/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved. * Copyright(c) 2018 Synopsys, Inc. All rights reserved. */ #include "axgbe_ethdev.h" #include "axgbe_common.h" #include "axgbe_phy.h" #define AXGBE_PHY_PORT_SPEED_100 BIT(0) #define AXGBE_PHY_PORT_SPEED_1000 BIT(1) #define AXGBE_PHY_PORT_SPEED_2500 BIT(2) #define AXGBE_PHY_PORT_SPEED_10000 BIT(3) #define AXGBE_MUTEX_RELEASE 0x80000000 #define AXGBE_SFP_DIRECT 7 /* I2C target addresses */ #define AXGBE_SFP_SERIAL_ID_ADDRESS 0x50 #define AXGBE_SFP_DIAG_INFO_ADDRESS 0x51 #define AXGBE_SFP_PHY_ADDRESS 0x56 #define AXGBE_GPIO_ADDRESS_PCA9555 0x20 /* SFP sideband signal indicators */ #define AXGBE_GPIO_NO_TX_FAULT BIT(0) #define AXGBE_GPIO_NO_RATE_SELECT BIT(1) #define AXGBE_GPIO_NO_MOD_ABSENT BIT(2) #define AXGBE_GPIO_NO_RX_LOS BIT(3) /* Rate-change complete wait/retry count */ #define AXGBE_RATECHANGE_COUNT 500 /* CDR delay values for KR support (in usec) */ #define AXGBE_CDR_DELAY_INIT 10000 #define AXGBE_CDR_DELAY_INC 10000 #define AXGBE_CDR_DELAY_MAX 100000 enum axgbe_port_mode { AXGBE_PORT_MODE_RSVD = 0, AXGBE_PORT_MODE_BACKPLANE, AXGBE_PORT_MODE_BACKPLANE_2500, AXGBE_PORT_MODE_1000BASE_T, AXGBE_PORT_MODE_1000BASE_X, AXGBE_PORT_MODE_NBASE_T, AXGBE_PORT_MODE_10GBASE_T, AXGBE_PORT_MODE_10GBASE_R, AXGBE_PORT_MODE_SFP, AXGBE_PORT_MODE_MAX, }; enum axgbe_conn_type { AXGBE_CONN_TYPE_NONE = 0, AXGBE_CONN_TYPE_SFP, AXGBE_CONN_TYPE_MDIO, AXGBE_CONN_TYPE_RSVD1, AXGBE_CONN_TYPE_BACKPLANE, AXGBE_CONN_TYPE_MAX, }; /* SFP/SFP+ related definitions */ enum axgbe_sfp_comm { AXGBE_SFP_COMM_DIRECT = 0, AXGBE_SFP_COMM_PCA9545, }; enum axgbe_sfp_cable { AXGBE_SFP_CABLE_UNKNOWN = 0, AXGBE_SFP_CABLE_ACTIVE, AXGBE_SFP_CABLE_PASSIVE, }; enum axgbe_sfp_base { AXGBE_SFP_BASE_UNKNOWN = 0, AXGBE_SFP_BASE_1000_T, AXGBE_SFP_BASE_1000_SX, AXGBE_SFP_BASE_1000_LX, AXGBE_SFP_BASE_1000_CX, AXGBE_SFP_BASE_10000_SR, AXGBE_SFP_BASE_10000_LR, AXGBE_SFP_BASE_10000_LRM, AXGBE_SFP_BASE_10000_ER, AXGBE_SFP_BASE_10000_CR, }; enum axgbe_sfp_speed { AXGBE_SFP_SPEED_UNKNOWN = 0, AXGBE_SFP_SPEED_100_1000, AXGBE_SFP_SPEED_1000, AXGBE_SFP_SPEED_10000, }; /* SFP Serial ID Base ID values relative to an offset of 0 */ #define AXGBE_SFP_BASE_ID 0 #define AXGBE_SFP_ID_SFP 0x03 #define AXGBE_SFP_BASE_EXT_ID 1 #define AXGBE_SFP_EXT_ID_SFP 0x04 #define AXGBE_SFP_BASE_10GBE_CC 3 #define AXGBE_SFP_BASE_10GBE_CC_SR BIT(4) #define AXGBE_SFP_BASE_10GBE_CC_LR BIT(5) #define AXGBE_SFP_BASE_10GBE_CC_LRM BIT(6) #define AXGBE_SFP_BASE_10GBE_CC_ER BIT(7) #define AXGBE_SFP_BASE_1GBE_CC 6 #define AXGBE_SFP_BASE_1GBE_CC_SX BIT(0) #define AXGBE_SFP_BASE_1GBE_CC_LX BIT(1) #define AXGBE_SFP_BASE_1GBE_CC_CX BIT(2) #define AXGBE_SFP_BASE_1GBE_CC_T BIT(3) #define AXGBE_SFP_BASE_CABLE 8 #define AXGBE_SFP_BASE_CABLE_PASSIVE BIT(2) #define AXGBE_SFP_BASE_CABLE_ACTIVE BIT(3) #define AXGBE_SFP_BASE_BR 12 #define AXGBE_SFP_BASE_BR_1GBE_MIN 0x0a #define AXGBE_SFP_BASE_BR_1GBE_MAX 0x0d #define AXGBE_SFP_BASE_BR_10GBE_MIN 0x64 #define AXGBE_SFP_BASE_BR_10GBE_MAX 0x68 #define AXGBE_SFP_BASE_CU_CABLE_LEN 18 #define AXGBE_SFP_BASE_VENDOR_NAME 20 #define AXGBE_SFP_BASE_VENDOR_NAME_LEN 16 #define AXGBE_SFP_BASE_VENDOR_PN 40 #define AXGBE_SFP_BASE_VENDOR_PN_LEN 16 #define AXGBE_SFP_BASE_VENDOR_REV 56 #define AXGBE_SFP_BASE_VENDOR_REV_LEN 4 #define AXGBE_SFP_BASE_CC 63 /* SFP Serial ID Extended ID values relative to an offset of 64 */ #define AXGBE_SFP_BASE_VENDOR_SN 4 #define AXGBE_SFP_BASE_VENDOR_SN_LEN 16 #define AXGBE_SFP_EXTD_DIAG 28 #define AXGBE_SFP_EXTD_DIAG_ADDR_CHANGE BIT(2) #define AXGBE_SFP_EXTD_SFF_8472 30 #define AXGBE_SFP_EXTD_CC 31 struct axgbe_sfp_eeprom { u8 base[64]; u8 extd[32]; u8 vendor[32]; }; #define AXGBE_BEL_FUSE_VENDOR "BEL-FUSE" #define AXGBE_BEL_FUSE_PARTNO "1GBT-SFP06" struct axgbe_sfp_ascii { union { char vendor[AXGBE_SFP_BASE_VENDOR_NAME_LEN + 1]; char partno[AXGBE_SFP_BASE_VENDOR_PN_LEN + 1]; char rev[AXGBE_SFP_BASE_VENDOR_REV_LEN + 1]; char serno[AXGBE_SFP_BASE_VENDOR_SN_LEN + 1]; } u; }; /* MDIO PHY reset types */ enum axgbe_mdio_reset { AXGBE_MDIO_RESET_NONE = 0, AXGBE_MDIO_RESET_I2C_GPIO, AXGBE_MDIO_RESET_INT_GPIO, AXGBE_MDIO_RESET_MAX, }; /* Re-driver related definitions */ enum axgbe_phy_redrv_if { AXGBE_PHY_REDRV_IF_MDIO = 0, AXGBE_PHY_REDRV_IF_I2C, AXGBE_PHY_REDRV_IF_MAX, }; enum axgbe_phy_redrv_model { AXGBE_PHY_REDRV_MODEL_4223 = 0, AXGBE_PHY_REDRV_MODEL_4227, AXGBE_PHY_REDRV_MODEL_MAX, }; enum axgbe_phy_redrv_mode { AXGBE_PHY_REDRV_MODE_CX = 5, AXGBE_PHY_REDRV_MODE_SR = 9, }; #define AXGBE_PHY_REDRV_MODE_REG 0x12b0 /* PHY related configuration information */ struct axgbe_phy_data { enum axgbe_port_mode port_mode; unsigned int port_id; unsigned int port_speeds; enum axgbe_conn_type conn_type; enum axgbe_mode cur_mode; enum axgbe_mode start_mode; unsigned int rrc_count; unsigned int mdio_addr; unsigned int comm_owned; /* SFP Support */ enum axgbe_sfp_comm sfp_comm; unsigned int sfp_mux_address; unsigned int sfp_mux_channel; unsigned int sfp_gpio_address; unsigned int sfp_gpio_mask; unsigned int sfp_gpio_rx_los; unsigned int sfp_gpio_tx_fault; unsigned int sfp_gpio_mod_absent; unsigned int sfp_gpio_rate_select; unsigned int sfp_rx_los; unsigned int sfp_tx_fault; unsigned int sfp_mod_absent; unsigned int sfp_diags; unsigned int sfp_changed; unsigned int sfp_phy_avail; unsigned int sfp_cable_len; enum axgbe_sfp_base sfp_base; enum axgbe_sfp_cable sfp_cable; enum axgbe_sfp_speed sfp_speed; struct axgbe_sfp_eeprom sfp_eeprom; /* External PHY support */ enum axgbe_mdio_mode phydev_mode; enum axgbe_mdio_reset mdio_reset; unsigned int mdio_reset_addr; unsigned int mdio_reset_gpio; /* Re-driver support */ unsigned int redrv; unsigned int redrv_if; unsigned int redrv_addr; unsigned int redrv_lane; unsigned int redrv_model; /* KR AN support */ unsigned int phy_cdr_notrack; unsigned int phy_cdr_delay; }; static enum axgbe_an_mode axgbe_phy_an_mode(struct axgbe_port *pdata); static int axgbe_phy_i2c_xfer(struct axgbe_port *pdata, struct axgbe_i2c_op *i2c_op) { struct axgbe_phy_data *phy_data = pdata->phy_data; /* Be sure we own the bus */ if (!phy_data->comm_owned) return -EIO; return pdata->i2c_if.i2c_xfer(pdata, i2c_op); } static int axgbe_phy_redrv_write(struct axgbe_port *pdata, unsigned int reg, unsigned int val) { struct axgbe_phy_data *phy_data = pdata->phy_data; struct axgbe_i2c_op i2c_op; uint16_t *redrv_val; u8 redrv_data[5], csum; unsigned int i, retry; int ret; /* High byte of register contains read/write indicator */ redrv_data[0] = ((reg >> 8) & 0xff) << 1; redrv_data[1] = reg & 0xff; redrv_val = (uint16_t *)&redrv_data[2]; *redrv_val = rte_cpu_to_be_16(val); /* Calculate 1 byte checksum */ csum = 0; for (i = 0; i < 4; i++) { csum += redrv_data[i]; if (redrv_data[i] > csum) csum++; } redrv_data[4] = ~csum; retry = 1; again1: i2c_op.cmd = AXGBE_I2C_CMD_WRITE; i2c_op.target = phy_data->redrv_addr; i2c_op.len = sizeof(redrv_data); i2c_op.buf = redrv_data; ret = axgbe_phy_i2c_xfer(pdata, &i2c_op); if (ret) { if ((ret == -EAGAIN) && retry--) goto again1; return ret; } retry = 1; again2: i2c_op.cmd = AXGBE_I2C_CMD_READ; i2c_op.target = phy_data->redrv_addr; i2c_op.len = 1; i2c_op.buf = redrv_data; ret = axgbe_phy_i2c_xfer(pdata, &i2c_op); if (ret) { if ((ret == -EAGAIN) && retry--) goto again2; return ret; } if (redrv_data[0] != 0xff) { PMD_DRV_LOG(ERR, "Redriver write checksum error\n"); ret = -EIO; } return ret; } static int axgbe_phy_i2c_read(struct axgbe_port *pdata, unsigned int target, void *reg, unsigned int reg_len, void *val, unsigned int val_len) { struct axgbe_i2c_op i2c_op; int retry, ret; retry = 1; again1: /* Set the specified register to read */ i2c_op.cmd = AXGBE_I2C_CMD_WRITE; i2c_op.target = target; i2c_op.len = reg_len; i2c_op.buf = reg; ret = axgbe_phy_i2c_xfer(pdata, &i2c_op); if (ret) { if ((ret == -EAGAIN) && retry--) goto again1; return ret; } retry = 1; again2: /* Read the specfied register */ i2c_op.cmd = AXGBE_I2C_CMD_READ; i2c_op.target = target; i2c_op.len = val_len; i2c_op.buf = val; ret = axgbe_phy_i2c_xfer(pdata, &i2c_op); if ((ret == -EAGAIN) && retry--) goto again2; return ret; } static int axgbe_phy_sfp_put_mux(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; struct axgbe_i2c_op i2c_op; uint8_t mux_channel; if (phy_data->sfp_comm == AXGBE_SFP_COMM_DIRECT) return 0; /* Select no mux channels */ mux_channel = 0; i2c_op.cmd = AXGBE_I2C_CMD_WRITE; i2c_op.target = phy_data->sfp_mux_address; i2c_op.len = sizeof(mux_channel); i2c_op.buf = &mux_channel; return axgbe_phy_i2c_xfer(pdata, &i2c_op); } static int axgbe_phy_sfp_get_mux(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; struct axgbe_i2c_op i2c_op; u8 mux_channel; if (phy_data->sfp_comm == AXGBE_SFP_COMM_DIRECT) return 0; /* Select desired mux channel */ mux_channel = 1 << phy_data->sfp_mux_channel; i2c_op.cmd = AXGBE_I2C_CMD_WRITE; i2c_op.target = phy_data->sfp_mux_address; i2c_op.len = sizeof(mux_channel); i2c_op.buf = &mux_channel; return axgbe_phy_i2c_xfer(pdata, &i2c_op); } static void axgbe_phy_put_comm_ownership(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; phy_data->comm_owned = 0; pthread_mutex_unlock(&pdata->phy_mutex); } static int axgbe_phy_get_comm_ownership(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; uint64_t timeout; unsigned int mutex_id; if (phy_data->comm_owned) return 0; /* The I2C and MDIO/GPIO bus is multiplexed between multiple devices, * the driver needs to take the software mutex and then the hardware * mutexes before being able to use the busses. */ pthread_mutex_lock(&pdata->phy_mutex); /* Clear the mutexes */ XP_IOWRITE(pdata, XP_I2C_MUTEX, AXGBE_MUTEX_RELEASE); XP_IOWRITE(pdata, XP_MDIO_MUTEX, AXGBE_MUTEX_RELEASE); /* Mutex formats are the same for I2C and MDIO/GPIO */ mutex_id = 0; XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ID, phy_data->port_id); XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ACTIVE, 1); timeout = rte_get_timer_cycles() + (rte_get_timer_hz() * 5); while (time_before(rte_get_timer_cycles(), timeout)) { /* Must be all zeroes in order to obtain the mutex */ if (XP_IOREAD(pdata, XP_I2C_MUTEX) || XP_IOREAD(pdata, XP_MDIO_MUTEX)) { rte_delay_us(100); continue; } /* Obtain the mutex */ XP_IOWRITE(pdata, XP_I2C_MUTEX, mutex_id); XP_IOWRITE(pdata, XP_MDIO_MUTEX, mutex_id); phy_data->comm_owned = 1; return 0; } pthread_mutex_unlock(&pdata->phy_mutex); PMD_DRV_LOG(ERR, "unable to obtain hardware mutexes\n"); return -ETIMEDOUT; } static void axgbe_phy_sfp_phy_settings(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; if (phy_data->sfp_mod_absent) { pdata->phy.speed = SPEED_UNKNOWN; pdata->phy.duplex = DUPLEX_UNKNOWN; pdata->phy.autoneg = AUTONEG_ENABLE; pdata->phy.advertising = pdata->phy.supported; } pdata->phy.advertising &= ~ADVERTISED_Autoneg; pdata->phy.advertising &= ~ADVERTISED_TP; pdata->phy.advertising &= ~ADVERTISED_FIBRE; pdata->phy.advertising &= ~ADVERTISED_100baseT_Full; pdata->phy.advertising &= ~ADVERTISED_1000baseT_Full; pdata->phy.advertising &= ~ADVERTISED_10000baseT_Full; pdata->phy.advertising &= ~ADVERTISED_10000baseR_FEC; switch (phy_data->sfp_base) { case AXGBE_SFP_BASE_1000_T: case AXGBE_SFP_BASE_1000_SX: case AXGBE_SFP_BASE_1000_LX: case AXGBE_SFP_BASE_1000_CX: pdata->phy.speed = SPEED_UNKNOWN; pdata->phy.duplex = DUPLEX_UNKNOWN; pdata->phy.autoneg = AUTONEG_ENABLE; pdata->phy.advertising |= ADVERTISED_Autoneg; break; case AXGBE_SFP_BASE_10000_SR: case AXGBE_SFP_BASE_10000_LR: case AXGBE_SFP_BASE_10000_LRM: case AXGBE_SFP_BASE_10000_ER: case AXGBE_SFP_BASE_10000_CR: default: pdata->phy.speed = SPEED_10000; pdata->phy.duplex = DUPLEX_FULL; pdata->phy.autoneg = AUTONEG_DISABLE; break; } switch (phy_data->sfp_base) { case AXGBE_SFP_BASE_1000_T: case AXGBE_SFP_BASE_1000_CX: case AXGBE_SFP_BASE_10000_CR: pdata->phy.advertising |= ADVERTISED_TP; break; default: pdata->phy.advertising |= ADVERTISED_FIBRE; } switch (phy_data->sfp_speed) { case AXGBE_SFP_SPEED_100_1000: if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) pdata->phy.advertising |= ADVERTISED_100baseT_Full; if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) pdata->phy.advertising |= ADVERTISED_1000baseT_Full; break; case AXGBE_SFP_SPEED_1000: if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) pdata->phy.advertising |= ADVERTISED_1000baseT_Full; break; case AXGBE_SFP_SPEED_10000: if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000) pdata->phy.advertising |= ADVERTISED_10000baseT_Full; break; default: /* Choose the fastest supported speed */ if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000) pdata->phy.advertising |= ADVERTISED_10000baseT_Full; else if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) pdata->phy.advertising |= ADVERTISED_1000baseT_Full; else if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) pdata->phy.advertising |= ADVERTISED_100baseT_Full; } } static bool axgbe_phy_sfp_bit_rate(struct axgbe_sfp_eeprom *sfp_eeprom, enum axgbe_sfp_speed sfp_speed) { u8 *sfp_base, min, max; sfp_base = sfp_eeprom->base; switch (sfp_speed) { case AXGBE_SFP_SPEED_1000: min = AXGBE_SFP_BASE_BR_1GBE_MIN; max = AXGBE_SFP_BASE_BR_1GBE_MAX; break; case AXGBE_SFP_SPEED_10000: min = AXGBE_SFP_BASE_BR_10GBE_MIN; max = AXGBE_SFP_BASE_BR_10GBE_MAX; break; default: return false; } return ((sfp_base[AXGBE_SFP_BASE_BR] >= min) && (sfp_base[AXGBE_SFP_BASE_BR] <= max)); } static void axgbe_phy_sfp_external_phy(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; if (!phy_data->sfp_changed) return; phy_data->sfp_phy_avail = 0; if (phy_data->sfp_base != AXGBE_SFP_BASE_1000_T) return; } static bool