/*- * Copyright (c) 2007-2013 Broadcom Corporation. * * Eric Davis * David Christensen * Gary Zambrano * * Copyright (c) 2013-2015 Brocade Communications Systems, Inc. * Copyright (c) 2015 QLogic Corporation. * All rights reserved. * www.qlogic.com * * See LICENSE.bnx2x_pmd for copyright and licensing details. */ #define BNX2X_DRIVER_VERSION "1.78.18" #include "bnx2x.h" #include "bnx2x_vfpf.h" #include "ecore_sp.h" #include "ecore_init.h" #include "ecore_init_ops.h" #include "rte_version.h" #include #include #include #include #define BNX2X_PMD_VER_PREFIX "BNX2X PMD" #define BNX2X_PMD_VERSION_MAJOR 1 #define BNX2X_PMD_VERSION_MINOR 0 #define BNX2X_PMD_VERSION_REVISION 1 #define BNX2X_PMD_VERSION_PATCH 1 static inline const char * bnx2x_pmd_version(void) { static char version[32]; snprintf(version, sizeof(version), "%s %s_%d.%d.%d.%d", BNX2X_PMD_VER_PREFIX, BNX2X_DRIVER_VERSION, BNX2X_PMD_VERSION_MAJOR, BNX2X_PMD_VERSION_MINOR, BNX2X_PMD_VERSION_REVISION, BNX2X_PMD_VERSION_PATCH); return version; } static z_stream zlib_stream; #define EVL_VLID_MASK 0x0FFF #define BNX2X_DEF_SB_ATT_IDX 0x0001 #define BNX2X_DEF_SB_IDX 0x0002 /* * FLR Support - bnx2x_pf_flr_clnup() is called during nic_load in the per * function HW initialization. */ #define FLR_WAIT_USEC 10000 /* 10 msecs */ #define FLR_WAIT_INTERVAL 50 /* usecs */ #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ struct pbf_pN_buf_regs { int pN; uint32_t init_crd; uint32_t crd; uint32_t crd_freed; }; struct pbf_pN_cmd_regs { int pN; uint32_t lines_occup; uint32_t lines_freed; }; /* resources needed for unloading a previously loaded device */ #define BNX2X_PREV_WAIT_NEEDED 1 rte_spinlock_t bnx2x_prev_mtx; struct bnx2x_prev_list_node { LIST_ENTRY(bnx2x_prev_list_node) node; uint8_t bus; uint8_t slot; uint8_t path; uint8_t aer; uint8_t undi; }; static LIST_HEAD(, bnx2x_prev_list_node) bnx2x_prev_list = LIST_HEAD_INITIALIZER(bnx2x_prev_list); static int load_count[2][3] = { { 0 } }; /* per-path: 0-common, 1-port0, 2-port1 */ static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type); static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc); static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port); static void bnx2x_set_reset_global(struct bnx2x_softc *sc); static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc); static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine); static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc); static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print); static void bnx2x_int_disable(struct bnx2x_softc *sc); static int bnx2x_release_leader_lock(struct bnx2x_softc *sc); static void bnx2x_pf_disable(struct bnx2x_softc *sc); static void bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint16_t rx_bd_prod, uint16_t rx_cq_prod); static void bnx2x_link_report(struct bnx2x_softc *sc); void bnx2x_link_status_update(struct bnx2x_softc *sc); static int bnx2x_alloc_mem(struct bnx2x_softc *sc); static void bnx2x_free_mem(struct bnx2x_softc *sc); static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc); static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc); static __attribute__ ((noinline)) int bnx2x_nic_load(struct bnx2x_softc *sc); static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc); static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp); static void bnx2x_periodic_stop(struct bnx2x_softc *sc); static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm, uint16_t index, uint8_t op, uint8_t update); int bnx2x_test_bit(int nr, volatile unsigned long *addr) { int res; mb(); res = ((*addr) & (1UL << nr)) != 0; mb(); return res; } void bnx2x_set_bit(unsigned int nr, volatile unsigned long *addr) { __sync_fetch_and_or(addr, (1UL << nr)); } void bnx2x_clear_bit(int nr, volatile unsigned long *addr) { __sync_fetch_and_and(addr, ~(1UL << nr)); } int bnx2x_test_and_clear_bit(int nr, volatile unsigned long *addr) { unsigned long mask = (1UL << nr); return __sync_fetch_and_and(addr, ~mask) & mask; } int bnx2x_cmpxchg(volatile int *addr, int old, int new) { return __sync_val_compare_and_swap(addr, old, new); } int bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma, const char *msg, uint32_t align) { char mz_name[RTE_MEMZONE_NAMESIZE]; const struct rte_memzone *z; dma->sc = sc; if (IS_PF(sc)) snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, SC_ABS_FUNC(sc), msg, rte_get_timer_cycles()); else snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, sc->pcie_device, msg, rte_get_timer_cycles()); /* Caller must take care that strlen(mz_name) < RTE_MEMZONE_NAMESIZE */ z = rte_memzone_reserve_aligned(mz_name, (uint64_t) (size), SOCKET_ID_ANY, 0, align); if (z == NULL) { PMD_DRV_LOG(ERR, "DMA alloc failed for %s", msg); return -ENOMEM; } dma->paddr = (uint64_t) z->phys_addr; dma->vaddr = z->addr; PMD_DRV_LOG(DEBUG, "%s: virt=%p phys=%" PRIx64, msg, dma->vaddr, dma->paddr); return 0; } static int bnx2x_acquire_hw_lock(struct bnx2x_softc *sc, uint32_t resource) { uint32_t lock_status; uint32_t resource_bit = (1 << resource); int func = SC_FUNC(sc); uint32_t hw_lock_control_reg; int cnt; PMD_INIT_FUNC_TRACE(); /* validate the resource is within range */ if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { PMD_DRV_LOG(NOTICE, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE", resource); return -1; } if (func <= 5) { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); } else { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); } /* validate the resource is not already taken */ lock_status = REG_RD(sc, hw_lock_control_reg); if (lock_status & resource_bit) { PMD_DRV_LOG(NOTICE, "resource in use (status 0x%x bit 0x%x)", lock_status, resource_bit); return -1; } /* try every 5ms for 5 seconds */ for (cnt = 0; cnt < 1000; cnt++) { REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); lock_status = REG_RD(sc, hw_lock_control_reg); if (lock_status & resource_bit) { return 0; } DELAY(5000); } PMD_DRV_LOG(NOTICE, "Resource lock timeout!"); return -1; } static int bnx2x_release_hw_lock(struct bnx2x_softc *sc, uint32_t resource) { uint32_t lock_status; uint32_t resource_bit = (1 << resource); int func = SC_FUNC(sc); uint32_t hw_lock_control_reg; PMD_INIT_FUNC_TRACE(); /* validate the resource is within range */ if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { PMD_DRV_LOG(NOTICE, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE", resource); return -1; } if (func <= 5) { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); } else { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); } /* validate the resource is currently taken */ lock_status = REG_RD(sc, hw_lock_control_reg); if (!(lock_status & resource_bit)) { PMD_DRV_LOG(NOTICE, "resource not in use (status 0x%x bit 0x%x)", lock_status, resource_bit); return -1; } REG_WR(sc, hw_lock_control_reg, resource_bit); return 0; } /* copy command into DMAE command memory and set DMAE command Go */ void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx) { uint32_t cmd_offset; uint32_t i; cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx)); for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) { REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *) dmae) + i)); } REG_WR(sc, dmae_reg_go_c[idx], 1); } uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type) { return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | DMAE_COMMAND_C_TYPE_ENABLE); } uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode) { return opcode & ~DMAE_COMMAND_SRC_RESET; } uint32_t bnx2x_dmae_opcode(struct bnx2x_softc * sc, uint8_t src_type, uint8_t dst_type, uint8_t with_comp, uint8_t comp_type) { uint32_t opcode = 0; opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | (dst_type << DMAE_COMMAND_DST_SHIFT)); opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET); opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) | (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT)); opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); #ifdef __BIG_ENDIAN opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; #else opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; #endif if (with_comp) { opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); } return opcode; } static void bnx2x_prep_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae, uint8_t src_type, uint8_t dst_type) { memset(dmae, 0, sizeof(struct dmae_command)); /* set the opcode */ dmae->opcode = bnx2x_dmae_opcode(sc, src_type, dst_type, TRUE, DMAE_COMP_PCI); /* fill in the completion parameters */ dmae->comp_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_comp)); dmae->comp_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_comp)); dmae->comp_val = DMAE_COMP_VAL; } /* issue a DMAE command over the init channel and wait for completion */ static int bnx2x_issue_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae) { uint32_t *wb_comp = BNX2X_SP(sc, wb_comp); int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; /* reset completion */ *wb_comp = 0; /* post the command on the channel used for initializations */ bnx2x_post_dmae(sc, dmae, INIT_DMAE_C(sc)); /* wait for completion */ DELAY(500); while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { if (!timeout || (sc->recovery_state != BNX2X_RECOVERY_DONE && sc->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { PMD_DRV_LOG(INFO, "DMAE timeout!"); return DMAE_TIMEOUT; } timeout--; DELAY(50); } if (*wb_comp & DMAE_PCI_ERR_FLAG) { PMD_DRV_LOG(INFO, "DMAE PCI error!"); return DMAE_PCI_ERROR; } return 0; } void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32) { struct dmae_command dmae; uint32_t *data; uint32_t i; int rc; if (!sc->dmae_ready) { data = BNX2X_SP(sc, wb_data[0]); for (i = 0; i < len32; i++) { data[i] = REG_RD(sc, (src_addr + (i * 4))); } return; } /* set opcode and fixed command fields */ bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); /* fill in addresses and len */ dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ dmae.src_addr_hi = 0; dmae.dst_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_data)); dmae.dst_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_data)); dmae.len = len32; /* issue the command and wait for completion */ if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) { rte_panic("DMAE failed (%d)", rc); }; } void bnx2x_write_dmae(struct bnx2x_softc *sc, phys_addr_t dma_addr, uint32_t dst_addr, uint32_t len32) { struct dmae_command dmae; int rc; if (!sc->dmae_ready) { ecore_init_str_wr(sc, dst_addr, BNX2X_SP(sc, wb_data[0]), len32); return; } /* set opcode and fixed command fields */ bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); /* fill in addresses and len */ dmae.src_addr_lo = U64_LO(dma_addr); dmae.src_addr_hi = U64_HI(dma_addr); dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ dmae.dst_addr_hi = 0; dmae.len = len32; /* issue the command and wait for completion */ if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) { rte_panic("DMAE failed (%d)", rc); } } static void bnx2x_write_dmae_phys_len(struct bnx2x_softc *sc, phys_addr_t phys_addr, uint32_t addr, uint32_t len) { uint32_t dmae_wr_max = DMAE_LEN32_WR_MAX(sc); uint32_t offset = 0; while (len > dmae_wr_max) { bnx2x_write_dmae(sc, (phys_addr + offset), /* src DMA address */ (addr + offset), /* dst GRC address */ dmae_wr_max); offset += (dmae_wr_max * 4); len -= dmae_wr_max; } bnx2x_write_dmae(sc, (phys_addr + offset), /* src DMA address */ (addr + offset), /* dst GRC address */ len); } void bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt, uint32_t cid) { /* ustorm cxt validation */ cxt->ustorm_ag_context.cdu_usage = CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); /* xcontext validation */ cxt->xstorm_ag_context.cdu_reserved = CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); } static void bnx2x_storm_memset_hc_timeout(struct bnx2x_softc *sc, uint8_t fw_sb_id, uint8_t sb_index, uint8_t ticks) { uint32_t addr = (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); REG_WR8(sc, addr, ticks); } static void bnx2x_storm_memset_hc_disable(struct bnx2x_softc *sc, uint16_t fw_sb_id, uint8_t sb_index, uint8_t disable) { uint32_t enable_flag = (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); uint32_t addr = (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); uint8_t flags; /* clear and set */ flags = REG_RD8(sc, addr); flags &= ~HC_INDEX_DATA_HC_ENABLED; flags |= enable_flag; REG_WR8(sc, addr, flags); } void bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id, uint8_t sb_index, uint8_t disable, uint16_t usec) { uint8_t ticks = (usec / 4); bnx2x_storm_memset_hc_timeout(sc, fw_sb_id, sb_index, ticks); disable = (disable) ? 