/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #include #include #include #include "base/avf_prototype.h" #include "base/avf_type.h" #include "avf.h" #include "avf_rxtx.h" #include "avf_rxtx_vec_common.h" #include #ifndef __INTEL_COMPILER #pragma GCC diagnostic ignored "-Wcast-qual" #endif static inline void avf_rxq_rearm(struct avf_rx_queue *rxq) { int i; uint16_t rx_id; volatile union avf_rx_desc *rxdp; struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start]; struct rte_mbuf *mb0, *mb1; __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, RTE_PKTMBUF_HEADROOM); __m128i dma_addr0, dma_addr1; rxdp = rxq->rx_ring + rxq->rxrearm_start; /* Pull 'n' more MBUFs into the software ring */ if (rte_mempool_get_bulk(rxq->mp, (void *)rxp, rxq->rx_free_thresh) < 0) { if (rxq->rxrearm_nb + rxq->rx_free_thresh >= rxq->nb_rx_desc) { dma_addr0 = _mm_setzero_si128(); for (i = 0; i < AVF_VPMD_DESCS_PER_LOOP; i++) { rxp[i] = &rxq->fake_mbuf; _mm_store_si128((__m128i *)&rxdp[i].read, dma_addr0); } } rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += rxq->rx_free_thresh; return; } /* Initialize the mbufs in vector, process 2 mbufs in one loop */ for (i = 0; i < rxq->rx_free_thresh; i += 2, rxp += 2) { __m128i vaddr0, vaddr1; mb0 = rxp[0]; mb1 = rxp[1]; /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != offsetof(struct rte_mbuf, buf_addr) + 8); vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); /* convert pa to dma_addr hdr/data */ dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0); dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1); /* add headroom to pa values */ dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room); dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room); /* flush desc with pa dma_addr */ _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0); _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1); } rxq->rxrearm_start += rxq->rx_free_thresh; if (rxq->rxrearm_start >= rxq->nb_rx_desc) rxq->rxrearm_start = 0; rxq->rxrearm_nb -= rxq->rx_free_thresh; rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " "rearm_start=%u rearm_nb=%u", rxq->port_id, rxq->queue_id, rx_id, rxq->rxrearm_start, rxq->rxrearm_nb); /* Update the tail pointer on the NIC */ AVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id); } static inline void desc_to_olflags_v(struct avf_rx_queue *rxq, __m128i descs[4], struct rte_mbuf **rx_pkts) { const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer); __m128i rearm0, rearm1, rearm2, rearm3; __m128i vlan0, vlan1, rss, l3_l4e; /* mask everything except RSS, flow director and VLAN flags * bit2 is for VLAN tag, bit11 for flow director indication * bit13:12 for RSS indication. */ const __m128i rss_vlan_msk = _mm_set_epi32( 0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804); const __m128i cksum_mask = _mm_set_epi32( PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | PKT_RX_EIP_CKSUM_BAD, PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | PKT_RX_EIP_CKSUM_BAD, PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | PKT_RX_EIP_CKSUM_BAD, PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | PKT_RX_EIP_CKSUM_BAD); /* map rss and vlan type to rss hash and vlan flag */ const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, 0, 0, 0); const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0, 0, 0, PKT_RX_FDIR, 0); const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, /* shift right 1 bit to make sure it not exceed 255 */ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1, (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, PKT_RX_IP_CKSUM_BAD >> 1, (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1); vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]); vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]); vlan0 = _mm_unpacklo_epi64(vlan0, vlan1); vlan1 = _mm_and_si128(vlan0, rss_vlan_msk); vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1); rss = _mm_srli_epi32(vlan1, 11); rss = _mm_shuffle_epi8(rss_flags, rss); l3_l4e = _mm_srli_epi32(vlan1, 22); l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e); /* then we shift left 1 bit */ l3_l4e = _mm_slli_epi32(l3_l4e, 1); /* we need to mask out the reduntant bits */ l3_l4e = _mm_and_si128(l3_l4e, cksum_mask); vlan0 = _mm_or_si128(vlan0, rss); vlan0 = _mm_or_si128(vlan0, l3_l4e); /* At this point, we have the 4 sets of flags in the low 16-bits * of each 32-bit value in vlan0. * We want to extract these, and merge them with the mbuf init data * so we can do a single 16-byte write to the mbuf to set the flags * and all the other initialization fields. Extracting the * appropriate flags means that we have to do a shift and blend for * each mbuf before we do the write. */ rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10); rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10); rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10); rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10); /* write the rearm data and the olflags in one write */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != offsetof(struct rte_mbuf, rearm_data) + 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16)); _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0); _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1); _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2); _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3); } #define PKTLEN_SHIFT 10 static inline void desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts) { __m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]); __m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]); static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = { /* [0] reserved */ [1] = RTE_PTYPE_L2_ETHER, /* [2] - [21] reserved */ [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG, [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG, [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP, /* [25] reserved */ [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP, [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_SCTP, [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_ICMP, /* All others reserved */ }; ptype0 = _mm_srli_epi64(ptype0, 30); ptype1 = _mm_srli_epi64(ptype1, 30); rx_pkts[0]->packet_type = type_table[_mm_extract_epi8(ptype0, 0)]; rx_pkts[1]->packet_type = type_table[_mm_extract_epi8(ptype0, 8)]; rx_pkts[2]->packet_type = type_table[_mm_extract_epi8(ptype1, 0)]; rx_pkts[3]->packet_type = type_table[_mm_extract_epi8(ptype1, 8)]; } /* Notice: * - nb_pkts < AVF_VPMD_DESCS_PER_LOOP, just return no packet * - nb_pkts > AVF_VPMD_RX_MAX_BURST, only scan AVF_VPMD_RX_MAX_BURST * numbers of DD bits */ static inline uint16_t _recv_raw_pkts_vec(struct avf_rx_queue *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts, uint8_t *split_packet) { volatile union avf_rx_desc *rxdp; struct rte_mbuf **sw_ring; uint16_t nb_pkts_recd; int pos; uint64_t var; __m128i shuf_msk; __m128i crc_adjust = _mm_set_epi16( 0, 0, 0, /* ignore non-length fields */ -rxq->crc_len, /* sub crc on data_len */ 0, /* ignore high-16bits of pkt_len */ -rxq->crc_len, /* sub crc on pkt_len */ 0, 0 /* ignore pkt_type field */ ); /* compile-time check the above crc_adjust layout is correct. * NOTE: the first field (lowest address) is given last in set_epi16 * call above. */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); __m128i dd_check, eop_check; /* nb_pkts shall be less equal than AVF_VPMD_RX_MAX_BURST */ nb_pkts = RTE_MIN(nb_pkts, AVF_VPMD_RX_MAX_BURST); /* nb_pkts has to be floor-aligned to AVF_VPMD_DESCS_PER_LOOP */ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, AVF_VPMD_DESCS_PER_LOOP); /* Just the act of getting into the function from the application is * going to cost about 7 cycles */ rxdp = rxq->rx_ring + rxq->rx_tail; rte_prefetch0(rxdp); /* See if we need to rearm the RX queue - gives the prefetch a bit * of time to act */ if (rxq->rxrearm_nb > rxq->rx_free_thresh) avf_rxq_rearm(rxq); /* Before we start moving massive data around, check to see if * there is actually a packet available */ if (!(rxdp->wb.qword1.status_error_len & rte_cpu_to_le_32(1 << AVF_RX_DESC_STATUS_DD_SHIFT))) return 0; /* 4 packets DD mask */ dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL); /* 4 packets EOP mask */ eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL); /* mask to shuffle from desc. to mbuf */ shuf_msk = _mm_set_epi8( 7, 6, 5, 4, /* octet 4~7, 32bits rss */ 3, 2, /* octet 2~3, low 16 bits vlan_macip */ 15, 14, /* octet 15~14, 16 bits data_len */ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ 15, 14, /* octet 15~14, low 16 bits pkt_len */ 0xFF, 0xFF, 0xFF, 0xFF /* pkt_type set as unknown */ ); /* Compile-time verify the shuffle mask * NOTE: some field positions already verified above, but duplicated * here for completeness in case of future modifications. */ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); /* Cache is empty -> need to scan the buffer rings, but first move * the next 'n' mbufs into the cache */ sw_ring = &rxq->sw_ring[rxq->rx_tail]; /* A. load 4 packet in one loop * [A*. mask out 4 unused dirty field in desc] * B. copy 4 mbuf point from swring to rx_pkts * C. calc the number of DD bits