axgbe_phy_belfuse_parse_quirks(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; struct axgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom; if (memcmp(&sfp_eeprom->base[AXGBE_SFP_BASE_VENDOR_NAME], AXGBE_BEL_FUSE_VENDOR, strlen(AXGBE_BEL_FUSE_VENDOR))) return false; if (!memcmp(&sfp_eeprom->base[AXGBE_SFP_BASE_VENDOR_PN], AXGBE_BEL_FUSE_PARTNO, strlen(AXGBE_BEL_FUSE_PARTNO))) { phy_data->sfp_base = AXGBE_SFP_BASE_1000_SX; phy_data->sfp_cable = AXGBE_SFP_CABLE_ACTIVE; phy_data->sfp_speed = AXGBE_SFP_SPEED_1000; return true; } return false; } static bool axgbe_phy_sfp_parse_quirks(struct axgbe_port *pdata) { if (axgbe_phy_belfuse_parse_quirks(pdata)) return true; return false; } static void axgbe_phy_sfp_parse_eeprom(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; struct axgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom; uint8_t *sfp_base; sfp_base = sfp_eeprom->base; if (sfp_base[AXGBE_SFP_BASE_ID] != AXGBE_SFP_ID_SFP) return; if (sfp_base[AXGBE_SFP_BASE_EXT_ID] != AXGBE_SFP_EXT_ID_SFP) return; if (axgbe_phy_sfp_parse_quirks(pdata)) return; /* Assume ACTIVE cable unless told it is PASSIVE */ if (sfp_base[AXGBE_SFP_BASE_CABLE] & AXGBE_SFP_BASE_CABLE_PASSIVE) { phy_data->sfp_cable = AXGBE_SFP_CABLE_PASSIVE; phy_data->sfp_cable_len = sfp_base[AXGBE_SFP_BASE_CU_CABLE_LEN]; } else { phy_data->sfp_cable = AXGBE_SFP_CABLE_ACTIVE; } /* Determine the type of SFP */ if (sfp_base[AXGBE_SFP_BASE_10GBE_CC] & AXGBE_SFP_BASE_10GBE_CC_SR) phy_data->sfp_base = AXGBE_SFP_BASE_10000_SR; else if (sfp_base[AXGBE_SFP_BASE_10GBE_CC] & AXGBE_SFP_BASE_10GBE_CC_LR) phy_data->sfp_base = AXGBE_SFP_BASE_10000_LR; else if (sfp_base[AXGBE_SFP_BASE_10GBE_CC] & AXGBE_SFP_BASE_10GBE_CC_LRM) phy_data->sfp_base = AXGBE_SFP_BASE_10000_LRM; else if (sfp_base[AXGBE_SFP_BASE_10GBE_CC] & AXGBE_SFP_BASE_10GBE_CC_ER) phy_data->sfp_base = AXGBE_SFP_BASE_10000_ER; else if (sfp_base[AXGBE_SFP_BASE_1GBE_CC] & AXGBE_SFP_BASE_1GBE_CC_SX) phy_data->sfp_base = AXGBE_SFP_BASE_1000_SX; else if (sfp_base[AXGBE_SFP_BASE_1GBE_CC] & AXGBE_SFP_BASE_1GBE_CC_LX) phy_data->sfp_base = AXGBE_SFP_BASE_1000_LX; else if (sfp_base[AXGBE_SFP_BASE_1GBE_CC] & AXGBE_SFP_BASE_1GBE_CC_CX) phy_data->sfp_base = AXGBE_SFP_BASE_1000_CX; else if (sfp_base[AXGBE_SFP_BASE_1GBE_CC] & AXGBE_SFP_BASE_1GBE_CC_T) phy_data->sfp_base = AXGBE_SFP_BASE_1000_T; else if ((phy_data->sfp_cable == AXGBE_SFP_CABLE_PASSIVE) && axgbe_phy_sfp_bit_rate(sfp_eeprom, AXGBE_SFP_SPEED_10000)) phy_data->sfp_base = AXGBE_SFP_BASE_10000_CR; switch (phy_data->sfp_base) { case AXGBE_SFP_BASE_1000_T: phy_data->sfp_speed = AXGBE_SFP_SPEED_100_1000; break; case AXGBE_SFP_BASE_1000_SX: case AXGBE_SFP_BASE_1000_LX: case AXGBE_SFP_BASE_1000_CX: phy_data->sfp_speed = AXGBE_SFP_SPEED_1000; break; case AXGBE_SFP_BASE_10000_SR: case AXGBE_SFP_BASE_10000_LR: case AXGBE_SFP_BASE_10000_LRM: case AXGBE_SFP_BASE_10000_ER: case AXGBE_SFP_BASE_10000_CR: phy_data->sfp_speed = AXGBE_SFP_SPEED_10000; break; default: break; } } static bool axgbe_phy_sfp_verify_eeprom(uint8_t cc_in, uint8_t *buf, unsigned int len) { uint8_t cc; for (cc = 0; len; buf++, len--) cc += *buf; return (cc == cc_in) ? true : false; } static int axgbe_phy_sfp_read_eeprom(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; struct axgbe_sfp_eeprom sfp_eeprom; uint8_t eeprom_addr; int ret; ret = axgbe_phy_sfp_get_mux(pdata); if (ret) { PMD_DRV_LOG(ERR, "I2C error setting SFP MUX\n"); return ret; } /* Read the SFP serial ID eeprom */ eeprom_addr = 0; ret = axgbe_phy_i2c_read(pdata, AXGBE_SFP_SERIAL_ID_ADDRESS, &eeprom_addr, sizeof(eeprom_addr), &sfp_eeprom, sizeof(sfp_eeprom)); if (ret) { PMD_DRV_LOG(ERR, "I2C error reading SFP EEPROM\n"); goto put; } /* Validate the contents read */ if (!axgbe_phy_sfp_verify_eeprom(sfp_eeprom.base[AXGBE_SFP_BASE_CC], sfp_eeprom.base, sizeof(sfp_eeprom.base) - 1)) { ret = -EINVAL; goto put; } if (!axgbe_phy_sfp_verify_eeprom(sfp_eeprom.extd[AXGBE_SFP_EXTD_CC], sfp_eeprom.extd, sizeof(sfp_eeprom.extd) - 1)) { ret = -EINVAL; goto put; } /* Check for an added or changed SFP */ if (memcmp(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom))) { phy_data->sfp_changed = 1; memcpy(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom)); if (sfp_eeprom.extd[AXGBE_SFP_EXTD_SFF_8472]) { uint8_t diag_type; diag_type = sfp_eeprom.extd[AXGBE_SFP_EXTD_DIAG]; if (!(diag_type & AXGBE_SFP_EXTD_DIAG_ADDR_CHANGE)) phy_data->sfp_diags = 1; } } else { phy_data->sfp_changed = 0; } put: axgbe_phy_sfp_put_mux(pdata); return ret; } static void axgbe_phy_sfp_signals(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; unsigned int gpio_input; u8 gpio_reg, gpio_ports[2]; int ret; /* Read the input port registers */ gpio_reg = 0; ret = axgbe_phy_i2c_read(pdata, phy_data->sfp_gpio_address, &gpio_reg, sizeof(gpio_reg), gpio_ports, sizeof(gpio_ports)); if (ret) { PMD_DRV_LOG(ERR, "I2C error reading SFP GPIOs\n"); return; } gpio_input = (gpio_ports[1] << 8) | gpio_ports[0]; if (phy_data->sfp_gpio_mask & AXGBE_GPIO_NO_MOD_ABSENT) { /* No GPIO, just assume the module is present for now */ phy_data->sfp_mod_absent = 0; } else { if (!(gpio_input & (1 << phy_data->sfp_gpio_mod_absent))) phy_data->sfp_mod_absent = 0; } if (!(phy_data->sfp_gpio_mask & AXGBE_GPIO_NO_RX_LOS) && (gpio_input & (1 << phy_data->sfp_gpio_rx_los))) phy_data->sfp_rx_los = 1; if (!(phy_data->sfp_gpio_mask & AXGBE_GPIO_NO_TX_FAULT) && (gpio_input & (1 << phy_data->sfp_gpio_tx_fault))) phy_data->sfp_tx_fault = 1; } static void axgbe_phy_sfp_mod_absent(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; phy_data->sfp_mod_absent = 1; phy_data->sfp_phy_avail = 0; memset(&phy_data->sfp_eeprom, 0, sizeof(phy_data->sfp_eeprom)); } static void axgbe_phy_sfp_reset(struct axgbe_phy_data *phy_data) { phy_data->sfp_rx_los = 0; phy_data->sfp_tx_fault = 0; phy_data->sfp_mod_absent = 1; phy_data->sfp_diags = 0; phy_data->sfp_base = AXGBE_SFP_BASE_UNKNOWN; phy_data->sfp_cable = AXGBE_SFP_CABLE_UNKNOWN; phy_data->sfp_speed = AXGBE_SFP_SPEED_UNKNOWN; } static void axgbe_phy_sfp_detect(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; int ret; /* Reset the SFP signals and info */ axgbe_phy_sfp_reset(phy_data); ret = axgbe_phy_get_comm_ownership(pdata); if (ret) return; /* Read the SFP signals and check for module presence */ axgbe_phy_sfp_signals(pdata); if (phy_data->sfp_mod_absent) { axgbe_phy_sfp_mod_absent(pdata); goto put; } ret = axgbe_phy_sfp_read_eeprom(pdata); if (ret) { /* Treat any error as if there isn't an SFP plugged in */ axgbe_phy_sfp_reset(phy_data); axgbe_phy_sfp_mod_absent(pdata); goto put; } axgbe_phy_sfp_parse_eeprom(pdata); axgbe_phy_sfp_external_phy(pdata); put: axgbe_phy_sfp_phy_settings(pdata); axgbe_phy_put_comm_ownership(pdata); } static void axgbe_phy_phydev_flowctrl(struct axgbe_port *pdata) { pdata->phy.tx_pause = 0; pdata->phy.rx_pause = 0; } static enum axgbe_mode axgbe_phy_an73_redrv_outcome(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; enum axgbe_mode mode; unsigned int ad_reg, lp_reg; pdata->phy.lp_advertising |= ADVERTISED_Autoneg; pdata->phy.lp_advertising |= ADVERTISED_Backplane; /* Use external PHY to determine flow control */ if (pdata->phy.pause_autoneg) axgbe_phy_phydev_flowctrl(pdata); /* Compare Advertisement and Link Partner register 2 */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1); lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1); if (lp_reg & 0x80) pdata->phy.lp_advertising |= ADVERTISED_10000baseKR_Full; if (lp_reg & 0x20) pdata->phy.lp_advertising |= ADVERTISED_1000baseKX_Full; ad_reg &= lp_reg; if (ad_reg & 0x80) { switch (phy_data->port_mode) { case AXGBE_PORT_MODE_BACKPLANE: mode = AXGBE_MODE_KR; break; default: mode = AXGBE_MODE_SFI; break; } } else if (ad_reg & 0x20) { switch (phy_data->port_mode) { case AXGBE_PORT_MODE_BACKPLANE: mode = AXGBE_MODE_KX_1000; break; case AXGBE_PORT_MODE_1000BASE_X: mode = AXGBE_MODE_X; break; case AXGBE_PORT_MODE_SFP: switch (phy_data->sfp_base) { case AXGBE_SFP_BASE_1000_T: mode = AXGBE_MODE_SGMII_1000; break; case AXGBE_SFP_BASE_1000_SX: case AXGBE_SFP_BASE_1000_LX: case AXGBE_SFP_BASE_1000_CX: default: mode = AXGBE_MODE_X; break; } break; default: mode = AXGBE_MODE_SGMII_1000; break; } } else { mode = AXGBE_MODE_UNKNOWN; } /* Compare Advertisement and Link Partner register 3 */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2); lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2); if (lp_reg & 0xc000) pdata->phy.lp_advertising |= ADVERTISED_10000baseR_FEC; return mode; } static enum axgbe_mode axgbe_phy_an73_outcome(struct axgbe_port *pdata) { enum axgbe_mode mode; unsigned int ad_reg, lp_reg; pdata->phy.lp_advertising |= ADVERTISED_Autoneg; pdata->phy.lp_advertising |= ADVERTISED_Backplane; /* Compare Advertisement and Link Partner register 1 */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE); lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA); if (lp_reg & 0x400) pdata->phy.lp_advertising |= ADVERTISED_Pause; if (lp_reg & 0x800) pdata->phy.lp_advertising |= ADVERTISED_Asym_Pause; if (pdata->phy.pause_autoneg) { /* Set flow control based on auto-negotiation result */ pdata->phy.tx_pause = 0; pdata->phy.rx_pause = 0; if (ad_reg & lp_reg & 0x400) { pdata->phy.tx_pause = 1; pdata->phy.rx_pause = 1; } else if (ad_reg & lp_reg & 0x800) { if (ad_reg & 0x400) pdata->phy.rx_pause = 1; else if (lp_reg & 0x400) pdata->phy.tx_pause = 1; } } /* Compare Advertisement and Link Partner register 2 */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1); lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1); if (lp_reg & 0x80) pdata->phy.lp_advertising |= ADVERTISED_10000baseKR_Full; if (lp_reg & 0x20) pdata->phy.lp_advertising |= ADVERTISED_1000baseKX_Full; ad_reg &= lp_reg; if (ad_reg & 0x80) mode = AXGBE_MODE_KR; else if (ad_reg & 0x20) mode = AXGBE_MODE_KX_1000; else mode = AXGBE_MODE_UNKNOWN; /* Compare Advertisement and Link Partner register 3 */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2); lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2); if (lp_reg & 0xc000) pdata->phy.lp_advertising |= ADVERTISED_10000baseR_FEC; return mode; } static enum axgbe_mode axgbe_phy_an_outcome(struct axgbe_port *pdata) { switch (pdata->an_mode) { case AXGBE_AN_MODE_CL73: return axgbe_phy_an73_outcome(pdata); case AXGBE_AN_MODE_CL73_REDRV: return axgbe_phy_an73_redrv_outcome(pdata); case AXGBE_AN_MODE_CL37: case AXGBE_AN_MODE_CL37_SGMII: default: return AXGBE_MODE_UNKNOWN; } } static unsigned int axgbe_phy_an_advertising(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; unsigned int advertising; /* Without a re-driver, just return current advertising */ if (!phy_data->redrv) return pdata->phy.advertising; /* With the KR re-driver we need to advertise a single speed */ advertising = pdata->phy.advertising; advertising &= ~ADVERTISED_1000baseKX_Full; advertising &= ~ADVERTISED_10000baseKR_Full; switch (phy_data->port_mode) { case AXGBE_PORT_MODE_BACKPLANE: advertising |= ADVERTISED_10000baseKR_Full; break; case AXGBE_PORT_MODE_BACKPLANE_2500: advertising |= ADVERTISED_1000baseKX_Full; break; case AXGBE_PORT_MODE_1000BASE_T: case AXGBE_PORT_MODE_1000BASE_X: case AXGBE_PORT_MODE_NBASE_T: advertising |= ADVERTISED_1000baseKX_Full; break; case AXGBE_PORT_MODE_10GBASE_T: PMD_DRV_LOG(ERR, "10GBASE_T mode is not supported\n"); break; case AXGBE_PORT_MODE_10GBASE_R: advertising |= ADVERTISED_10000baseKR_Full; break; case AXGBE_PORT_MODE_SFP: switch (phy_data->sfp_base) { case AXGBE_SFP_BASE_1000_T: case AXGBE_SFP_BASE_1000_SX: case AXGBE_SFP_BASE_1000_LX: case AXGBE_SFP_BASE_1000_CX: advertising |= ADVERTISED_1000baseKX_Full; break; default: advertising |= ADVERTISED_10000baseKR_Full; break; } break; default: advertising |= ADVERTISED_10000baseKR_Full; break; } return advertising; } static int axgbe_phy_an_config(struct axgbe_port *pdata __rte_unused) { return 0; /* Dummy API since there is no case to support * external phy devices registred through kerenl apis */ } static enum axgbe_an_mode axgbe_phy_an_sfp_mode(struct axgbe_phy_data *phy_data) { switch (phy_data->sfp_base) { case AXGBE_SFP_BASE_1000_T: return AXGBE_AN_MODE_CL37_SGMII; case AXGBE_SFP_BASE_1000_SX: case AXGBE_SFP_BASE_1000_LX: case AXGBE_SFP_BASE_1000_CX: return AXGBE_AN_MODE_CL37; default: return AXGBE_AN_MODE_NONE; } } static enum axgbe_an_mode axgbe_phy_an_mode(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; /* A KR re-driver will always require CL73 AN */ if (phy_data->redrv) return AXGBE_AN_MODE_CL73_REDRV; switch (phy_data->port_mode) { case AXGBE_PORT_MODE_BACKPLANE: return AXGBE_AN_MODE_CL73; case AXGBE_PORT_MODE_BACKPLANE_2500: return AXGBE_AN_MODE_NONE; case AXGBE_PORT_MODE_1000BASE_T: return AXGBE_AN_MODE_CL37_SGMII; case AXGBE_PORT_MODE_1000BASE_X: return AXGBE_AN_MODE_CL37; case AXGBE_PORT_MODE_NBASE_T: return AXGBE_AN_MODE_CL37_SGMII; case AXGBE_PORT_MODE_10GBASE_T: return AXGBE_AN_MODE_CL73; case AXGBE_PORT_MODE_10GBASE_R: return AXGBE_AN_MODE_NONE; case AXGBE_PORT_MODE_SFP: return axgbe_phy_an_sfp_mode(phy_data); default: return AXGBE_AN_MODE_NONE; } } static int axgbe_phy_set_redrv_mode_mdio(struct axgbe_port *pdata, enum axgbe_phy_redrv_mode mode) { struct axgbe_phy_data *phy_data = pdata->phy_data; u16 redrv_reg, redrv_val; redrv_reg = AXGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000); redrv_val = (u16)mode; return pdata->hw_if.write_ext_mii_regs(pdata, phy_data->redrv_addr, redrv_reg, redrv_val); } static int axgbe_phy_set_redrv_mode_i2c(struct axgbe_port *pdata, enum axgbe_phy_redrv_mode mode) { struct axgbe_phy_data *phy_data = pdata->phy_data; unsigned int redrv_reg; int ret; /* Calculate