1 : ((usec) ? 0 : 1); bnx2x_storm_memset_hc_disable(sc, fw_sb_id, sb_index, disable); } uint32_t elink_cb_reg_read(struct bnx2x_softc *sc, uint32_t reg_addr) { return REG_RD(sc, reg_addr); } void elink_cb_reg_write(struct bnx2x_softc *sc, uint32_t reg_addr, uint32_t val) { REG_WR(sc, reg_addr, val); } void elink_cb_event_log(__rte_unused struct bnx2x_softc *sc, __rte_unused const elink_log_id_t elink_log_id, ...) { PMD_DRV_LOG(DEBUG, "ELINK EVENT LOG (%d)", elink_log_id); } static int bnx2x_set_spio(struct bnx2x_softc *sc, int spio, uint32_t mode) { uint32_t spio_reg; /* Only 2 SPIOs are configurable */ if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { PMD_DRV_LOG(NOTICE, "Invalid SPIO 0x%x", spio); return -1; } bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); /* read SPIO and mask except the float bits */ spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); switch (mode) { case MISC_SPIO_OUTPUT_LOW: /* clear FLOAT and set CLR */ spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); spio_reg |= (spio << MISC_SPIO_CLR_POS); break; case MISC_SPIO_OUTPUT_HIGH: /* clear FLOAT and set SET */ spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); spio_reg |= (spio << MISC_SPIO_SET_POS); break; case MISC_SPIO_INPUT_HI_Z: /* set FLOAT */ spio_reg |= (spio << MISC_SPIO_FLOAT_POS); break; default: break; } REG_WR(sc, MISC_REG_SPIO, spio_reg); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); return 0; } static int bnx2x_gpio_read(struct bnx2x_softc *sc, int gpio_num, uint8_t port) { /* The GPIO should be swapped if swap register is set and active */ int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); int gpio_shift = gpio_num; if (gpio_port) gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT; uint32_t gpio_mask = (1 << gpio_shift); uint32_t gpio_reg; if (gpio_num > MISC_REGISTERS_GPIO_3) { PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num); return -1; } /* read GPIO value */ gpio_reg = REG_RD(sc, MISC_REG_GPIO); /* get the requested pin value */ return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; } static int bnx2x_gpio_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port) { /* The GPIO should be swapped if swap register is set and active */ int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); int gpio_shift = gpio_num; if (gpio_port) gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT; uint32_t gpio_mask = (1 << gpio_shift); uint32_t gpio_reg; if (gpio_num > MISC_REGISTERS_GPIO_3) { PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num); return -1; } bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); /* read GPIO and mask except the float bits */ gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); switch (mode) { case MISC_REGISTERS_GPIO_OUTPUT_LOW: /* clear FLOAT and set CLR */ gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); break; case MISC_REGISTERS_GPIO_OUTPUT_HIGH: /* clear FLOAT and set SET */ gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); break; case MISC_REGISTERS_GPIO_INPUT_HI_Z: /* set FLOAT */ gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); break; default: break; } REG_WR(sc, MISC_REG_GPIO, gpio_reg); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); return 0; } static int bnx2x_gpio_mult_write(struct bnx2x_softc *sc, uint8_t pins, uint32_t mode) { uint32_t gpio_reg; /* any port swapping should be handled by caller */ bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); /* read GPIO and mask except the float bits */ gpio_reg = REG_RD(sc, MISC_REG_GPIO); gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); switch (mode) { case MISC_REGISTERS_GPIO_OUTPUT_LOW: /* set CLR */ gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); break; case MISC_REGISTERS_GPIO_OUTPUT_HIGH: /* set SET */ gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); break; case MISC_REGISTERS_GPIO_INPUT_HI_Z: /* set FLOAT */ gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); break; default: PMD_DRV_LOG(NOTICE, "Invalid GPIO mode assignment %d", mode); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); return -1; } REG_WR(sc, MISC_REG_GPIO, gpio_reg); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); return 0; } static int bnx2x_gpio_int_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port) { /* The GPIO should be swapped if swap register is set and active */ int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); int gpio_shift = gpio_num; if (gpio_port) gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT; uint32_t gpio_mask = (1 << gpio_shift); uint32_t gpio_reg; if (gpio_num > MISC_REGISTERS_GPIO_3) { PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num); return -1; } bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); /* read GPIO int */ gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); switch (mode) { case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: /* clear SET and set CLR */ gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); break; case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: /* clear CLR and set SET */ gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); break; default: break; } REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); return 0; } uint32_t elink_cb_gpio_read(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t port) { return bnx2x_gpio_read(sc, gpio_num, port); } uint8_t elink_cb_gpio_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode, /* 0=low 1=high */ uint8_t port) { return bnx2x_gpio_write(sc, gpio_num, mode, port); } uint8_t elink_cb_gpio_mult_write(struct bnx2x_softc * sc, uint8_t pins, uint8_t mode /* 0=low 1=high */ ) { return bnx2x_gpio_mult_write(sc, pins, mode); } uint8_t elink_cb_gpio_int_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode, /* 0=low 1=high */ uint8_t port) { return bnx2x_gpio_int_write(sc, gpio_num, mode, port); } void elink_cb_notify_link_changed(struct bnx2x_softc *sc) { REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + (SC_FUNC(sc) * sizeof(uint32_t))), 1); } /* send the MCP a request, block until there is a reply */ uint32_t elink_cb_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param) { int mb_idx = SC_FW_MB_IDX(sc); uint32_t seq; uint32_t rc = 0; uint32_t cnt = 1; uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; seq = ++sc->fw_seq; SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); PMD_DRV_LOG(DEBUG, "wrote command 0x%08x to FW MB param 0x%08x", (command | seq), param); /* Let the FW do it's magic. GIve it up to 5 seconds... */ do { DELAY(delay * 1000); rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); /* is this a reply to our command? */ if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { rc &= FW_MSG_CODE_MASK; } else { /* Ruh-roh! */ PMD_DRV_LOG(NOTICE, "FW failed to respond!"); rc = 0; } return rc; } static uint32_t bnx2x_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param) { return elink_cb_fw_command(sc, command, param); } static void __storm_memset_dma_mapping(struct bnx2x_softc *sc, uint32_t addr, phys_addr_t mapping) { REG_WR(sc, addr, U64_LO(mapping)); REG_WR(sc, (addr + 4), U64_HI(mapping)); } static void storm_memset_spq_addr(struct bnx2x_softc *sc, phys_addr_t mapping, uint16_t abs_fid) { uint32_t addr = (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); __storm_memset_dma_mapping(sc, addr, mapping); } static void storm_memset_vf_to_pf(struct bnx2x_softc *sc, uint16_t abs_fid, uint16_t pf_id) { REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); } static void storm_memset_func_en(struct bnx2x_softc *sc, uint16_t abs_fid, uint8_t enable) { REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); } static void storm_memset_eq_data(struct bnx2x_softc *sc, struct event_ring_data *eq_data, uint16_t pfid) { uint32_t addr; size_t size; addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); size = sizeof(struct event_ring_data); ecore_storm_memset_struct(sc, addr, size, (uint32_t *) eq_data); } static void storm_memset_eq_prod(struct bnx2x_softc *sc, uint16_t eq_prod, uint16_t pfid) { uint32_t addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid)); REG_WR16(sc, addr, eq_prod); } /* * Post a slowpath command. * * A slowpath command is used to propogate a configuration change through * the controller in a controlled manner, allowing each STORM processor and * other H/W blocks to phase in the change. The commands sent on the * slowpath are referred to as ramrods. Depending on the ramrod used the * completion of the ramrod will occur in different ways. Here's a * breakdown of ramrods and how they complete: * * RAMROD_CMD_ID_ETH_PORT_SETUP * Used to setup the leading connection on a port. Completes on the * Receive Completion Queue (RCQ) of that port (typically fp[0]). * * RAMROD_CMD_ID_ETH_CLIENT_SETUP * Used to setup an additional connection on a port. Completes on the * RCQ of the multi-queue/RSS connection being initialized. * * RAMROD_CMD_ID_ETH_STAT_QUERY * Used to force the storm processors to update the statistics database * in host memory. This ramrod is send on the leading connection CID and * completes as an index increment of the CSTORM on the default status * block. * * RAMROD_CMD_ID_ETH_UPDATE * Used to update the state of the leading connection, usually to udpate * the RSS indirection table. Completes on the RCQ of the leading * connection. (Not currently used under FreeBSD until OS support becomes * available.) * * RAMROD_CMD_ID_ETH_HALT * Used when tearing down a connection prior to driver unload. Completes * on the RCQ of the multi-queue/RSS connection being torn down. Don't * use this on the leading connection. * * RAMROD_CMD_ID_ETH_SET_MAC * Sets the Unicast/Broadcast/Multicast used by the port. Completes on * the RCQ of the leading connection. * * RAMROD_CMD_ID_ETH_CFC_DEL * Used when tearing down a conneciton prior to driver unload. Completes * on the RCQ of the leading connection (since the current connection * has been completely removed from controller memory). * * RAMROD_CMD_ID_ETH_PORT_DEL * Used to tear down the leading connection prior to driver unload, * typically fp[0]. Completes as an index increment of the CSTORM on the * default status block. * * RAMROD_CMD_ID_ETH_FORWARD_SETUP * Used for connection offload. Completes on the RCQ of the multi-queue * RSS connection that is being offloaded. (Not currently used under * FreeBSD.) * * There can only be one command pending per function. * * Returns: * 0 = Success, !0 = Failure. */ /* must be called under the spq lock */ static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x_softc *sc) { struct eth_spe *next_spe = sc->spq_prod_bd; if (sc->spq_prod_bd == sc->spq_last_bd) { /* wrap back to the first eth_spq */ sc->spq_prod_bd = sc->spq; sc->spq_prod_idx = 0; } else { sc->spq_prod_bd++; sc->spq_prod_idx++; } return next_spe; } /* must be called under the spq lock */ static void bnx2x_sp_prod_update(struct bnx2x_softc *sc) { int func = SC_FUNC(sc); /* * Make sure that BD data is