among the 4 packets * [C*. extract the end-of-packet bit, if requested] * D. fill info. from desc to mbuf */ for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts; pos += AVF_VPMD_DESCS_PER_LOOP, rxdp += AVF_VPMD_DESCS_PER_LOOP) { __m128i descs[AVF_VPMD_DESCS_PER_LOOP]; __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4; __m128i zero, staterr, sterr_tmp1, sterr_tmp2; /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */ __m128i mbp1; #if defined(RTE_ARCH_X86_64) __m128i mbp2; #endif /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */ mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]); /* Read desc statuses backwards to avoid race condition */ /* A.1 load 4 pkts desc */ descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3)); rte_compiler_barrier(); /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */ _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1); #if defined(RTE_ARCH_X86_64) /* B.1 load 2 64 bit mbuf points */ mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]); #endif descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2)); rte_compiler_barrier(); /* B.1 load 2 mbuf point */ descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1)); rte_compiler_barrier(); descs[0] = _mm_loadu_si128((__m128i *)(rxdp)); #if defined(RTE_ARCH_X86_64) /* B.2 copy 2 mbuf point into rx_pkts */ _mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2); #endif if (split_packet) { rte_mbuf_prefetch_part2(rx_pkts[pos]); rte_mbuf_prefetch_part2(rx_pkts[pos + 1]); rte_mbuf_prefetch_part2(rx_pkts[pos + 2]); rte_mbuf_prefetch_part2(rx_pkts[pos + 3]); } /* avoid compiler reorder optimization */ rte_compiler_barrier(); /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/ const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT); const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT); /* merge the now-aligned packet length fields back in */ descs[3] = _mm_blend_epi16(descs[3], len3, 0x80); descs[2] = _mm_blend_epi16(descs[2], len2, 0x80); /* D.1 pkt 3,4 convert format from desc to pktmbuf */ pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk); pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk); /* C.1 4=>2 status err info only */ sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]); sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]); desc_to_olflags_v(rxq, descs, &rx_pkts[pos]); /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */ pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust); pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust); /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/ const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT); const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT); /* merge the now-aligned packet length fields back in */ descs[1] = _mm_blend_epi16(descs[1], len1, 0x80); descs[0] = _mm_blend_epi16(descs[0], len0, 0x80); /* D.1 pkt 1,2 convert format from desc to pktmbuf */ pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk); pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk); /* C.2 get 4 pkts status err value */ zero = _mm_xor_si128(dd_check, dd_check); staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2); /* D.3 copy final 3,4 data to rx_pkts */ _mm_storeu_si128( (void *)&rx_pkts[pos + 3]->rx_descriptor_fields1, pkt_mb4); _mm_storeu_si128( (void *)&rx_pkts[pos + 2]->rx_descriptor_fields1, pkt_mb3); /* D.2 pkt 1,2 remove crc */ pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust); pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust); /* C* extract and record EOP bit */ if (split_packet) { __m128i eop_shuf_mask = _mm_set_epi8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x04, 0x0C, 0x00, 0x08 ); /* and with mask to extract bits, flipping 1-0 */ __m128i eop_bits = _mm_andnot_si128(staterr, eop_check); /* the staterr values are not in order, as the count * count of dd bits doesn't care. However, for end of * packet tracking, we do care, so shuffle. This also * compresses the 32-bit values to 8-bit */ eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask); /* store the resulting 32-bit value */ *(int *)split_packet = _mm_cvtsi128_si32(eop_bits); split_packet += AVF_VPMD_DESCS_PER_LOOP; } /* C.3 calc available number of desc */ staterr = _mm_and_si128(staterr, dd_check); staterr = _mm_packs_epi32(staterr, zero); /* D.3 copy final 1,2 data to rx_pkts */ _mm_storeu_si128( (void *)&rx_pkts[pos + 1]->rx_descriptor_fields1, pkt_mb2); _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1, pkt_mb1); desc_to_ptype_v(descs, &rx_pkts[pos]); /* C.4 calc avaialbe number of desc */ var = __builtin_popcountll(_mm_cvtsi128_si64(staterr)); nb_pkts_recd += var; if (likely(var != AVF_VPMD_DESCS_PER_LOOP)) break; } /* Update our internal tail pointer */ rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd); rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1)); rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd); return nb_pkts_recd; } /* Notice: * - nb_pkts < AVF_DESCS_PER_LOOP, just return no packet * - nb_pkts > AVF_VPMD_RX_MAX_BURST, only scan AVF_VPMD_RX_MAX_BURST * numbers of DD bits */ uint16_t avf_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL); } /* vPMD receive routine that reassembles scattered packets * Notice: * - nb_pkts < AVF_VPMD_DESCS_PER_LOOP, just return no packet * - nb_pkts > VPMD_RX_MAX_BURST, only scan AVF_VPMD_RX_MAX_BURST * numbers of DD bits */ uint16_t avf_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct avf_rx_queue *rxq = rx_queue; uint8_t split_flags[AVF_VPMD_RX_MAX_BURST] = {0}; unsigned int i = 0; /* get some new buffers */ uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts, split_flags); if (nb_bufs == 0) return 0; /* happy day case, full burst + no packets to be joined */ const uint64_t *split_fl64 = (uint64_t *)split_flags; if (!rxq->pkt_first_seg && split_fl64[0] == 0 && split_fl64[1] == 0 && split_fl64[2] == 0 && split_fl64[3] == 0) return nb_bufs; /* reassemble any packets that need reassembly*/ if (!rxq->pkt_first_seg) { /* find the first split flag, and only reassemble then*/ while (i < nb_bufs && !split_flags[i]) i++; if (i == nb_bufs) return nb_bufs; } return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, &split_flags[i]); } static inline void vtx1(volatile struct avf_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags) { uint64_t high_qw = (AVF_TX_DESC_DTYPE_DATA | ((uint64_t)flags << AVF_TXD_QW1_CMD_SHIFT) | ((uint64_t)pkt->data_len << AVF_TXD_QW1_TX_BUF_SZ_SHIFT)); __m128i descriptor = _mm_set_epi64x(high_qw, pkt->buf_iova + pkt->data_off); _mm_store_si128((__m128i *)txdp, descriptor); } static inline void avf_vtx(volatile struct avf_tx_desc *txdp, struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags) { int i; for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt) vtx1(txdp, *pkt, flags); } uint16_t avf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct avf_tx_queue *txq = (struct avf_tx_queue *)tx_queue; volatile struct avf_tx_desc *txdp; struct avf_tx_entry *txep; uint16_t n, nb_commit, tx_id; uint64_t flags = AVF_TX_DESC_CMD_EOP | 0x04; /* bit 2 must be set */ uint64_t rs = AVF_TX_DESC_CMD_RS | flags; int i; /* cross rx_thresh boundary is not allowed */ nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh); if (txq->nb_free < txq->free_thresh) avf_tx_free_bufs(txq); nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts); if (unlikely(nb_pkts == 0)) return 0; nb_commit = nb_pkts; tx_id = txq->tx_tail; txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts); n = (uint16_t)(txq->nb_tx_desc - tx_id); if (nb_commit >= n) { tx_backlog_entry(txep, tx_pkts, n); for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp) vtx1(txdp, *tx_pkts, flags); vtx1(txdp, *tx_pkts++, rs); nb_commit = (uint16_t)(nb_commit - n); tx_id = 0; txq->next_rs = (uint16_t)(txq->rs_thresh - 1); /* avoid reach the end of ring */ txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; } tx_backlog_entry(txep, tx_pkts, nb_commit); avf_vtx(txdp, tx_pkts, nb_commit, flags); tx_id = (uint16_t)(tx_id + nb_commit); if (tx_id > txq->next_rs) { txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |= rte_cpu_to_le_64(((uint64_t)AVF_TX_DESC_CMD_RS) << AVF_TXD_QW1_CMD_SHIFT); txq->next_rs = (uint16_t)(txq->next_rs + txq->rs_thresh); } txq->tx_tail = tx_id; PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_pkts=%u", txq->port_id, txq->queue_id, tx_id, nb_pkts); AVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail); return nb_pkts; } void __attribute__((cold)) avf_rx_queue_release_mbufs_sse(struct avf_rx_queue *rxq) { _avf_rx_queue_release_mbufs_vec(rxq); } static void __attribute__((cold)) avf_tx_queue_release_mbufs_sse(struct avf_tx_queue *txq) { _avf_tx_queue_release_mbufs_vec(txq); } static const struct avf_rxq_ops sse_vec_rxq_ops = { .release_mbufs = avf_rx_queue_release_mbufs_sse, }; static const struct avf_txq_ops sse_vec_txq_ops = { .release_mbufs = avf_tx_queue_release_mbufs_sse, }; int __attribute__((cold)) avf_txq_vec_setup(struct avf_tx_queue *txq) { txq->ops = &sse_vec_txq_ops; return 0; } int __attribute__((cold)) avf_rxq_vec_setup(struct avf_rx_queue *rxq) { rxq->ops = &sse_vec_rxq_ops; return avf_rxq_vec_setup_default(rxq); }