X_CAP_EEE_5G_MASK | HW_ATL_FW2X_CAP_EEE_10G_MASK); if (speed & AQ_NIC_RATE_EEE_10G) mpi_opts |= HW_ATL_FW2X_CAP_EEE_10G_MASK; if (speed & AQ_NIC_RATE_EEE_5G) mpi_opts |= HW_ATL_FW2X_CAP_EEE_5G_MASK; if (speed & AQ_NIC_RATE_EEE_2G5) mpi_opts |= HW_ATL_FW2X_CAP_EEE_2G5_MASK; if (speed & AQ_NIC_RATE_EEE_1G) mpi_opts |= HW_ATL_FW2X_CAP_EEE_1G_MASK; aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts); return 0; } static int aq_fw2x_get_eee_rate(struct aq_hw_s *self, u32 *rate, u32 *supported_rates) { int err = 0; u32 caps_hi; u32 mpi_state; err = hw_atl_utils_fw_downld_dwords(self, self->mbox_addr + offsetof(struct hw_aq_atl_utils_mbox, info) + offsetof(struct hw_aq_info, caps_hi), &caps_hi, sizeof(caps_hi) / sizeof(u32)); if (err) return err; *supported_rates = fw2x_to_eee_mask(caps_hi); mpi_state = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE2_ADDR); *rate = fw2x_to_eee_mask(mpi_state); return err; } static int aq_fw2x_get_flow_control(struct aq_hw_s *self, u32 *fc) { u32 mpi_state = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR); *fc = ((mpi_state & BIT(CAPS_HI_PAUSE)) ? AQ_NIC_FC_RX : 0) | ((mpi_state & BIT(CAPS_HI_ASYMMETRIC_PAUSE)) ? AQ_NIC_FC_TX : 0); return 0; } static int aq_fw2x_set_flow_control(struct aq_hw_s *self) { u32 mpi_state = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR); aq_fw2x_set_mpi_flow_control(self, &mpi_state); aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_state); return 0; } static int aq_fw2x_led_control(struct aq_hw_s *self, u32 mode) { if (self->fw_ver_actual < HW_ATL_FW_FEATURE_LED) return -EOPNOTSUPP; aq_hw_write_reg(self, HW_ATL_FW2X_MPI_LED_ADDR, mode); return 0; } static int aq_fw2x_get_eeprom(struct aq_hw_s *self, int dev_addr, u32 *data, u32 len, u32 offset) { u32 bytes_remains = len % sizeof(u32); u32 num_dwords = len / sizeof(u32); struct smbus_request request; u32 result = 0; u32 mpi_opts; int err = 0; if ((self->caps_lo & BIT(CAPS_LO_SMBUS_READ)) == 0) return -EOPNOTSUPP; request.msg_id = 0; request.device_id = dev_addr; request.address = offset; request.length = len; /* Write SMBUS request to cfg memory */ err = hw_atl_utils_fw_upload_dwords(self, self->rpc_addr, (u32 *)(void *)&request, sizeof(request) / sizeof(u32)); if (err < 0) return err; /* Toggle 0x368.CAPS_LO_SMBUS_READ bit */ mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL_ADDR); mpi_opts ^= BIT(CAPS_LO_SMBUS_READ); aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL_ADDR, mpi_opts); /* Wait until REQUEST_BIT matched in 0x370 */ AQ_HW_WAIT_FOR((aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE_ADDR) & BIT(CAPS_LO_SMBUS_READ)) == (mpi_opts & BIT(CAPS_LO_SMBUS_READ)), 10U, 10000U); if (err < 0) return err; err = hw_atl_utils_fw_downld_dwords(self, self->rpc_addr + sizeof(u32), &result, sizeof(result) / sizeof(u32)); if (err < 0) return err; if (result) return -EIO; if (num_dwords) { err = hw_atl_utils_fw_downld_dwords(self, self->rpc_addr + sizeof(u32) * 2, data, num_dwords); if (err < 0) return err; } if (bytes_remains) { u32 val = 0; err = hw_atl_utils_fw_downld_dwords(self, self->rpc_addr + (sizeof(u32) * 2) + (num_dwords * sizeof(u32)), &val, 1); if (err < 0) return err; rte_memcpy((u8 *)data + len - bytes_remains, &val, bytes_remains); } return 0; } static int aq_fw2x_set_eeprom(struct aq_hw_s *self, int dev_addr, u32 *data, u32 len, u32 offset) { struct smbus_request request; u32 mpi_opts, result = 0; int err = 0; if ((self->caps_lo & BIT(CAPS_LO_SMBUS_WRITE)) == 0) return -EOPNOTSUPP; request.msg_id = 0; request.device_id = dev_addr; request.address = offset; request.length = len; /* Write SMBUS request to cfg memory */ err = hw_atl_utils_fw_upload_dwords(self, self->rpc_addr, (u32 *)(void *)&request, sizeof(request) / sizeof(u32)); if (err < 0) return err; /* Write SMBUS data to cfg memory */ u32 num_dwords = len / sizeof(u32); u32 bytes_remains = len % sizeof(u32); if (num_dwords) { err = hw_atl_utils_fw_upload_dwords(self, self->rpc_addr + sizeof(request), (u32 *)(void *)data, num_dwords); if (err < 0) return err; } if (bytes_remains) { u32 val = 0; rte_memcpy(&val, (u8 *)data + (sizeof(u32) * num_dwords), bytes_remains); err = hw_atl_utils_fw_upload_dwords(self, self->rpc_addr + sizeof(request) + (num_dwords * sizeof(u32)), &val, 1); if (err < 0) return err; } /* Toggle 0x368.CAPS_LO_SMBUS_WRITE bit */ mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL_ADDR); mpi_opts ^= BIT(CAPS_LO_SMBUS_WRITE); aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL_ADDR, mpi_opts); /* Wait until REQUEST_BIT matched in 0x370 */ AQ_HW_WAIT_FOR((aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE_ADDR) & BIT(CAPS_LO_SMBUS_WRITE)) == (mpi_opts & BIT(CAPS_LO_SMBUS_WRITE)), 10U, 10000U); if (err < 0) return err; /* Read status of write operation */ err = hw_atl_utils_fw_downld_dwords(self, self->rpc_addr + sizeof(u32), &result, sizeof(result) / sizeof(u32)); if (err < 0) return err; if (result) return -EIO; return 0; } const struct aq_fw_ops aq_fw_2x_ops = { .init = aq_fw2x_init, .deinit = aq_fw2x_deinit, .reset = NULL, .get_mac_permanent = aq_fw2x_get_mac_permanent, .set_link_speed = aq_fw2x_set_link_speed, .set_state = aq_fw2x_set_state, .update_link_status = aq_fw2x_update_link_status, .update_stats = aq_fw2x_update_stats, .set_power = aq_fw2x_set_power, .get_temp = aq_fw2x_get_temp, .get_cable_len = aq_fw2x_get_cable_len, .set_eee_rate = aq_fw2x_set_eee_rate, .get_eee_rate = aq_fw2x_get_eee_rate, .get_flow_control = aq_fw2x_get_flow_control, .set_flow_control = aq_fw2x_set_flow_control, .led_control = aq_fw2x_led_control, .get_eeprom = aq_fw2x_get_eeprom, .set_eeprom = aq_fw2x_set_eeprom, };