updated before writing the producer. * BD data is written to the memory, the producer is read from the * memory, thus we need a full memory barrier to ensure the ordering. */ mb(); REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), sc->spq_prod_idx); mb(); } /** * bnx2x_is_contextless_ramrod - check if the current command ends on EQ * * @cmd: command to check * @cmd_type: command type */ static int bnx2x_is_contextless_ramrod(int cmd, int cmd_type) { if ((cmd_type == NONE_CONNECTION_TYPE) || (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { return TRUE; } else { return FALSE; } } /** * bnx2x_sp_post - place a single command on an SP ring * * @sc: driver handle * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) * @cid: SW CID the command is related to * @data_hi: command private data address (high 32 bits) * @data_lo: command private data address (low 32 bits) * @cmd_type: command type (e.g. NONE, ETH) * * SP data is handled as if it's always an address pair, thus data fields are * not swapped to little endian in upper functions. Instead this function swaps * data as if it's two uint32 fields. */ int bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi, uint32_t data_lo, int cmd_type) { struct eth_spe *spe; uint16_t type; int common; common = bnx2x_is_contextless_ramrod(command, cmd_type); if (common) { if (!atomic_load_acq_long(&sc->eq_spq_left)) { PMD_DRV_LOG(INFO, "EQ ring is full!"); return -1; } } else { if (!atomic_load_acq_long(&sc->cq_spq_left)) { PMD_DRV_LOG(INFO, "SPQ ring is full!"); return -1; } } spe = bnx2x_sp_get_next(sc); /* CID needs port number to be encoded int it */ spe->hdr.conn_and_cmd_data = htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid)); type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; /* TBD: Check if it works for VFs */ type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) & SPE_HDR_FUNCTION_ID); spe->hdr.type = htole16(type); spe->data.update_data_addr.hi = htole32(data_hi); spe->data.update_data_addr.lo = htole32(data_lo); /* * It's ok if the actual decrement is issued towards the memory * somewhere between the lock and unlock. Thus no more explict * memory barrier is needed. */ if (common) { atomic_subtract_acq_long(&sc->eq_spq_left, 1); } else { atomic_subtract_acq_long(&sc->cq_spq_left, 1); } PMD_DRV_LOG(DEBUG, "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x" "data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)", sc->spq_prod_idx, (uint32_t) U64_HI(sc->spq_dma.paddr), (uint32_t) (U64_LO(sc->spq_dma.paddr) + (uint8_t *) sc->spq_prod_bd - (uint8_t *) sc->spq), command, common, HW_CID(sc, cid), data_hi, data_lo, type, atomic_load_acq_long(&sc->cq_spq_left), atomic_load_acq_long(&sc->eq_spq_left)); bnx2x_sp_prod_update(sc); return 0; } static void bnx2x_drv_pulse(struct bnx2x_softc *sc) { SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, sc->fw_drv_pulse_wr_seq); } static int bnx2x_tx_queue_has_work(const struct bnx2x_fastpath *fp) { uint16_t hw_cons; struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index]; if (unlikely(!txq)) { PMD_TX_LOG(ERR, "ERROR: TX queue is NULL"); return 0; } mb(); /* status block fields can change */ hw_cons = le16toh(*fp->tx_cons_sb); return hw_cons != txq->tx_pkt_head; } static uint8_t bnx2x_has_tx_work(struct bnx2x_fastpath *fp) { /* expand this for multi-cos if ever supported */ return bnx2x_tx_queue_has_work(fp); } static int bnx2x_has_rx_work(struct bnx2x_fastpath *fp) { uint16_t rx_cq_cons_sb; struct bnx2x_rx_queue *rxq; rxq = fp->sc->rx_queues[fp->index]; if (unlikely(!rxq)) { PMD_RX_LOG(ERR, "ERROR: RX queue is NULL"); return 0; } mb(); /* status block fields can change */ rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); if (unlikely((rx_cq_cons_sb & MAX_RCQ_ENTRIES(rxq)) == MAX_RCQ_ENTRIES(rxq))) rx_cq_cons_sb++; return rxq->rx_cq_head != rx_cq_cons_sb; } static void bnx2x_sp_event(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) { #ifdef RTE_LIBRTE_BNX2X_DEBUG int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); #endif int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; struct ecore_queue_sp_obj *q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj; PMD_DRV_LOG(DEBUG, "fp=%d cid=%d got ramrod #%d state is %x type is %d", fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); switch (command) { case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): PMD_DRV_LOG(DEBUG, "got UPDATE ramrod. CID %d", cid); drv_cmd = ECORE_Q_CMD_UPDATE; break; case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): PMD_DRV_LOG(DEBUG, "got MULTI[%d] setup ramrod", cid); drv_cmd = ECORE_Q_CMD_SETUP; break; case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): PMD_DRV_LOG(DEBUG, "got MULTI[%d] tx-only setup ramrod", cid); drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; break; case (RAMROD_CMD_ID_ETH_HALT): PMD_DRV_LOG(DEBUG, "got MULTI[%d] halt ramrod", cid); drv_cmd = ECORE_Q_CMD_HALT; break; case (RAMROD_CMD_ID_ETH_TERMINATE): PMD_DRV_LOG(DEBUG, "got MULTI[%d] teminate ramrod", cid); drv_cmd = ECORE_Q_CMD_TERMINATE; break; case (RAMROD_CMD_ID_ETH_EMPTY): PMD_DRV_LOG(DEBUG, "got MULTI[%d] empty ramrod", cid); drv_cmd = ECORE_Q_CMD_EMPTY; break; default: PMD_DRV_LOG(DEBUG, "ERROR: unexpected MC reply (%d)" "on fp[%d]", command, fp->index); return; } if ((drv_cmd != ECORE_Q_CMD_MAX) && q_obj->complete_cmd(sc, q_obj, drv_cmd)) { /* * q_obj->complete_cmd() failure means that this was * an unexpected completion. * * In this case we don't want to increase the sc->spq_left * because apparently we haven't sent this command the first * place. */ // rte_panic("Unexpected SP completion"); return; } atomic_add_acq_long(&sc->cq_spq_left, 1); PMD_DRV_LOG(DEBUG, "sc->cq_spq_left 0x%lx", atomic_load_acq_long(&sc->cq_spq_left)); } static uint8_t bnx2x_rxeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp) { struct bnx2x_rx_queue *rxq; uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; rxq = sc->rx_queues[fp->index]; if (!rxq) { PMD_RX_LOG(ERR, "RX queue %d is NULL", fp->index); return 0; } /* CQ "next element" is of the size of the regular element */ hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); if (unlikely((hw_cq_cons & USABLE_RCQ_ENTRIES_PER_PAGE) == USABLE_RCQ_ENTRIES_PER_PAGE)) { hw_cq_cons++; } bd_cons = rxq->rx_bd_head; bd_prod = rxq->rx_bd_tail; bd_prod_fw = bd_prod; sw_cq_cons = rxq->rx_cq_head; sw_cq_prod = rxq->rx_cq_tail; /* * Memory barrier necessary as speculative reads of the rx * buffer can be ahead of the index in the status block */ rmb(); while (sw_cq_cons != hw_cq_cons) { union eth_rx_cqe *cqe; struct eth_fast_path_rx_cqe *cqe_fp; uint8_t cqe_fp_flags; enum eth_rx_cqe_type cqe_fp_type; comp_ring_cons = RCQ_ENTRY(sw_cq_cons, rxq); bd_prod = RX_BD(bd_prod, rxq); bd_cons = RX_BD(bd_cons, rxq); cqe = &rxq->cq_ring[comp_ring_cons]; cqe_fp = &cqe->fast_path_cqe; cqe_fp_flags = cqe_fp->type_error_flags; cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; /* is this a slowpath msg? */ if (CQE_TYPE_SLOW(cqe_fp_type)) { bnx2x_sp_event(sc, fp, cqe); goto next_cqe; } /* is this an error packet? */ if (unlikely(cqe_fp_flags & ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { PMD_RX_LOG(DEBUG, "flags 0x%x rx packet %u", cqe_fp_flags, sw_cq_cons); goto next_rx; } PMD_RX_LOG(DEBUG, "Dropping fastpath called from attn poller!"); next_rx: bd_cons = NEXT_RX_BD(bd_cons); bd_prod = NEXT_RX_BD(bd_prod); bd_prod_fw = NEXT_RX_BD(bd_prod_fw); next_cqe: sw_cq_prod = NEXT_RCQ_IDX(sw_cq_prod); sw_cq_cons = NEXT_RCQ_IDX(sw_cq_cons); } /* while work to do */ rxq->rx_bd_head = bd_cons; rxq->rx_bd_tail = bd_prod_fw; rxq->rx_cq_head = sw_cq_cons; rxq->rx_cq_tail = sw_cq_prod; /* Update producers */ bnx2x_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod); return sw_cq_cons != hw_cq_cons; } static uint16_t bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath *fp, struct bnx2x_tx_queue *txq, uint16_t pkt_idx, uint16_t bd_idx) { struct eth_tx_start_bd *tx_start_bd = &txq->tx_ring[TX_BD(bd_idx, txq)].start_bd; uint16_t nbd = rte_le_to_cpu_16(tx_start_bd->nbd); struct rte_mbuf *tx_mbuf = txq->sw_ring[TX_BD(pkt_idx, txq)]; if (likely(tx_mbuf != NULL)) { rte_pktmbuf_free_seg(tx_mbuf); } else { PMD_RX_LOG(ERR, "fp[%02d] lost mbuf %lu", fp->index, (unsigned long)TX_BD(pkt_idx, txq)); } txq->sw_ring[TX_BD(pkt_idx, txq)] = NULL; txq->nb_tx_avail += nbd; while (nbd--) bd_idx = NEXT_TX_BD(bd_idx); return bd_idx; } /* processes transmit completions */ uint8_t bnx2x_txeof(__rte_unused struct bnx2x_softc * sc, struct bnx2x_fastpath * fp) { uint16_t bd_cons, hw_cons, sw_cons; __rte_unused uint16_t tx_bd_avail; struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index]; if (unlikely(!txq)) { PMD_TX_LOG(ERR, "ERROR: TX queue is NULL"); return 0; } bd_cons = txq->tx_bd_head; hw_cons = rte_le_to_cpu_16(*fp->tx_cons_sb); sw_cons = txq->tx_pkt_head; while (sw_cons != hw_cons) { bd_cons = bnx2x_free_tx_pkt(fp, txq, sw_cons, bd_cons); sw_cons++; } txq->tx_pkt_head = sw_cons; txq->tx_bd_head = bd_cons; tx_bd_avail = txq->nb_tx_avail; PMD_TX_LOG(DEBUG, "fp[%02d] avail=%u cons_sb=%u, " "pkt_head=%u pkt_tail=%u bd_head=%u bd_tail=%u", fp->index, tx_bd_avail, hw_cons, txq->tx_pkt_head, txq->tx_pkt_tail, txq->tx_bd_head, txq->tx_bd_tail); return TRUE; } static void bnx2x_drain_tx_queues(struct bnx2x_softc *sc) { struct bnx2x_fastpath *fp; int i, count; /* wait until all TX fastpath tasks have completed */ for (i = 0; i < sc->num_queues; i++) { fp = &sc->fp[i]; count = 1000; while (bnx2x_has_tx_work(fp)) { bnx2x_txeof(sc, fp); if (count == 0) { PMD_TX_LOG(ERR, "Timeout waiting for fp[%d] " "transmits to complete!", i); rte_panic("tx drain failure"); return; } count--; DELAY(1000); rmb(); } } return; } static int bnx2x_del_all_macs(struct bnx2x_softc *sc, struct ecore_vlan_mac_obj *mac_obj, int mac_type, uint8_t wait_for_comp) { unsigned long ramrod_flags = 0, vlan_mac_flags = 0; int rc; /* wait for completion of requested */ if (wait_for_comp) { bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); } /* Set the mac type of addresses we want to clear */ bnx2x_set_bit(mac_type, &vlan_mac_flags); rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); if (rc < 0) PMD_DRV_LOG(ERR, "Failed to delete MACs (%d)", rc); return rc; } static int bnx2x_fill_accept_flags(struct bnx2x_softc *sc, uint32_t rx_mode, unsigned long *rx_accept_flags, unsigned long *tx_accept_flags) { /* Clear the flags first */ *rx_accept_flags = 0; *tx_accept_flags = 0; switch (rx_mode) { case BNX2X_RX_MODE_NONE: /* * 'drop all' supersedes any accept flags that may have been * passed to the function. */ break; case BNX2X_RX_MODE_NORMAL: bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); /* internal switching mode */ bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); break; case BNX2X_RX_MODE_ALLMULTI: bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); /* internal switching mode */ bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); break; case BNX2X_RX_MODE_ALLMULTI_PROMISC: case BNX2X_RX_MODE_PROMISC: /* * According to deffinition of SI mode, iface in promisc mode * should receive matched and unmatched (in resolution of port) * unicast packets. */ bnx2x_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); /* internal switching mode */ bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); if (IS_MF_SI(sc)) { bnx2x_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); } else { bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); } break; default: PMD_RX_LOG(ERR, "Unknown rx_mode (%d)", rx_mode); return -1; } /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ if (rx_mode != BNX2X_RX_MODE_NONE) { bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); } return 0; } static int bnx2x_set_q_rx_mode(struct bnx2x_softc *sc, uint8_t cl_id, unsigned long