the register to write */ redrv_reg = AXGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000); ret = axgbe_phy_redrv_write(pdata, redrv_reg, mode); return ret; } static void axgbe_phy_set_redrv_mode(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; enum axgbe_phy_redrv_mode mode; int ret; if (!phy_data->redrv) return; mode = AXGBE_PHY_REDRV_MODE_CX; if ((phy_data->port_mode == AXGBE_PORT_MODE_SFP) && (phy_data->sfp_base != AXGBE_SFP_BASE_1000_CX) && (phy_data->sfp_base != AXGBE_SFP_BASE_10000_CR)) mode = AXGBE_PHY_REDRV_MODE_SR; ret = axgbe_phy_get_comm_ownership(pdata); if (ret) return; if (phy_data->redrv_if) axgbe_phy_set_redrv_mode_i2c(pdata, mode); else axgbe_phy_set_redrv_mode_mdio(pdata, mode); axgbe_phy_put_comm_ownership(pdata); } static void axgbe_phy_start_ratechange(struct axgbe_port *pdata) { if (!XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS)) return; } static void axgbe_phy_complete_ratechange(struct axgbe_port *pdata) { unsigned int wait; /* Wait for command to complete */ wait = AXGBE_RATECHANGE_COUNT; while (wait--) { if (!XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS)) return; rte_delay_us(1500); } } static void axgbe_phy_rrc(struct axgbe_port *pdata) { unsigned int s0; axgbe_phy_start_ratechange(pdata); /* Receiver Reset Cycle */ s0 = 0; XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 5); XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 0); /* Call FW to make the change */ XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0); XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0); XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1); axgbe_phy_complete_ratechange(pdata); } static void axgbe_phy_power_off(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; axgbe_phy_start_ratechange(pdata); /* Call FW to make the change */ XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, 0); XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0); XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1); axgbe_phy_complete_ratechange(pdata); phy_data->cur_mode = AXGBE_MODE_UNKNOWN; } static void axgbe_phy_sfi_mode(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; unsigned int s0; axgbe_phy_set_redrv_mode(pdata); axgbe_phy_start_ratechange(pdata); /* 10G/SFI */ s0 = 0; XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 3); if (phy_data->sfp_cable != AXGBE_SFP_CABLE_PASSIVE) { XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 0); } else { if (phy_data->sfp_cable_len <= 1) XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 1); else if (phy_data->sfp_cable_len <= 3) XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 2); else XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 3); } /* Call FW to make the change */ XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0); XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0); XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1); axgbe_phy_complete_ratechange(pdata); phy_data->cur_mode = AXGBE_MODE_SFI; } static void axgbe_phy_kr_mode(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; unsigned int s0; axgbe_phy_set_redrv_mode(pdata); axgbe_phy_start_ratechange(pdata); /* 10G/KR */ s0 = 0; XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 4); XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 0); /* Call FW to make the change */ XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0); XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0); XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1); axgbe_phy_complete_ratechange(pdata); phy_data->cur_mode = AXGBE_MODE_KR; } static enum axgbe_mode axgbe_phy_cur_mode(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; return phy_data->cur_mode; } static enum axgbe_mode axgbe_phy_switch_baset_mode(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; /* No switching if not 10GBase-T */ if (phy_data->port_mode != AXGBE_PORT_MODE_10GBASE_T) return axgbe_phy_cur_mode(pdata); switch (axgbe_phy_cur_mode(pdata)) { case AXGBE_MODE_SGMII_100: case AXGBE_MODE_SGMII_1000: return AXGBE_MODE_KR; case AXGBE_MODE_KR: default: return AXGBE_MODE_SGMII_1000; } } static enum axgbe_mode axgbe_phy_switch_bp_2500_mode(struct axgbe_port *pdata __rte_unused) { return AXGBE_MODE_KX_2500; } static enum axgbe_mode axgbe_phy_switch_bp_mode(struct axgbe_port *pdata) { /* If we are in KR switch to KX, and vice-versa */ switch (axgbe_phy_cur_mode(pdata)) { case AXGBE_MODE_KX_1000: return AXGBE_MODE_KR; case AXGBE_MODE_KR: default: return AXGBE_MODE_KX_1000; } } static enum axgbe_mode axgbe_phy_switch_mode(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case AXGBE_PORT_MODE_BACKPLANE: return axgbe_phy_switch_bp_mode(pdata); case AXGBE_PORT_MODE_BACKPLANE_2500: return axgbe_phy_switch_bp_2500_mode(pdata); case AXGBE_PORT_MODE_1000BASE_T: case AXGBE_PORT_MODE_NBASE_T: case AXGBE_PORT_MODE_10GBASE_T: return axgbe_phy_switch_baset_mode(pdata); case AXGBE_PORT_MODE_1000BASE_X: case AXGBE_PORT_MODE_10GBASE_R: case AXGBE_PORT_MODE_SFP: /* No switching, so just return current mode */ return axgbe_phy_cur_mode(pdata); default: return AXGBE_MODE_UNKNOWN; } } static enum axgbe_mode axgbe_phy_get_basex_mode(struct axgbe_phy_data *phy_data __rte_unused, int speed) { switch (speed) { case SPEED_1000: return AXGBE_MODE_X; case SPEED_10000: return AXGBE_MODE_KR; default: return AXGBE_MODE_UNKNOWN; } } static enum axgbe_mode axgbe_phy_get_baset_mode(struct axgbe_phy_data *phy_data __rte_unused, int speed) { switch (speed) { case SPEED_100: return AXGBE_MODE_SGMII_100; case SPEED_1000: return AXGBE_MODE_SGMII_1000; case SPEED_10000: return AXGBE_MODE_KR; default: return AXGBE_MODE_UNKNOWN; } } static enum axgbe_mode axgbe_phy_get_sfp_mode(struct axgbe_phy_data *phy_data, int speed) { switch (speed) { case SPEED_100: return AXGBE_MODE_SGMII_100; case SPEED_1000: if (phy_data->sfp_base == AXGBE_SFP_BASE_1000_T) return AXGBE_MODE_SGMII_1000; else return AXGBE_MODE_X; case SPEED_10000: case SPEED_UNKNOWN: return AXGBE_MODE_SFI; default: return AXGBE_MODE_UNKNOWN; } } static enum axgbe_mode axgbe_phy_get_bp_2500_mode(int speed) { switch (speed) { case SPEED_2500: return AXGBE_MODE_KX_2500; default: return AXGBE_MODE_UNKNOWN; } } static enum axgbe_mode axgbe_phy_get_bp_mode(int speed) { switch (speed) { case SPEED_1000: return AXGBE_MODE_KX_1000; case SPEED_10000: return AXGBE_MODE_KR; default: return AXGBE_MODE_UNKNOWN; } } static enum axgbe_mode axgbe_phy_get_mode(struct axgbe_port *pdata, int speed) { struct axgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case AXGBE_PORT_MODE_BACKPLANE: return axgbe_phy_get_bp_mode(speed); case AXGBE_PORT_MODE_BACKPLANE_2500: return axgbe_phy_get_bp_2500_mode(speed); case AXGBE_PORT_MODE_1000BASE_T: case AXGBE_PORT_MODE_NBASE_T: case AXGBE_PORT_MODE_10GBASE_T: return axgbe_phy_get_baset_mode(phy_data, speed); case AXGBE_PORT_MODE_1000BASE_X: case AXGBE_PORT_MODE_10GBASE_R: return axgbe_phy_get_basex_mode(phy_data, speed); case AXGBE_PORT_MODE_SFP: return axgbe_phy_get_sfp_mode(phy_data, speed); default: return AXGBE_MODE_UNKNOWN; } } static void axgbe_phy_set_mode(struct axgbe_port *pdata, enum axgbe_mode mode) { switch (mode) { case AXGBE_MODE_KR: axgbe_phy_kr_mode(pdata); break; case AXGBE_MODE_SFI: axgbe_phy_sfi_mode(pdata); break; default: break; } } static bool axgbe_phy_check_mode(struct axgbe_port *pdata, enum axgbe_mode mode, u32 advert) { if (pdata->phy.autoneg == AUTONEG_ENABLE) { if (pdata->phy.advertising & advert) return true; } else { enum axgbe_mode cur_mode; cur_mode = axgbe_phy_get_mode(pdata, pdata->phy.speed); if (cur_mode == mode) return true; } return false; } static bool axgbe_phy_use_basex_mode(struct axgbe_port *pdata, enum axgbe_mode mode) { switch (mode) { case AXGBE_MODE_X: return axgbe_phy_check_mode(pdata, mode, ADVERTISED_1000baseT_Full); case AXGBE_MODE_KR: return axgbe_phy_check_mode(pdata, mode, ADVERTISED_10000baseT_Full); default: return false; } } static bool axgbe_phy_use_baset_mode(struct axgbe_port *pdata, enum axgbe_mode mode) { switch (mode) { case AXGBE_MODE_SGMII_100: return axgbe_phy_check_mode(pdata, mode, ADVERTISED_100baseT_Full); case AXGBE_MODE_SGMII_1000: return axgbe_phy_check_mode(pdata, mode, ADVERTISED_1000baseT_Full); case AXGBE_MODE_KR: return axgbe_phy_check_mode(pdata, mode, ADVERTISED_10000baseT_Full); default: return false; } } static bool axgbe_phy_use_sfp_mode(struct axgbe_port *pdata, enum axgbe_mode mode) { struct axgbe_phy_data *phy_data = pdata->phy_data; switch (mode) { case AXGBE_MODE_X: if (phy_data->sfp_base == AXGBE_SFP_BASE_1000_T) return false; return axgbe_phy_check_mode(pdata, mode, ADVERTISED_1000baseT_Full); case AXGBE_MODE_SGMII_100: if (phy_data->sfp_base != AXGBE_SFP_BASE_1000_T) return false; return axgbe_phy_check_mode(pdata, mode, ADVERTISED_100baseT_Full); case AXGBE_MODE_SGMII_1000: if (phy_data->sfp_base != AXGBE_SFP_BASE_1000_T) return false; return axgbe_phy_check_mode(pdata, mode, ADVERTISED_1000baseT_Full); case AXGBE_MODE_SFI: return axgbe_phy_check_mode(pdata, mode, ADVERTISED_10000baseT_Full); default: return false; } } static bool axgbe_phy_use_bp_2500_mode(struct axgbe_port *pdata, enum axgbe_mode mode) { switch (mode) { case AXGBE_MODE_KX_2500: return axgbe_phy_check_mode(pdata, mode, ADVERTISED_2500baseX_Full); default: return false; } } static bool axgbe_phy_use_bp_mode(struct axgbe_port *pdata, enum axgbe_mode mode) { switch (mode) { case AXGBE_MODE_KX_1000: return axgbe_phy_check_mode(pdata, mode, ADVERTISED_1000baseKX_Full); case AXGBE_MODE_KR: return axgbe_phy_check_mode(pdata, mode, ADVERTISED_10000baseKR_Full); default: return false; } } static bool axgbe_phy_use_mode(struct axgbe_port *pdata, enum axgbe_mode mode) { struct axgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case AXGBE_PORT_MODE_BACKPLANE: return axgbe_phy_use_bp_mode(pdata, mode); case AXGBE_PORT_MODE_BACKPLANE_2500: return axgbe_phy_use_bp_2500_mode(pdata, mode); case AXGBE_PORT_MODE_1000BASE_T: case AXGBE_PORT_MODE_NBASE_T: case AXGBE_PORT_MODE_10GBASE_T: return axgbe_phy_use_baset_mode(pdata, mode); case AXGBE_PORT_MODE_1000BASE_X: case AXGBE_PORT_MODE_10GBASE_R: return axgbe_phy_use_basex_mode(pdata, mode); case AXGBE_PORT_MODE_SFP: return axgbe_phy_use_sfp_mode(pdata, mode); default: return false; } } static int axgbe_phy_link_status(struct axgbe_port *pdata, int *an_restart) { struct axgbe_phy_data *phy_data = pdata->phy_data; unsigned int reg; *an_restart = 0; if (phy_data->port_mode == AXGBE_PORT_MODE_SFP) { /* Check SFP signals */ axgbe_phy_sfp_detect(pdata); if (phy_data->sfp_changed) { *an_restart = 1; return 0; } if (phy_data->sfp_mod_absent || phy_data->sfp_rx_los) return 0; } /* Link status is latched low, so read once to clear * and then read again to get current state */ reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1); reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1); if (reg & MDIO_STAT1_LSTATUS) return 1; /* No link, attempt a receiver reset cycle */ if (phy_data->rrc_count++) { phy_data->rrc_count = 0; axgbe_phy_rrc(pdata); } return 0; } static void axgbe_phy_sfp_gpio_setup(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; unsigned int reg; reg = XP_IOREAD(pdata, XP_PROP_3); phy_data->sfp_gpio_address = AXGBE_GPIO_ADDRESS_PCA9555 + XP_GET_BITS(reg, XP_PROP_3, GPIO_ADDR); phy_data->sfp_gpio_mask = XP_GET_BITS(reg, XP_PROP_3, GPIO_MASK); phy_data->sfp_gpio_rx_los = XP_GET_BITS(reg, XP_PROP_3, GPIO_RX_LOS); phy_data->sfp_gpio_tx_fault = XP_GET_BITS(reg, XP_PROP_3, GPIO_TX_FAULT); phy_data->sfp_gpio_mod_absent = XP_GET_BITS(reg, XP_PROP_3, GPIO_MOD_ABS); phy_data->sfp_gpio_rate_select = XP_GET_BITS(reg, XP_PROP_3, GPIO_RATE_SELECT); } static void axgbe_phy_sfp_comm_setup(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; unsigned int reg, mux_addr_hi, mux_addr_lo; reg = XP_IOREAD(pdata, XP_PROP_4); mux_addr_hi = XP_GET_BITS(reg, XP_PROP_4, MUX_ADDR_HI); mux_addr_lo = XP_GET_BITS(reg, XP_PROP_4, MUX_ADDR_LO); if (mux_addr_lo == AXGBE_SFP_DIRECT) return; phy_data->sfp_comm = AXGBE_SFP_COMM_PCA9545; phy_data->sfp_mux_address = (mux_addr_hi << 2) + mux_addr_lo; phy_data->sfp_mux_channel = XP_GET_BITS(reg, XP_PROP_4, MUX_CHAN); } static void axgbe_phy_sfp_setup(struct axgbe_port *pdata) { axgbe_phy_sfp_comm_setup(pdata); axgbe_phy_sfp_gpio_setup(pdata); } static bool axgbe_phy_redrv_error(struct axgbe_phy_data *phy_data) { if (!phy_data->redrv) return false; if (phy_data->redrv_if >= AXGBE_PHY_REDRV_IF_MAX) return true; switch (phy_data->redrv_model) { case AXGBE_PHY_REDRV_MODEL_4223: if (phy_data->redrv_lane > 3) return true; break; case AXGBE_PHY_REDRV_MODEL_4227: if (phy_data->redrv_lane > 1) return true; break; default: return true; } return false; } static int axgbe_phy_mdio_reset_setup(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; unsigned int reg; if (phy_data->conn_type != AXGBE_CONN_TYPE_MDIO) return 0; reg = XP_IOREAD(pdata, XP_PROP_3); phy_data->mdio_reset = XP_GET_BITS(reg, XP_PROP_3, MDIO_RESET); switch (phy_data->mdio_reset) { case AXGBE_MDIO_RESET_NONE: case AXGBE_MDIO_RESET_I2C_GPIO: case AXGBE_MDIO_RESET_INT_GPIO: break; default: PMD_DRV_LOG(ERR, "unsupported MDIO reset (%#x)\n", phy_data->mdio_reset); return -EINVAL; } if (phy_data->mdio_reset == AXGBE_MDIO_RESET_I2C_GPIO) { phy_data->mdio_reset_addr = AXGBE_GPIO_ADDRESS_PCA9555 + XP_GET_BITS(reg, XP_PROP_3, MDIO_RESET_I2C_ADDR); phy_data->mdio_reset_gpio = XP_GET_BITS(reg, XP_PROP_3, MDIO_RESET_I2C_GPIO); } else if (phy_data->mdio_reset == AXGBE_MDIO_RESET_INT_GPIO) { phy_data->mdio_reset_gpio = XP_GET_BITS(reg, XP_PROP_3, MDIO_RESET_INT_GPIO); } return 0; } static bool axgbe_phy_port_mode_mismatch(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case AXGBE_PORT_MODE_BACKPLANE: if ((phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) || (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000)) return false; break; case AXGBE_PORT_MODE_BACKPLANE_2500: if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_2500) return false; break; case AXGBE_PORT_MODE_1000BASE_T: if ((phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) || (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000)) return false; break; case AXGBE_PORT_MODE_1000BASE_X: if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) return false; break; case AXGBE_PORT_MODE_NBASE_T: if ((phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) || (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) || (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_2500)) return false; break; case AXGBE_PORT_MODE_10GBASE_T: if ((phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) || (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) || (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000)) return false; break; case AXGBE_PORT_MODE_10GBASE_R: if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000) return false; break; case AXGBE_PORT_MODE_SFP: if ((phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) || (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) || (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000)) return false; break; default: break; } return true; } static bool axgbe_phy_conn_type_mismatch(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case AXGBE_PORT_MODE_BACKPLANE: case AXGBE_PORT_MODE_BACKPLANE_2500: if (phy_data->conn_type == AXGBE_CONN_TYPE_BACKPLANE) return false; break; case AXGBE_PORT_MODE_1000BASE_T: case AXGBE_PORT_MODE_1000BASE_X: case AXGBE_PORT_MODE_NBASE_T: case AXGBE_PORT_MODE_10GBASE_T: case AXGBE_PORT_MODE_10GBASE_R: if (phy_data->conn_type == AXGBE_CONN_TYPE_MDIO) return false; break; case AXGBE_PORT_MODE_SFP: if (phy_data->conn_type == AXGBE_CONN_TYPE_SFP) return false; break; default: break; } return true; } static bool axgbe_phy_port_enabled(struct axgbe_port *pdata) { unsigned int reg; reg = XP_IOREAD(pdata, XP_PROP_0); if (!XP_GET_BITS(reg, XP_PROP_0, PORT_SPEEDS)) return false; if (!XP_GET_BITS(reg, XP_PROP_0, CONN_TYPE)) return false; return true; } static void axgbe_phy_cdr_track(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; if (!pdata->vdata->an_cdr_workaround) return; if (!phy_data->phy_cdr_notrack) return; rte_delay_us(phy_data->phy_cdr_delay + 400); XMDIO_WRITE_BITS(pdata, MDIO_MMD_PMAPMD, MDIO_VEND2_PMA_CDR_CONTROL, AXGBE_PMA_CDR_TRACK_EN_MASK, AXGBE_PMA_CDR_TRACK_EN_ON); phy_data->phy_cdr_notrack = 0; } static void axgbe_phy_cdr_notrack(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; if (!pdata->vdata->an_cdr_workaround) return; if (phy_data->phy_cdr_notrack) return; XMDIO_WRITE_BITS(pdata, MDIO_MMD_PMAPMD, MDIO_VEND2_PMA_CDR_CONTROL, AXGBE_PMA_CDR_TRACK_EN_MASK, AXGBE_PMA_CDR_TRACK_EN_OFF); axgbe_phy_rrc(pdata); phy_data->phy_cdr_notrack = 1; } static void axgbe_phy_kr_training_post(struct axgbe_port *pdata) { if (!pdata->cdr_track_early) axgbe_phy_cdr_track(pdata); } static void axgbe_phy_kr_training_pre(struct axgbe_port *pdata) { if (pdata->cdr_track_early) axgbe_phy_cdr_track(pdata); } static void axgbe_phy_an_post(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; switch (pdata->an_mode) { case AXGBE_AN_MODE_CL73: case AXGBE_AN_MODE_CL73_REDRV: if (phy_data->cur_mode != AXGBE_MODE_KR) break; axgbe_phy_cdr_track(pdata); switch (pdata->an_result) { case AXGBE_AN_READY: case AXGBE_AN_COMPLETE: break; default: if (phy_data->phy_cdr_delay < AXGBE_CDR_DELAY_MAX) phy_data->phy_cdr_delay += AXGBE_CDR_DELAY_INC; break; } break; default: break; } } static void axgbe_phy_an_pre(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; switch (pdata->an_mode) { case AXGBE_AN_MODE_CL73: case AXGBE_AN_MODE_CL73_REDRV: if (phy_data->cur_mode != AXGBE_MODE_KR) break; axgbe_phy_cdr_notrack(pdata); break; default: break; } } static void axgbe_phy_stop(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; /* Reset SFP data */ axgbe_phy_sfp_reset(phy_data); axgbe_phy_sfp_mod_absent(pdata); /* Reset CDR support */ axgbe_phy_cdr_track(pdata); /* Power off the PHY */ axgbe_phy_power_off(pdata); /* Stop the I2C controller */ pdata->i2c_if.i2c_stop(pdata); } static int axgbe_phy_start(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; int ret; /* Start the I2C controller */ ret = pdata->i2c_if.i2c_start(pdata); if (ret) return ret; /* Start in highest supported mode */ axgbe_phy_set_mode(pdata, phy_data->start_mode); /* Reset CDR support */ axgbe_phy_cdr_track(pdata); /* After starting the I2C controller, we can check for an SFP */ switch (phy_data->port_mode) { case AXGBE_PORT_MODE_SFP: axgbe_phy_sfp_detect(pdata); break; default: break; } return ret; } static int axgbe_phy_reset(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data = pdata->phy_data; enum axgbe_mode cur_mode; /* Reset by power cycling the PHY */ cur_mode = phy_data->cur_mode; axgbe_phy_power_off(pdata); /* First time reset is done with passed unknown mode*/ axgbe_phy_set_mode(pdata, cur_mode); return 0; } static int axgbe_phy_init(struct axgbe_port *pdata) { struct axgbe_phy_data *phy_data; unsigned int reg; int ret; /* Check if enabled */ if (!axgbe_phy_port_enabled(pdata)) { PMD_DRV_LOG(ERR, "device is not enabled\n"); return -ENODEV; } /* Initialize the I2C controller */ ret = pdata->i2c_if.i2c_init(pdata); if (ret) return ret; phy_data = rte_zmalloc("phy_data memory", sizeof(*phy_data), 0); if (!phy_data) { PMD_DRV_LOG(ERR, "phy_data allocation failed\n"); return -ENOMEM; } pdata->phy_data = phy_data; reg = XP_IOREAD(pdata, XP_PROP_0); phy_data->port_mode = XP_GET_BITS(reg, XP_PROP_0, PORT_MODE); phy_data->port_id = XP_GET_BITS(reg, XP_PROP_0, PORT_ID); phy_data->port_speeds = XP_GET_BITS(reg, XP_PROP_0, PORT_SPEEDS); phy_data->conn_type = XP_GET_BITS(reg, XP_PROP_0, CONN_TYPE); phy_data->mdio_addr = XP_GET_BITS(reg, XP_PROP_0, MDIO_ADDR); reg = XP_IOREAD(pdata, XP_PROP_4); phy_data->redrv = XP_GET_BITS(reg, XP_PROP_4, REDRV_PRESENT); phy_data->redrv_if = XP_GET_BITS(reg, XP_PROP_4, REDRV_IF); phy_data->redrv_addr = XP_GET_BITS(reg, XP_PROP_4, REDRV_ADDR); phy_data->redrv_lane = XP_GET_BITS(reg, XP_PROP_4, REDRV_LANE); phy_data->redrv_model = XP_GET_BITS(reg, XP_PROP_4, REDRV_MODEL); /* Validate the connection requested */ if (axgbe_phy_conn_type_mismatch(pdata)) { PMD_DRV_LOG(ERR, "phy mode/connection mismatch (%#x/%#x)\n", phy_data->port_mode, phy_data->conn_type); return -EINVAL; } /* Validate the mode requested */ if (axgbe_phy_port_mode_mismatch(pdata)) { PMD_DRV_LOG(ERR, "phy mode/speed mismatch (%#x/%#x)\n", phy_data->port_mode, phy_data->port_speeds); return -EINVAL; } /* Check for and validate MDIO reset support */ ret = axgbe_phy_mdio_reset_setup(pdata); if (ret) return ret; /* Validate the re-driver information */ if (axgbe_phy_redrv_error(phy_data)) { PMD_DRV_LOG(ERR, "phy re-driver settings error\n"); return -EINVAL; } pdata->kr_redrv = phy_data->redrv; /* Indicate current mode is unknown */ phy_data->cur_mode = AXGBE_MODE_UNKNOWN; /* Initialize supported features */ pdata->phy.supported = 0; switch (phy_data->port_mode) { /* Backplane support */ case AXGBE_PORT_MODE_BACKPLANE: pdata->phy.supported |= SUPPORTED_Autoneg; pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause; pdata->phy.supported |= SUPPORTED_Backplane; if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) { pdata->phy.supported |= SUPPORTED_1000baseKX_Full; phy_data->start_mode = AXGBE_MODE_KX_1000; } if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000) { pdata->phy.supported |= SUPPORTED_10000baseKR_Full; if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE) pdata->phy.supported |= SUPPORTED_10000baseR_FEC; phy_data->start_mode = AXGBE_MODE_KR; } phy_data->phydev_mode = AXGBE_MDIO_MODE_NONE; break; case AXGBE_PORT_MODE_BACKPLANE_2500: pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause; pdata->phy.supported |= SUPPORTED_Backplane; pdata->phy.supported |= SUPPORTED_2500baseX_Full; phy_data->start_mode = AXGBE_MODE_KX_2500; phy_data->phydev_mode = AXGBE_MDIO_MODE_NONE; break; /* MDIO 1GBase-T support */ case AXGBE_PORT_MODE_1000BASE_T: pdata->phy.supported |= SUPPORTED_Autoneg; pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause; pdata->phy.supported |= SUPPORTED_TP; if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) { pdata->phy.supported |= SUPPORTED_100baseT_Full; phy_data->start_mode = AXGBE_MODE_SGMII_100; } if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) { pdata->phy.supported |= SUPPORTED_1000baseT_Full; phy_data->start_mode = AXGBE_MODE_SGMII_1000; } phy_data->phydev_mode = AXGBE_MDIO_MODE_CL22; break; /* MDIO Base-X support */ case AXGBE_PORT_MODE_1000BASE_X: pdata->phy.supported |= SUPPORTED_Autoneg; pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause; pdata->phy.supported |= SUPPORTED_FIBRE; pdata->phy.supported |= SUPPORTED_1000baseT_Full; phy_data->start_mode = AXGBE_MODE_X; phy_data->phydev_mode = AXGBE_MDIO_MODE_CL22; break; /* MDIO NBase-T support */ case AXGBE_PORT_MODE_NBASE_T: pdata->phy.supported |= SUPPORTED_Autoneg; pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause; pdata->phy.supported |= SUPPORTED_TP; if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) { pdata->phy.supported |= SUPPORTED_100baseT_Full; phy_data->start_mode = AXGBE_MODE_SGMII_100; } if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) { pdata->phy.supported |= SUPPORTED_1000baseT_Full; phy_data->start_mode = AXGBE_MODE_SGMII_1000; } if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_2500) { pdata->phy.supported |= SUPPORTED_2500baseX_Full; phy_data->start_mode = AXGBE_MODE_KX_2500; } phy_data->phydev_mode = AXGBE_MDIO_MODE_CL45; break; /* 10GBase-T support */ case AXGBE_PORT_MODE_10GBASE_T: pdata->phy.supported |= SUPPORTED_Autoneg; pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause; pdata->phy.supported |= SUPPORTED_TP; if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) { pdata->phy.supported |= SUPPORTED_100baseT_Full; phy_data->start_mode = AXGBE_MODE_SGMII_100; } if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) { pdata->phy.supported |= SUPPORTED_1000baseT_Full; phy_data->start_mode = AXGBE_MODE_SGMII_1000; } if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000) { pdata->phy.supported |= SUPPORTED_10000baseT_Full; phy_data->start_mode = AXGBE_MODE_KR; } phy_data->phydev_mode = AXGBE_MDIO_MODE_NONE; break; /* 10GBase-R support */ case AXGBE_PORT_MODE_10GBASE_R: pdata->phy.supported |= SUPPORTED_Autoneg; pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause; pdata->phy.supported |= SUPPORTED_TP; pdata->phy.supported |= SUPPORTED_10000baseT_Full; if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE) pdata->phy.supported |= SUPPORTED_10000baseR_FEC; phy_data->start_mode = AXGBE_MODE_SFI; phy_data->phydev_mode = AXGBE_MDIO_MODE_NONE; break; /* SFP support */ case AXGBE_PORT_MODE_SFP: pdata->phy.supported |= SUPPORTED_Autoneg; pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause; pdata->phy.supported |= SUPPORTED_TP; pdata->phy.supported |= SUPPORTED_FIBRE; if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) { pdata->phy.supported |= SUPPORTED_100baseT_Full; phy_data->start_mode = AXGBE_MODE_SGMII_100; } if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) { pdata->phy.supported |= SUPPORTED_1000baseT_Full; phy_data->start_mode = AXGBE_MODE_SGMII_1000; } if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000) { pdata->phy.supported |= SUPPORTED_10000baseT_Full; phy_data->start_mode = AXGBE_MODE_SFI; if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE) pdata->phy.supported |= SUPPORTED_10000baseR_FEC; } phy_data->phydev_mode = AXGBE_MDIO_MODE_CL22; axgbe_phy_sfp_setup(pdata); break; default: return -EINVAL; } if ((phy_data->conn_type & AXGBE_CONN_TYPE_MDIO) && (phy_data->phydev_mode != AXGBE_MDIO_MODE_NONE)) { ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->mdio_addr, phy_data->phydev_mode); if (ret) { PMD_DRV_LOG(ERR, "mdio port/clause not compatible (%d/%u)\n", phy_data->mdio_addr, phy_data->phydev_mode); return -EINVAL; } } if (phy_data->redrv && !phy_data->redrv_if) { ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->redrv_addr, AXGBE_MDIO_MODE_CL22); if (ret) { PMD_DRV_LOG(ERR, "redriver mdio port not compatible (%u)\n", phy_data->redrv_addr); return -EINVAL; } } phy_data->phy_cdr_delay = AXGBE_CDR_DELAY_INIT; return 0; } void axgbe_init_function_ptrs_phy_v2(struct axgbe_phy_if *phy_if) { struct axgbe_phy_impl_if *phy_impl = &phy_if->phy_impl; phy_impl->init = axgbe_phy_init; phy_impl->reset = axgbe_phy_reset; phy_impl->start = axgbe_phy_start; phy_impl->stop = axgbe_phy_stop; phy_impl->link_status = axgbe_phy_link_status; phy_impl->use_mode = axgbe_phy_use_mode; phy_impl->set_mode = axgbe_phy_set_mode; phy_impl->get_mode = axgbe_phy_get_mode; phy_impl->switch_mode = axgbe_phy_switch_mode; phy_impl->cur_mode = axgbe_phy_cur_mode; phy_impl->an_mode = axgbe_phy_an_mode; phy_impl->an_config = axgbe_phy_an_config; phy_impl->an_advertising = axgbe_phy_an_advertising; phy_impl->an_outcome = axgbe_phy_an_outcome; phy_impl->an_pre = axgbe_phy_an_pre; phy_impl->an_post = axgbe_phy_an_post; phy_impl->kr_training_pre = axgbe_phy_kr_training_pre; phy_impl->kr_training_post = axgbe_phy_kr_training_post; }