rx_mode_flags, unsigned long rx_accept_flags, unsigned long tx_accept_flags, unsigned long ramrod_flags) { struct ecore_rx_mode_ramrod_params ramrod_param; int rc; memset(&ramrod_param, 0, sizeof(ramrod_param)); /* Prepare ramrod parameters */ ramrod_param.cid = 0; ramrod_param.cl_id = cl_id; ramrod_param.rx_mode_obj = &sc->rx_mode_obj; ramrod_param.func_id = SC_FUNC(sc); ramrod_param.pstate = &sc->sp_state; ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; ramrod_param.rdata = BNX2X_SP(sc, rx_mode_rdata); ramrod_param.rdata_mapping = (phys_addr_t)BNX2X_SP_MAPPING(sc, rx_mode_rdata), bnx2x_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); ramrod_param.ramrod_flags = ramrod_flags; ramrod_param.rx_mode_flags = rx_mode_flags; ramrod_param.rx_accept_flags = rx_accept_flags; ramrod_param.tx_accept_flags = tx_accept_flags; rc = ecore_config_rx_mode(sc, &ramrod_param); if (rc < 0) { PMD_RX_LOG(ERR, "Set rx_mode %d failed", sc->rx_mode); return rc; } return 0; } int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc) { unsigned long rx_mode_flags = 0, ramrod_flags = 0; unsigned long rx_accept_flags = 0, tx_accept_flags = 0; int rc; rc = bnx2x_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, &tx_accept_flags); if (rc) { return rc; } bnx2x_set_bit(RAMROD_RX, &ramrod_flags); bnx2x_set_bit(RAMROD_TX, &ramrod_flags); bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); return bnx2x_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, rx_accept_flags, tx_accept_flags, ramrod_flags); } /* returns the "mcp load_code" according to global load_count array */ static int bnx2x_nic_load_no_mcp(struct bnx2x_softc *sc) { int path = SC_PATH(sc); int port = SC_PORT(sc); PMD_DRV_LOG(INFO, "NO MCP - load counts[%d] %d, %d, %d", path, load_count[path][0], load_count[path][1], load_count[path][2]); load_count[path][0]++; load_count[path][1 + port]++; PMD_DRV_LOG(INFO, "NO MCP - new load counts[%d] %d, %d, %d", path, load_count[path][0], load_count[path][1], load_count[path][2]); if (load_count[path][0] == 1) return FW_MSG_CODE_DRV_LOAD_COMMON; else if (load_count[path][1 + port] == 1) return FW_MSG_CODE_DRV_LOAD_PORT; else return FW_MSG_CODE_DRV_LOAD_FUNCTION; } /* returns the "mcp load_code" according to global load_count array */ static int bnx2x_nic_unload_no_mcp(struct bnx2x_softc *sc) { int port = SC_PORT(sc); int path = SC_PATH(sc); PMD_DRV_LOG(INFO, "NO MCP - load counts[%d] %d, %d, %d", path, load_count[path][0], load_count[path][1], load_count[path][2]); load_count[path][0]--; load_count[path][1 + port]--; PMD_DRV_LOG(INFO, "NO MCP - new load counts[%d] %d, %d, %d", path, load_count[path][0], load_count[path][1], load_count[path][2]); if (load_count[path][0] == 0) { return FW_MSG_CODE_DRV_UNLOAD_COMMON; } else if (load_count[path][1 + port] == 0) { return FW_MSG_CODE_DRV_UNLOAD_PORT; } else { return FW_MSG_CODE_DRV_UNLOAD_FUNCTION; } } /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ static uint32_t bnx2x_send_unload_req(struct bnx2x_softc *sc, int unload_mode) { uint32_t reset_code = 0; /* Select the UNLOAD request mode */ if (unload_mode == UNLOAD_NORMAL) { reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; } else { reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; } /* Send the request to the MCP */ if (!BNX2X_NOMCP(sc)) { reset_code = bnx2x_fw_command(sc, reset_code, 0); } else { reset_code = bnx2x_nic_unload_no_mcp(sc); } return reset_code; } /* send UNLOAD_DONE command to the MCP */ static void bnx2x_send_unload_done(struct bnx2x_softc *sc, uint8_t keep_link) { uint32_t reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; /* Report UNLOAD_DONE to MCP */ if (!BNX2X_NOMCP(sc)) { bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); } } static int bnx2x_func_wait_started(struct bnx2x_softc *sc) { int tout = 50; if (!sc->port.pmf) { return 0; } /* * (assumption: No Attention from MCP at this stage) * PMF probably in the middle of TX disable/enable transaction * 1. Sync IRS for default SB * 2. Sync SP queue - this guarantees us that attention handling started * 3. Wait, that TX disable/enable transaction completes * * 1+2 guarantee that if DCBX attention was scheduled it already changed * pending bit of transaction from STARTED-->TX_STOPPED, if we already * received completion for the transaction the state is TX_STOPPED. * State will return to STARTED after completion of TX_STOPPED-->STARTED * transaction. */ while (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED && tout--) { DELAY(20000); } if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { /* * Failed to complete the transaction in a "good way" * Force both transactions with CLR bit. */ struct ecore_func_state_params func_params = { NULL }; PMD_DRV_LOG(NOTICE, "Unexpected function state! " "Forcing STARTED-->TX_STOPPED-->STARTED"); func_params.f_obj = &sc->func_obj; bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); /* STARTED-->TX_STOPPED */ func_params.cmd = ECORE_F_CMD_TX_STOP; ecore_func_state_change(sc, &func_params); /* TX_STOPPED-->STARTED */ func_params.cmd = ECORE_F_CMD_TX_START; return ecore_func_state_change(sc, &func_params); } return 0; } static int bnx2x_stop_queue(struct bnx2x_softc *sc, int index) { struct bnx2x_fastpath *fp = &sc->fp[index]; struct ecore_queue_state_params q_params = { NULL }; int rc; PMD_DRV_LOG(DEBUG, "stopping queue %d cid %d", index, fp->index); q_params.q_obj = &sc->sp_objs[fp->index].q_obj; /* We want to wait for completion in this context */ bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); /* Stop the primary connection: */ /* ...halt the connection */ q_params.cmd = ECORE_Q_CMD_HALT; rc = ecore_queue_state_change(sc, &q_params); if (rc) { return rc; } /* ...terminate the connection */ q_params.cmd = ECORE_Q_CMD_TERMINATE; memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; rc = ecore_queue_state_change(sc, &q_params); if (rc) { return rc; } /* ...delete cfc entry */ q_params.cmd = ECORE_Q_CMD_CFC_DEL; memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; return ecore_queue_state_change(sc, &q_params); } /* wait for the outstanding SP commands */ static uint8_t bnx2x_wait_sp_comp(struct bnx2x_softc *sc, unsigned long mask) { unsigned long tmp; int tout = 5000; /* wait for 5 secs tops */ while (tout--) { mb(); if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { return TRUE; } DELAY(1000); } mb(); tmp = atomic_load_acq_long(&sc->sp_state); if (tmp & mask) { PMD_DRV_LOG(INFO, "Filtering completion timed out: " "sp_state 0x%lx, mask 0x%lx", tmp, mask); return FALSE; } return FALSE; } static int bnx2x_func_stop(struct bnx2x_softc *sc) { struct ecore_func_state_params func_params = { NULL }; int rc; /* prepare parameters for function state transitions */ bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); func_params.f_obj = &sc->func_obj; func_params.cmd = ECORE_F_CMD_STOP; /* * Try to stop the function the 'good way'. If it fails (in case * of a parity error during bnx2x_chip_cleanup()) and we are * not in a debug mode, perform a state transaction in order to * enable further HW_RESET transaction. */ rc = ecore_func_state_change(sc, &func_params); if (rc) { PMD_DRV_LOG(NOTICE, "FUNC_STOP ramrod failed. " "Running a dry transaction"); bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); return ecore_func_state_change(sc, &func_params); } return 0; } static int bnx2x_reset_hw(struct bnx2x_softc *sc, uint32_t load_code) { struct ecore_func_state_params func_params = { NULL }; /* Prepare parameters for function state transitions */ bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); func_params.f_obj = &sc->func_obj; func_params.cmd = ECORE_F_CMD_HW_RESET; func_params.params.hw_init.load_phase = load_code; return ecore_func_state_change(sc, &func_params); } static void bnx2x_int_disable_sync(struct bnx2x_softc *sc, int disable_hw) { if (disable_hw) { /* prevent the HW from sending interrupts */ bnx2x_int_disable(sc); } } static void bnx2x_chip_cleanup(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link) { int port = SC_PORT(sc); struct ecore_mcast_ramrod_params rparam = { NULL }; uint32_t reset_code; int i, rc = 0; bnx2x_drain_tx_queues(sc); /* give HW time to discard old tx messages */ DELAY(1000); /* Clean all ETH MACs */ rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); if (rc < 0) { PMD_DRV_LOG(NOTICE, "Failed to delete all ETH MACs (%d)", rc); } /* Clean up UC list */ rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); if (rc < 0) { PMD_DRV_LOG(NOTICE, "Failed to delete UC MACs list (%d)", rc); } /* Disable LLH */ REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0); /* Set "drop all" to stop Rx */ /* * We need to take the if_maddr_lock() here in order to prevent * a race between the completion code and this code. */ if (bnx2x_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { bnx2x_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); } else { bnx2x_set_storm_rx_mode(sc); } /* Clean up multicast configuration */ rparam.mcast_obj = &sc->mcast_obj; rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); if (rc < 0) { PMD_DRV_LOG(NOTICE, "Failed to send DEL MCAST command (%d)", rc); } /* * Send the UNLOAD_REQUEST to the MCP. This will return if * this function should perform FUNCTION, PORT, or COMMON HW * reset. */ reset_code = bnx2x_send_unload_req(sc, unload_mode); /* * (assumption: No Attention from MCP at this stage) * PMF probably in the middle of TX disable/enable transaction */ rc = bnx2x_func_wait_started(sc); if (rc) { PMD_DRV_LOG(NOTICE, "bnx2x_func_wait_started failed"); } /* * Close multi and leading connections * Completions for ramrods are collected in a synchronous way */ for (i = 0; i < sc->num_queues; i++) { if (bnx2x_stop_queue(sc, i)) { goto unload_error; } } /* * If SP settings didn't get completed so far - something * very wrong has happen. */ if (!bnx2x_wait_sp_comp(sc, ~0x0UL)) { PMD_DRV_LOG(NOTICE, "Common slow path ramrods got stuck!"); } unload_error: rc = bnx2x_func_stop(sc); if (rc) { PMD_DRV_LOG(NOTICE, "Function stop failed!"); } /* disable HW interrupts */ bnx2x_int_disable_sync(sc, TRUE); /* Reset the chip */ rc = bnx2x_reset_hw(sc, reset_code); if (rc) { PMD_DRV_LOG(NOTICE, "Hardware reset failed"); } /* Report UNLOAD_DONE to MCP */ bnx2x_send_unload_done(sc, keep_link); } static void bnx2x_disable_close_the_gate(struct bnx2x_softc *sc) { uint32_t val; PMD_DRV_LOG(DEBUG, "Disabling 'close the gates'"); val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); } /* * Cleans the object that have internal lists without sending * ramrods. Should be run when interrutps are disabled. */ static void bnx2x_squeeze_objects(struct bnx2x_softc *sc) { unsigned long ramrod_flags = 0, vlan_mac_flags = 0; struct ecore_mcast_ramrod_params rparam = { NULL }; struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; int rc; /* Cleanup MACs' object first... */ /* Wait for completion of requested */ bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); /* Perform a dry cleanup */ bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); /* Clean ETH primary MAC */ bnx2x_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, &ramrod_flags); if (rc != 0) { PMD_DRV_LOG(NOTICE, "Failed to clean ETH MACs (%d)", rc); } /* Cleanup UC list */ vlan_mac_flags = 0; bnx2x_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); if (rc != 0) { PMD_DRV_LOG(NOTICE, "Failed to clean UC list MACs (%d)", rc); } /* Now clean mcast object... */ rparam.mcast_obj = &sc->mcast_obj; bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); /* Add a DEL command... */ rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); if (rc < 0) { PMD_DRV_LOG(NOTICE, "Failed to send DEL MCAST command (%d)", rc); } /* now wait until all pending commands are cleared */ rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); while (rc != 0) { if (rc < 0) { PMD_DRV_LOG(NOTICE, "Failed to clean MCAST object (%d)", rc); return; } rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); } } /* stop the controller */ __attribute__ ((noinline)) int bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link) { uint8_t global = FALSE; uint32_t val; PMD_DRV_LOG(DEBUG, "Starting NIC unload..."); /* stop the periodic callout */ bnx2x_periodic_stop(sc); /* mark driver as unloaded in shmem2 */ if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); } if (IS_PF(sc) && sc->recovery_state != BNX2X_RECOVERY_DONE && (sc->state == BNX2X_STATE_CLOSED || sc->state == BNX2X_STATE_ERROR)) { /* * We can get here if the driver has been unloaded * during parity error recovery and is either waiting for a * leader to complete or for other functions to unload and * then ifconfig down has been issued. In this case we want to * unload and let other functions to complete a recovery * process. */ sc->recovery_state = BNX2X_RECOVERY_DONE; sc->is_leader = 0; bnx2x_release_leader_lock(sc); mb(); PMD_DRV_LOG(NOTICE, "Can't unload in closed or error state"); return -1; } /* * Nothing to do during unload if previous bnx2x_nic_load() * did not completed succesfully - all resourses are released. */ if ((sc->state == BNX2X_STATE_CLOSED) || (sc->state == BNX2X_STATE_ERROR)) { return 0; } sc->state = BNX2X_STATE_CLOSING_WAITING_HALT; mb(); sc->rx_mode = BNX2X_RX_MODE_NONE; bnx2x_set_rx_mode(sc); mb(); if (IS_PF(sc)) { /* set ALWAYS_ALIVE bit in shmem */ sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; bnx2x_drv_pulse(sc); bnx2x_stats_handle(sc, STATS_EVENT_STOP); bnx2x_save_statistics(sc); } /* wait till consumers catch up with producers in all queues */ bnx2x_drain_tx_queues(sc); /* if VF indicate to PF this function is going down (PF will delete sp * elements and clear initializations */ if (IS_VF(sc)) { bnx2x_vf_unload(sc); } else if (unload_mode != UNLOAD_RECOVERY) { /* if this is a normal/close unload need to clean up chip */ bnx2x_chip_cleanup(sc, unload_mode, keep_link); } else { /* Send the UNLOAD_REQUEST to the MCP */ bnx2x_send_unload_req(sc, unload_mode); /* * Prevent transactions to host from the functions on the * engine that doesn't reset global blocks in case of global * attention once gloabl blocks are reset and gates are opened * (the engine which leader will perform the recovery * last). */ if (!CHIP_IS_E1x(sc)) { bnx2x_pf_disable(sc); } /* disable HW interrupts */ bnx2x_int_disable_sync(sc, TRUE); /* Report UNLOAD_DONE to MCP */ bnx2x_send_unload_done(sc, FALSE); } /* * At this stage no more interrupts will arrive so we may safely clean * the queue'able objects here in case they failed to get cleaned so far. */ if (IS_PF(sc)) { bnx2x_squeeze_objects(sc); } /* There should be no more pending SP commands at this stage */ sc->sp_state = 0; sc->port.pmf = 0; if (IS_PF(sc)) { bnx2x_free_mem(sc); } bnx2x_free_fw_stats_mem(sc); sc->state = BNX2X_STATE_CLOSED; /* * Check if there are pending parity attentions. If there are - set * RECOVERY_IN_PROGRESS. */ if (IS_PF(sc) && bnx2x_chk_parity_attn(sc, &global, FALSE)) { bnx2x_set_reset_in_progress(sc); /* Set RESET_IS_GLOBAL if needed */ if (global) { bnx2x_set_reset_global(sc); } } /* * The last driver must disable a "close the gate" if there is no * parity attention or "process kill" pending. */ if (IS_PF(sc) && !bnx2x_clear_pf_load(sc) && bnx2x_reset_is_done(sc, SC_PATH(sc))) { bnx2x_disable_close_the_gate(sc); } PMD_DRV_LOG(DEBUG, "Ended NIC unload"); return 0; } /* * Encapsulte an mbuf cluster into the tx bd chain and makes the memory * visible to the controller. * * If an mbuf is submitted to this routine and cannot be given to the * controller (e.g. it has too many fragments) then the function may free * the mbuf and return to the caller. * * Returns: * int: Number of TX BDs used for the mbuf * * Note the side effect that an mbuf may be freed if it causes a problem. */ int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0) { struct eth_tx_start_bd *tx_start_bd; uint16_t bd_prod, pkt_prod; struct bnx2x_softc *sc; uint32_t nbds = 0; sc = txq->sc; bd_prod = txq->tx_bd_tail; pkt_prod = txq->tx_pkt_tail; txq->sw_ring[TX_BD(pkt_prod, txq)] = m0; tx_start_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].start_bd; tx_start_bd->addr = rte_cpu_to_le_64(rte_mbuf_data_dma_addr(m0)); tx_start_bd->nbytes = rte_cpu_to_le_16(m0->data_len); tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); tx_start_bd->nbd = rte_cpu_to_le_16(2); if (m0->ol_flags & PKT_TX_VLAN_PKT) { tx_start_bd->vlan_or_ethertype = rte_cpu_to_le_16(m0->vlan_tci); tx_start_bd->bd_flags.as_bitfield |= (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); } else { if (IS_PF(sc)) tx_start_bd->vlan_or_ethertype = rte_cpu_to_le_16(pkt_prod); else { struct ether_hdr *eh = rte_pktmbuf_mtod(m0, struct ether_hdr *); tx_start_bd->vlan_or_ethertype = rte_cpu_to_le_16(rte_be_to_cpu_16(eh->ether_type)); } } bd_prod = NEXT_TX_BD(bd_prod); if (IS_VF(sc)) { struct eth_tx_parse_bd_e2 *tx_parse_bd; const struct ether_hdr *eh = rte_pktmbuf_mtod(m0, struct ether_hdr *); uint8_t mac_type = UNICAST_ADDRESS; tx_parse_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].parse_bd_e2; if (is_multicast_ether_addr(&eh->d_addr)) { if (is_broadcast_ether_addr(&eh->d_addr)) mac_type = BROADCAST_ADDRESS; else mac_type = MULTICAST_ADDRESS; } tx_parse_bd->parsing_data = (mac_type << ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE_SHIFT); rte_memcpy(&tx_parse_bd->data.mac_addr.dst_hi, &eh->d_addr.addr_bytes[0], 2); rte_memcpy(&tx_parse_bd->data.mac_addr.dst_mid, &eh->d_addr.addr_bytes[2], 2); rte_memcpy(&tx_parse_bd->data.mac_addr.dst_lo, &eh->d_addr.addr_bytes[4], 2); rte_memcpy(&tx_parse_bd->data.mac_addr.src_hi, &eh->s_addr.addr_bytes[0], 2); rte_memcpy(&tx_parse_bd->data.mac_addr.src_mid, &eh->s_addr.addr_bytes[2], 2); rte_memcpy(&tx_parse_bd->data.mac_addr.src_lo, &eh->s_addr.addr_bytes[4], 2); tx_parse_bd->data.mac_addr.dst_hi = rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_hi); tx_parse_bd->data.mac_addr.dst_mid = rte_cpu_to_be_16(tx_parse_bd->data. mac_addr.dst_mid); tx_parse_bd->data.mac_addr.dst_lo = rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_lo); tx_parse_bd->data.mac_addr.src_hi = rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_hi); tx_parse_bd->data.mac_addr.src_mid = rte_cpu_to_be_16(tx_parse_bd->data. mac_addr.src_mid); tx_parse_bd->data.mac_addr.src_lo = rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_lo); PMD_TX_LOG(DEBUG, "PBD dst %x %x %x src %x %x %x p_data %x", tx_parse_bd->data.mac_addr.dst_hi, tx_parse_bd->data.mac_addr.dst_mid, tx_parse_bd->data.mac_addr.dst_lo, tx_parse_bd->data.mac_addr.src_hi, tx_parse_bd->data.mac_addr.src_mid, tx_parse_bd->data.mac_addr.src_lo, tx_parse_bd->parsing_data); } PMD_TX_LOG(DEBUG, "start bd: nbytes %d flags %x vlan %x\n", tx_start_bd->nbytes, tx_start_bd->bd_flags.as_bitfield, tx_start_bd->vlan_or_ethertype); bd_prod = NEXT_TX_BD(bd_prod); pkt_prod++; if (TX_IDX(bd_prod) < 2) nbds++; txq->nb_tx_avail -= 2; txq->tx_bd_tail = bd_prod; txq->tx_pkt_tail = pkt_prod; return nbds + 2; } static uint16_t bnx2x_cid_ilt_lines(struct bnx2x_softc *sc) { return L2_ILT_LINES(sc); } static void bnx2x_ilt_set_info(struct bnx2x_softc *sc) { struct ilt_client_info *ilt_client; struct ecore_ilt *ilt = sc->ilt; uint16_t line = 0; PMD_INIT_FUNC_TRACE(); ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); /* CDU */ ilt_client = &ilt->clients[ILT_CLIENT_CDU]; ilt_client->client_num = ILT_CLIENT_CDU; ilt_client->page_size = CDU_ILT_PAGE_SZ; ilt_client->flags = ILT_CLIENT_SKIP_MEM; ilt_client->start = line; line += bnx2x_cid_ilt_lines(sc); if (CNIC_SUPPORT(sc)) { line += CNIC_ILT_LINES; } ilt_client->end = (line - 1); /* QM */ if (QM_INIT(sc->qm_cid_count)) { ilt_client = &ilt->clients[ILT_CLIENT_QM]; ilt_client->client_num = ILT_CLIENT_QM; ilt_client->page_size = QM_ILT_PAGE_SZ; ilt_client->flags = 0; ilt_client->start = line; /* 4 bytes for each cid */ line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, QM_ILT_PAGE_SZ); ilt_client->end = (line - 1); } if (CNIC_SUPPORT(sc)) { /* SRC */ ilt_client = &ilt->clients[ILT_CLIENT_SRC]; ilt_client->client_num = ILT_CLIENT_SRC; ilt_client->page_size = SRC_ILT_PAGE_SZ; ilt_client->flags = 0; ilt_client->start = line; line += SRC_ILT_LINES; ilt_client->end = (line - 1); /* TM */ ilt_client = &ilt->clients[ILT_CLIENT_TM]; ilt_client->client_num = ILT_CLIENT_TM; ilt_client->page_size = TM_ILT_PAGE_SZ; ilt_client->flags = 0; ilt_client->start = line; line += TM_ILT_LINES; ilt_client->end = (line - 1); } assert((line <= ILT_MAX_LINES)); } static void bnx2x_set_fp_rx_buf_size(struct bnx2x_softc *sc) { int i; for (i = 0; i < sc->num_queues; i++) { /* get the Rx buffer size for RX frames */ sc->fp[i].rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); } } int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc) { sc->ilt = rte_malloc("", sizeof(struct ecore_ilt), RTE_CACHE_LINE_SIZE); return sc->ilt == NULL; } static int bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc *sc) { sc->ilt->lines = rte_calloc("", sizeof(struct ilt_line), ILT_MAX_LINES, RTE_CACHE_LINE_SIZE); return sc->ilt->lines == NULL; } void bnx2x_free_ilt_mem(struct bnx2x_softc *sc) { rte_free(sc->ilt); sc->ilt = NULL; } static void bnx2x_free_ilt_lines_mem(struct bnx2x_softc *sc) { if (sc->ilt->lines != NULL) { rte_free(sc->ilt->lines); sc->ilt->lines = NULL; } } static void bnx2x_free_mem(struct bnx2x_softc *sc) { uint32_t i; for (i = 0; i < L2_ILT_LINES(sc); i++) { sc->context[i].vcxt = NULL; sc->context[i].size = 0; } ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); bnx2x_free_ilt_lines_mem(sc); } static int bnx2x_alloc_mem(struct bnx2x_softc *sc) { int context_size; int allocated; int i; char cdu_name[RTE_MEMZONE_NAMESIZE]; /* * Allocate memory for CDU context: * This memory is allocated separately and not in the generic ILT * functions because CDU differs in few aspects: * 1. There can be multiple entities allocating memory for context - * regular L2, CNIC, and SRIOV drivers. Each separately controls * its own ILT lines. * 2. Since CDU page-size is not a single 4KB page (which is the case * for the other ILT clients), to be efficient we want to support * allocation of sub-page-size in the last entry. * 3. Context pointers are used by the driver to pass to FW / update * the context (for the other ILT clients the pointers are used just to * free the memory during unload). */ context_size = (sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(sc)); for (i = 0, allocated = 0; allocated < context_size; i++) { sc->context[i].size = min(CDU_ILT_PAGE_SZ, (context_size - allocated)); snprintf(cdu_name, sizeof(cdu_name), "cdu_%d", i); if (bnx2x_dma_alloc(sc, sc->context[i].size, &sc->context[i].vcxt_dma, cdu_name, BNX2X_PAGE_SIZE) != 0) { bnx2x_free_mem(sc); return -1; } sc->context[i].vcxt = (union cdu_context *)sc->context[i].vcxt_dma.vaddr; allocated += sc->context[i].size; } bnx2x_alloc_ilt_lines_mem(sc); if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { PMD_DRV_LOG(NOTICE, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed"); bnx2x_free_mem(sc); return -1; } return 0; } static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc) { sc->fw_stats_num = 0; sc->fw_stats_req_size = 0; sc->fw_stats_req = NULL; sc->fw_stats_req_mapping = 0; sc->fw_stats_data_size = 0; sc->fw_stats_data = NULL; sc->fw_stats_data_mapping = 0; } static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc) { uint8_t num_queue_stats; int num_groups, vf_headroom = 0; /* number of queues for statistics is number of eth queues */ num_queue_stats = BNX2X_NUM_ETH_QUEUES(sc); /* * Total number of FW statistics requests = * 1 for port stats + 1 for PF stats + num of queues */ sc->fw_stats_num = (2 + num_queue_stats); /* * Request is built from stats_query_header and an array of * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT * rules. The real number or requests is configured in the * stats_query_header. */ num_groups = (sc->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT; if ((sc->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) num_groups++; sc->fw_stats_req_size = (sizeof(struct stats_query_header) + (num_groups * sizeof(struct stats_query_cmd_group))); /* * Data for statistics requests + stats_counter. * stats_counter holds per-STORM counters that are incremented when * STORM has finished with the current request. Memory for FCoE * offloaded statistics are counted anyway, even if they will not be sent. * VF stats are not accounted for here as the data of VF stats is stored * in memory allocated by the VF, not here. */ sc->fw_stats_data_size = (sizeof(struct stats_counter) + sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) + /* sizeof(struct fcoe_statistics_params) + */ (sizeof(struct per_queue_stats) * num_queue_stats)); if (bnx2x_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), &sc->fw_stats_dma, "fw_stats", RTE_CACHE_LINE_SIZE) != 0) { bnx2x_free_fw_stats_mem(sc); return -1; } /* set up the shortcuts */ sc->fw_stats_req = (struct bnx2x_fw_stats_req *)sc->fw_stats_dma.vaddr; sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; sc->fw_stats_data = (struct bnx2x_fw_stats_data *)((uint8_t *) sc->fw_stats_dma.vaddr + sc->fw_stats_req_size); sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + sc->fw_stats_req_size); return 0; } /* * Bits map: * 0-7 - Engine0 load counter. * 8-15 - Engine1 load counter. * 16 - Engine0 RESET_IN_PROGRESS bit. * 17 - Engine1 RESET_IN_PROGRESS bit. * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active * function on the engine * 19 - Engine1 ONE_IS_LOADED. * 20 - Chip reset flow bit. When set none-leader must wait for both engines * leader to complete (check for both RESET_IN_PROGRESS bits and not * for just the one belonging to its engine). */ #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 #define BNX2X_GLOBAL_RESET_BIT 0x00040000 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ static void bnx2x_set_reset_global(struct bnx2x_softc *sc) { uint32_t val; bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG); REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); } /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ static void bnx2x_clear_reset_global(struct bnx2x_softc *sc) { uint32_t val; bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG); REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); } /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ static uint8_t bnx2x_reset_is_global(struct bnx2x_softc *sc) { return REG_RD(sc, BNX2X_RECOVERY_GLOB_REG) & BNX2X_GLOBAL_RESET_BIT; } /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ static void bnx2x_set_reset_done(struct bnx2x_softc *sc) { uint32_t val; uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG); /* Clear the bit */ val &= ~bit; REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); } /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc) { uint32_t val; uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG); /* Set the bit */ val |= bit; REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); } /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine) { uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG); uint32_t bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; /* return false if bit is set */ return (val & bit) ? FALSE : TRUE; } /* get the load status for an engine, should be run under rtnl lock */ static uint8_t bnx2x_get_load_status(struct bnx2x_softc *sc, int engine) { uint32_t mask = engine ? BNX2X_PATH1_LOAD_CNT_MASK : BNX2X_PATH0_LOAD_CNT_MASK; uint32_t shift = engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : BNX2X_PATH0_LOAD_CNT_SHIFT; uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG); val = ((val & mask) >> shift); return val != 0; } /* set pf load mark */ static void bnx2x_set_pf_load(struct bnx2x_softc *sc) { uint32_t val; uint32_t val1; uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK : BNX2X_PATH0_LOAD_CNT_MASK; uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT : BNX2X_PATH0_LOAD_CNT_SHIFT; bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); PMD_INIT_FUNC_TRACE(); val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG); /* get the current counter value */ val1 = ((val & mask) >> shift); /* set bit of this PF */ val1 |= (1 << SC_ABS_FUNC(sc)); /* clear the old value */ val &= ~mask; /* set the new one */ val |= ((val1 << shift) & mask); REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); } /* clear pf load mark */ static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc) { uint32_t val1, val; uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK : BNX2X_PATH0_LOAD_CNT_MASK; uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT : BNX2X_PATH0_LOAD_CNT_SHIFT; bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG); /* get the current counter value */ val1 = (val & mask) >> shift; /* clear bit of that PF */ val1 &= ~(1 << SC_ABS_FUNC(sc)); /* clear the old value */ val &= ~mask; /* set the new one */ val |= ((val1 << shift) & mask); REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); return val1 != 0; } /* send load requrest to mcp and analyze response */ static int bnx2x_nic_load_request(struct bnx2x_softc *sc, uint32_t * load_code) { PMD_INIT_FUNC_TRACE(); /* init fw_seq */ sc->fw_seq = (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & DRV_MSG_SEQ_NUMBER_MASK); PMD_DRV_LOG(DEBUG, "initial fw_seq 0x%04x", sc->fw_seq); #ifdef BNX2X_PULSE /* get the current FW pulse sequence */ sc->fw_drv_pulse_wr_seq = (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & DRV_PULSE_SEQ_MASK); #else /* set ALWAYS_ALIVE bit in shmem */ sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; bnx2x_drv_pulse(sc); #endif /* load request */ (*load_code) = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, DRV_MSG_CODE_LOAD_REQ_WITH_LFA); /* if the MCP fails to respond we must abort */ if (!(*load_code)) { PMD_DRV_LOG(NOTICE, "MCP response failure!"); return -1; } /* if MCP refused then must abort */ if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { PMD_DRV_LOG(NOTICE, "MCP refused load request"); return -1; } return 0; } /* * Check whether another PF has already loaded FW to chip. In virtualized * environments a pf from anoth VM may have already initialized the device * including loading FW. */ static int bnx2x_nic_load_analyze_req(struct bnx2x_softc *sc, uint32_t load_code) { uint32_t my_fw, loaded_fw; /* is another pf loaded on this engine? */ if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { /* build my FW version dword */ my_fw = (BNX2X_5710_FW_MAJOR_VERSION + (BNX2X_5710_FW_MINOR_VERSION << 8) + (BNX2X_5710_FW_REVISION_VERSION << 16) + (BNX2X_5710_FW_ENGINEERING_VERSION << 24)); /* read loaded FW from chip */ loaded_fw = REG_RD(sc, XSEM_REG_PRAM); PMD_DRV_LOG(DEBUG, "loaded FW 0x%08x / my FW 0x%08x", loaded_fw, my_fw); /* abort nic load if version mismatch */ if (my_fw != loaded_fw) { PMD_DRV_LOG(NOTICE, "FW 0x%08x already loaded (mine is 0x%08x)", loaded_fw, my_fw); return -1; } } return 0; } /* mark PMF if applicable */ static void bnx2x_nic_load_pmf(struct bnx2x_softc *sc, uint32_t load_code) { uint32_t ncsi_oem_data_addr; PMD_INIT_FUNC_TRACE(); if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { /* * Barrier here for ordering between the writing to sc->port.pmf here * and reading it from the periodic task. */ sc->port.pmf = 1; mb(); } else { sc->port.pmf = 0; } PMD_DRV_LOG(DEBUG, "pmf %d", sc->port.pmf); if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); if (ncsi_oem_data_addr) { REG_WR(sc, (ncsi_oem_data_addr + offsetof(struct glob_ncsi_oem_data, driver_version)), 0); } } } } static void bnx2x_read_mf_cfg(struct bnx2x_softc *sc) { int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); int abs_func; int vn; if (BNX2X_NOMCP(sc)) { return; /* what should be the default bvalue in this case */ } /* * The formula for computing the absolute function number is... * For 2 port configuration (4 functions per port): * abs_func = 2 * vn + SC_PORT + SC_PATH * For 4 port configuration (2 functions per port): * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH */ for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); if (abs_func >= E1H_FUNC_MAX) { break; } sc->devinfo.mf_info.mf_config[vn] = MFCFG_RD(sc, func_mf_config[abs_func].config); } if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { PMD_DRV_LOG(DEBUG, "mf_cfg function disabled"); sc->flags |= BNX2X_MF_FUNC_DIS; } else { PMD_DRV_LOG(DEBUG, "mf_cfg function enabled"); sc->flags &= ~BNX2X_MF_FUNC_DIS; } } /* acquire split MCP access lock register */ static int bnx2x_acquire_alr(struct bnx2x_softc *sc) { uint32_t j, val; for (j = 0; j < 1000; j++) { val = (1UL << 31); REG_WR(sc, GRCBASE_MCP + 0x9c, val); val = REG_RD(sc, GRCBASE_MCP + 0x9c); if (val & (1L << 31)) break; DELAY(5000); } if (!(val & (1L << 31))) { PMD_DRV_LOG(NOTICE, "Cannot acquire MCP access lock register"); return -1; } return 0; } /* release split MCP access lock register */ static void bnx2x_release_alr(struct bnx2x_softc *sc) { REG_WR(sc, GRCBASE_MCP + 0x9c, 0); } static void bnx2x_fan_failure(struct bnx2x_softc *sc) { int port = SC_PORT(sc); uint32_t ext_phy_config; /* mark the failure */ ext_phy_config = SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, ext_phy_config); /* log the failure */ PMD_DRV_LOG(INFO, "Fan Failure has caused the driver to shutdown " "the card to prevent permanent damage. " "Please contact OEM Support for assistance"); rte_panic("Schedule task to handle fan failure"); } /* this function is called upon a link interrupt */ static void bnx2x_link_attn(struct bnx2x_softc *sc) { uint32_t pause_enabled = 0; struct host_port_stats *pstats; int cmng_fns; /* Make sure that we are synced with the current statistics */ bnx2x_stats_handle(sc, STATS_EVENT_STOP); elink_link_update(&sc->link_params, &sc->link_vars); if (sc->link_vars.link_up) { /* dropless flow control */ if (sc->dropless_fc) { pause_enabled = 0; if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { pause_enabled = 1; } REG_WR(sc, (BAR_USTRORM_INTMEM + USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), pause_enabled); } if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { pstats = BNX2X_SP(sc, port_stats); /* reset old mac stats */ memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); } if (sc->state == BNX2X_STATE_OPEN) { bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP); } } if (sc->link_vars.link_up && sc->link_vars.line_speed) { cmng_fns = bnx2x_get_cmng_fns_mode(sc); if (cmng_fns != CMNG_FNS_NONE) { bnx2x_cmng_fns_init(sc, FALSE, cmng_fns); storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); } } bnx2x_link_report(sc); if (IS_MF(sc)) { bnx2x_link_sync_notify(sc); } } static void bnx2x_attn_int_asserted(struct bnx2x_softc *sc, uint32_t asserted) { int port = SC_PORT(sc); uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : MISC_REG_AEU_MASK_ATTN_FUNC_0; uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : NIG_REG_MASK_INTERRUPT_PORT0; uint32_t aeu_mask; uint32_t nig_mask = 0; uint32_t reg_addr; uint32_t igu_acked; uint32_t cnt; if (sc->attn_state & asserted) { PMD_DRV_LOG(ERR, "IGU ERROR attn=0x%08x", asserted); } bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); aeu_mask = REG_RD(sc, aeu_addr); aeu_mask &= ~(asserted & 0x3ff); REG_WR(sc, aeu_addr, aeu_mask); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); sc->attn_state |= asserted; if (asserted & ATTN_HARD_WIRED_MASK) { if (asserted & ATTN_NIG_FOR_FUNC) { /* save nig interrupt mask */ nig_mask = REG_RD(sc, nig_int_mask_addr); /* If nig_mask is not set, no need to call the update function */ if (nig_mask) { REG_WR(sc, nig_int_mask_addr, 0); bnx2x_link_attn(sc); } /* handle unicore attn? */ } if (asserted & ATTN_SW_TIMER_4_FUNC) { PMD_DRV_LOG(DEBUG, "ATTN_SW_TIMER_4_FUNC!"); } if (asserted & GPIO_2_FUNC) { PMD_DRV_LOG(DEBUG, "GPIO_2_FUNC!"); } if (asserted & GPIO_3_FUNC) { PMD_DRV_LOG(DEBUG, "GPIO_3_FUNC!"); } if (asserted & GPIO_4_FUNC) { PMD_DRV_LOG(DEBUG, "GPIO_4_FUNC!"); } if (port == 0) { if (asserted & ATTN_GENERAL_ATTN_1) { PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_1!"); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); } if (asserted & ATTN_GENERAL_ATTN_2) { PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_2!"); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); } if (asserted & ATTN_GENERAL_ATTN_3) { PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_3!"); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); } } else { if (asserted & ATTN_GENERAL_ATTN_4) { PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_4!"); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); } if (asserted & ATTN_GENERAL_ATTN_5) { PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_5!"); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); } if (asserted & ATTN_GENERAL_ATTN_6) { PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_6!"); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); } } } /* hardwired */ if (sc->devinfo.int_block == INT_BLOCK_HC) { reg_addr = (HC_REG_COMMAND_REG + port * 32 + COMMAND_REG_ATTN_BITS_SET); } else { reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER * 8); } PMD_DRV_LOG(DEBUG, "about to mask 0x%08x at %s addr 0x%08x", asserted, (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); REG_WR(sc, reg_addr, asserted); /* now set back the mask */ if (asserted & ATTN_NIG_FOR_FUNC) { /* * Verify that IGU ack through BAR was written before restoring * NIG mask. This loop should exit after 2-3 iterations max. */ if (sc->devinfo.int_block != INT_BLOCK_HC) { cnt = 0; do { igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && (++cnt < MAX_IGU_ATTN_ACK_TO)); if (!igu_acked) { PMD_DRV_LOG(ERR, "Failed to verify IGU ack on time"); } mb(); } REG_WR(sc, nig_int_mask_addr, nig_mask); } } static void bnx2x_print_next_block(__rte_unused struct bnx2x_softc *sc, __rte_unused int idx, __rte_unused const char *blk) { PMD_DRV_LOG(INFO, "%s%s", idx ? ", " : "", blk); } static int bnx2x_check_blocks_with_parity0(struct bnx2x_softc *sc, uint32_t sig, int par_num, uint8_t print) { uint32_t cur_bit = 0; int i = 0; for (i = 0; sig; i++) { cur_bit = ((uint32_t) 0x1 << i); if (sig & cur_bit) { switch (cur_bit) { case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "BRB"); break; case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "PARSER"); break; case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "TSDM"); break; case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "SEARCHER"); break; case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "TCM"); break; case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "TSEMI"); break; case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "XPB"); break; } /* Clear the bit */ sig &= ~cur_bit; } } return par_num; } static int bnx2x_check_blocks_with_parity1(struct bnx2x_softc *sc, uint32_t sig, int par_num, uint8_t * global, uint8_t print) { int i = 0; uint32_t cur_bit = 0; for (i = 0; sig; i++) { cur_bit = ((uint32_t) 0x1 << i); if (sig & cur_bit) { switch (cur_bit) { case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "PBF"); break; case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "QM"); break; case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "TM"); break; case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "XSDM"); break; case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "XCM"); break; case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "XSEMI"); break; case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "DOORBELLQ"); break; case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "NIG"); break; case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "VAUX PCI CORE"); *global = TRUE; break; case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "DEBUG"); break; case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "USDM"); break; case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "UCM"); break; case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "USEMI"); break; case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "UPB"); break; case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "CSDM"); break; case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "CCM"); break; } /* Clear the bit */ sig &= ~cur_bit; } } return par_num; } static int bnx2x_check_blocks_with_parity2(struct bnx2x_softc *sc, uint32_t sig, int par_num, uint8_t print) { uint32_t cur_bit = 0; int i = 0; for (i = 0; sig; i++) { cur_bit = ((uint32_t) 0x1 << i); if (sig & cur_bit) { switch (cur_bit) { case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "CSEMI"); break; case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "PXP"); break; case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); break; case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "CFC"); break; case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "CDU"); break; case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "DMAE"); break; case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "IGU"); break; case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "MISC"); break; } /* Clear the bit */ sig &= ~cur_bit; } } return par_num; } static int bnx2x_check_blocks_with_parity3(struct bnx2x_softc *sc, uint32_t sig, int par_num, uint8_t * global, uint8_t print) { uint32_t cur_bit = 0; int i = 0; for (i = 0; sig; i++) { cur_bit = ((uint32_t) 0x1 << i); if (sig & cur_bit) { switch (cur_bit) { case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: if (print) bnx2x_print_next_block(sc, par_num++, "MCP ROM"); *global = TRUE; break; case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: if (print) bnx2x_print_next_block(sc, par_num++, "MCP UMP RX"); *global = TRUE; break; case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: if (print) bnx2x_print_next_block(sc, par_num++, "MCP UMP TX"); *global = TRUE; break; case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: if (print) bnx2x_print_next_block(sc, par_num++, "MCP SCPAD"); *global = TRUE; break; } /* Clear the bit */ sig &= ~cur_bit; } } return par_num; } static int bnx2x_check_blocks_with_parity4(struct bnx2x_softc *sc, uint32_t sig, int par_num, uint8_t print) { uint32_t cur_bit = 0; int i = 0; for (i = 0; sig; i++) { cur_bit = ((uint32_t) 0x1 << i); if (sig & cur_bit) { switch (cur_bit) { case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "PGLUE_B"); break; case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: if (print) bnx2x_print_next_block(sc, par_num++, "ATC"); break; } /* Clear the bit */ sig &= ~cur_bit; } } return par_num; } static uint8_t bnx2x_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print, uint32_t * sig) { int par_num = 0; if ((sig[0] & HW_PRTY_ASSERT_SET_0) || (sig[1] & HW_PRTY_ASSERT_SET_1) || (sig[2] & HW_PRTY_ASSERT_SET_2) || (sig[3] & HW_PRTY_ASSERT_SET_3) || (sig[4] & HW_PRTY_ASSERT_SET_4)) { PMD_DRV_LOG(ERR, "Parity error: HW block parity attention:" "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x", (uint32_t) (sig[0] & HW_PRTY_ASSERT_SET_0), (uint32_t) (sig[1] & HW_PRTY_ASSERT_SET_1), (uint32_t) (sig[2] & HW_PRTY_ASSERT_SET_2), (uint32_t) (sig[3] & HW_PRTY_ASSERT_SET_3), (uint32_t) (sig[4] & HW_PRTY_ASSERT_SET_4)); if (print) PMD_DRV_LOG(INFO, "Parity errors detected in blocks: "); par_num = bnx2x_check_blocks_with_parity0(sc, sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print); par_num = bnx2x_check_blocks_with_parity1(sc, sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print); par_num = bnx2x_check_blocks_with_parity2(sc, sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print); par_num = bnx2x_check_blocks_with_parity3(sc, sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print); par_num = bnx2x_check_blocks_with_parity4(sc, sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print); if (print) PMD_DRV_LOG(INFO, ""); return TRUE; } return FALSE; } static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print) { struct attn_route attn = { {0} }; int port = SC_PORT(sc); attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4); attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4); attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4); attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4); if (!CHIP_IS_E1x(sc)) attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4); return bnx2x_parity_attn(sc, global, print, attn.sig); } static void bnx2x_attn_int_deasserted4(struct bnx2x_softc *sc, uint32_t attn) { uint32_t val; if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); PMD_DRV_LOG(INFO, "ERROR: PGLUE hw attention 0x%08x", val); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) PMD_DRV_LOG(INFO, "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) PMD_DRV_LOG(INFO, "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) PMD_DRV_LOG(INFO, "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) PMD_DRV_LOG(INFO, "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) PMD_DRV_LOG(INFO, "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) PMD_DRV_LOG(INFO, "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) PMD_DRV_LOG(INFO, "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) PMD_DRV_LOG(INFO, "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) PMD_DRV_LOG(INFO, "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW"); } if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); PMD_DRV_LOG(INFO, "ERROR: ATC hw attention 0x%08x", val); if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) PMD_DRV_LOG(INFO, "ERROR: ATC_ATC_INT_STS_REG_ADDRESS_ERROR"); if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) PMD_DRV_LOG(INFO, "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND"); if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) PMD_DRV_LOG(INFO, "ERROR: ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS"); if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) PMD_DRV_LOG(INFO, "ERROR: ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT"); if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) PMD_DRV_LOG(INFO, "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR"); if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) PMD_DRV_LOG(INFO, "ERROR: ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU"); } if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { PMD_DRV_LOG(INFO, "ERROR: FATAL parity attention set4 0x%08x", (uint32_t) (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); } } static void bnx2x_e1h_disable(struct bnx2x_softc *sc) { int port = SC_PORT(sc); REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0); } static void bnx2x_e1h_enable(struct bnx2x_softc *sc) { int port = SC_PORT(sc); REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1); } /* * called due to MCP event (on pmf): * reread new bandwidth configuration * configure FW * notify others function about the change */ static void bnx2x_config_mf_bw(struct bnx2x_softc *sc) { if (sc->link_vars.link_up) { bnx2x_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); bnx2x_link_sync_notify(sc); } storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); } static void bnx2x_set_mf_bw(struct bnx2x_softc *sc) { bnx2x_config_mf_bw(sc); bnx2x_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); } static void bnx2x_handle_eee_event(struct bnx2x_softc *sc) { bnx2x_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); } #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 static void bnx2x_drv_info_ether_stat(struct bnx2x_softc *sc) { struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat; strncpy(ether_stat->version, BNX2X_DRIVER_VERSION, ETH_STAT_INFO_VERSION_LEN); sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, ether_stat->mac_local + MAC_PAD, MAC_PAD, ETH_ALEN); ether_stat->mtu_size = sc->mtu; ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; ether_stat->txq_size = sc->tx_ring_size; ether_stat->rxq_size = sc->rx_ring_size; } static void bnx2x_handle_drv_info_req(struct bnx2x_softc *sc) { enum drv_info_opcode op_code; uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); /* if drv_info version supported by MFW doesn't match - send NACK */ if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); return; } op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> DRV_INFO_CONTROL_OP_CODE_SHIFT); memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); switch (op_code) { case ETH_STATS_OPCODE: bnx2x_drv_info_ether_stat(sc); break; case FCOE_STATS_OPCODE: case ISCSI_STATS_OPCODE: default: /* if op code isn't supported - send NACK */ bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); return; } /* * If we got drv_info attn from MFW then these fields are defined in * shmem2 for sure */ SHMEM2_WR(sc, drv_info_host_addr_lo, U64_LO(BNX2X_SP_MAPPING(sc, drv_info_to_mcp))); SHMEM2_WR(sc, drv_info_host_addr_hi, U64_HI(BNX2X_SP_MAPPING(sc, drv_info_to_mcp))); bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); } static void bnx2x_dcc_event(struct bnx2x_softc *sc, uint32_t dcc_event) { if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { /* * This is the only place besides the function initialization * where the sc->flags can change so it is done without any * locks */ if (sc->devinfo. mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { PMD_DRV_LOG(DEBUG, "mf_cfg function disabled"); sc->flags |= BNX2X_MF_FUNC_DIS; bnx2x_e1h_disable(sc); } else { PMD_DRV_LOG(DEBUG, "mf_cfg function enabled"); sc->flags &= ~BNX2X_MF_FUNC_DIS; bnx2x_e1h_enable(sc); } dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; } if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { bnx2x_config_mf_bw(sc); dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; } /* Report results to MCP */ if (dcc_event) bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); else bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); } static void bnx2x_pmf_update(struct bnx2x_softc *sc) { int port = SC_PORT(sc); uint32_t val; sc->port.pmf = 1; /* * We need the mb() to ensure the ordering between the writing to * sc->port.pmf here and reading it from the bnx2x_periodic_task(). */ mb(); /* enable nig attention */ val = (0xff0f | (1 << (SC_VN(sc) + 4))); if (sc->devinfo.int_block == INT_BLOCK_HC) { REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val); REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val); } else if (!CHIP_IS_E1x(sc)) { REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); } bnx2x_stats_handle(sc, STATS_EVENT_PMF); } static int bnx2x_mc_assert(struct bnx2x_softc *sc) { char last_idx; int i, rc = 0; __rte_unused uint32_t row0, row1, row2, row3; /* XSTORM */ last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); if (last_idx) PMD_DRV_LOG(ERR, "XSTORM_ASSERT_LIST_INDEX 0x%x", last_idx); /* print the asserts */ for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { PMD_DRV_LOG(ERR, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x", i, row3, row2, row1, row0); rc++; } else { break; } } /* TSTORM */ last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); if (last_idx) { PMD_DRV_LOG(ERR, "TSTORM_ASSERT_LIST_INDEX 0x%x", last_idx); } /* print the asserts */ for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { PMD_DRV_LOG(ERR, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x", i, row3, row2, row1, row0); rc++; } else { break; } } /* CSTORM */ last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); if (last_idx) { PMD_DRV_LOG(ERR, "CSTORM_ASSERT_LIST_INDEX 0x%x", last_idx); } /* print the asserts */ for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { PMD_DRV_LOG(ERR, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x", i, row3, row2, row1, row0); rc++; } else { break; } } /* USTORM */ last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); if (last_idx) { PMD_DRV_LOG(ERR, "USTORM_ASSERT_LIST_INDEX 0x%x", last_idx); } /* print the asserts */ for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { PMD_DRV_LOG(ERR, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x", i, row3, row2, row1, row0); rc++; } else { break; } } return rc; } static void bnx2x_attn_int_deasserted3(struct bnx2x_softc *sc, uint32_t attn) { int func = SC_FUNC(sc); uint32_t val; if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { if (attn & BNX2X_PMF_LINK_ASSERT(sc)) { REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0); bnx2x_read_mf_cfg(sc); sc->devinfo.mf_info.mf_config[SC_VN(sc)] = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); if (val & DRV_STATUS_DCC_EVENT_MASK) bnx2x_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); if (val & DRV_STATUS_SET_MF_BW) bnx2x_set_mf_bw(sc); if (val & DRV_STATUS_DRV_INFO_REQ) bnx2x_handle_drv_info_req(sc); if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) bnx2x_pmf_update(sc); if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) bnx2x_handle_eee_event(sc); if (sc->link_vars.periodic_flags & ELINK_PERIODIC_FLAGS_LINK_EVENT) { /* sync with link */ sc->link_vars.periodic_flags &= ~ELINK_PERIODIC_FLAGS_LINK_EVENT; if (IS_MF(sc)) { bnx2x_link_sync_notify(sc); } bnx2x_link_report(sc); } /* * Always call it here: bnx2x_link_report() will * prevent the link indication duplication. */ bnx2x_link_status_update(sc); } else if (attn & BNX2X_MC_ASSERT_BITS) { PMD_DRV_LOG(ERR, "MC assert!"); bnx2x_mc_assert(sc); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); rte_panic("MC assert!"); } else if (attn & BNX2X_MCP_ASSERT) { PMD_DRV_LOG(ERR, "MCP assert!"); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); } else { PMD_DRV_LOG(ERR, "Unknown HW assert! (attn 0x%08x)", attn); } } if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { PMD_DRV_LOG(ERR, "LATCHED attention 0x%08x (masked)", attn); if (attn & BNX2X_GRC_TIMEOUT) { val = REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); PMD_DRV_LOG(ERR, "GRC time-out 0x%08x", val); } if (attn & BNX2X_GRC_RSV) { val = REG_RD(sc, MISC_REG_GRC_RSV_ATTN); PMD_DRV_LOG(ERR, "GRC reserved 0x%08x", val); } REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); } } static void bnx2x_attn_int_deasserted2(struct bnx2x_softc *sc, uint32_t attn) { int port = SC_PORT(sc); int reg_offset; uint32_t val0, mask0, val1, mask1; uint32_t val; if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); PMD_DRV_LOG(ERR, "CFC hw attention 0x%08x", val); /* CFC error attention */ if (val & 0x2) { PMD_DRV_LOG(ERR, "FATAL error from CFC"); } } if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); PMD_DRV_LOG(ERR, "PXP hw attention-0 0x%08x", val); /* RQ_USDMDP_FIFO_OVERFLOW */ if (val & 0x18000) { PMD_DRV_LOG(ERR, "FATAL error from PXP"); } if (!CHIP_IS_E1x(sc)) { val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); PMD_DRV_LOG(ERR, "PXP hw attention-1 0x%08x", val); } } #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT if (attn & AEU_PXP2_HW_INT_BIT) { /* CQ47854 workaround do not panic on * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR */ if (!CHIP_IS_E1x(sc)) { mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); /* * If the olny PXP2_EOP_ERROR_BIT is set in * STS0 and STS1 - clear it * * probably we lose additional attentions between * STS0 and STS_CLR0, in this case user will not * be notified about them */ if (val0 & mask0 & PXP2_EOP_ERROR_BIT && !(val1 & mask1)) val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); /* print the register, since no one can restore it */ PMD_DRV_LOG(ERR, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x", val0); /* * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR * then notify */ if (val0 & PXP2_EOP_ERROR_BIT) { PMD_DRV_LOG(ERR, "PXP2_WR_PGLUE_EOP_ERROR"); /* * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is * set then clear attention from PXP2 block without panic */ if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && ((val1 & mask1) == 0)) attn &= ~AEU_PXP2_HW_INT_BIT; } } } if (attn & HW_INTERRUT_ASSERT_SET_2) { reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); val = REG_RD(sc, reg_offset); val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); REG_WR(sc, reg_offset, val); PMD_DRV_LOG(ERR, "FATAL HW block attention set2 0x%x", (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_2)); rte_panic("HW block attention set2"); } } static void bnx2x_attn_int_deasserted1(struct bnx2x_softc *sc, uint32_t attn) { int port = SC_PORT(sc); int reg_offset; uint32_t val; if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); PMD_DRV_LOG(ERR, "DB hw attention 0x%08x", val); /* DORQ discard attention */ if (val & 0x2) { PMD_DRV_LOG(ERR, "FATAL error from DORQ"); } } if (attn & HW_INTERRUT_ASSERT_SET_1) { reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); val = REG_RD(sc, reg_offset); val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); REG_WR(sc, reg_offset, val); PMD_DRV_LOG(ERR, "FATAL HW block attention set1 0x%08x", (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_1)); rte_panic("HW block attention set1"); } } static void bnx2x_attn_int_deasserted0(struct bnx2x_softc *sc, uint32_t attn) { int port = SC_PORT(sc); int reg_offset; uint32_t val; reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { val = REG_RD(sc, reg_offset); val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; REG_WR(sc, reg_offset, val); PMD_DRV_LOG(WARNING, "SPIO5 hw attention"); /* Fan failure attention */ elink_hw_reset_phy(&sc->link_params); bnx2x_fan_failure(sc); } if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { elink_handle_module_detect_int(&sc->link_params); } if (attn & HW_INTERRUT_ASSERT_SET_0) { val = REG_RD(sc, reg_offset); val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); REG_WR(sc, reg_offset, val); rte_panic("FATAL HW block attention set0 0x%lx", (attn & HW_INTERRUT_ASSERT_SET_0)); } } static void bnx2x_attn_int_deasserted(struct bnx2x_softc *sc, uint32_t deasserted) { struct attn_route attn; struct attn_route *group_mask; int port = SC_PORT(sc); int index; uint32_t reg_addr; uint32_t val; uint32_t aeu_mask; uint8_t global = FALSE; /* * Need to take HW lock because MCP or other port might also * try to handle this event. */ bnx2x_acquire_alr(sc); if (bnx2x_chk_parity_attn(sc, &global, TRUE)) { sc->recovery_state = BNX2X_RECOVERY_INIT; /* disable HW interrupts */ bnx2x_int_disable(sc); bnx2x_release_alr(sc); return; } attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4); attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4); attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4); attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4); if (!CHIP_IS_E1x(sc)) { attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4); } else { attn.sig[4] = 0; } for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { if (deasserted & (1 << index)) { group_mask = &sc->attn_group[index]; bnx2x_attn_int_deasserted4(sc, attn. sig[4] & group_mask->sig[4]); bnx2x_attn_int_deasserted3(sc, attn. sig[3] & group_mask->sig[3]); bnx2x_attn_int_deasserted1(sc, attn. sig[1] & group_mask->sig[1]); bnx2x_attn_int_deasserted2(sc, attn. sig[2] & group_mask->sig[2]); bnx2x_attn_int_deasserted0(sc, attn. sig[0] & group_mask->sig[0]); } } bnx2x_release_alr(sc); if (sc->devinfo.int_block == INT_BLOCK_HC) { reg_addr = (HC_REG_COMMAND_REG + port * 32 + COMMAND_REG_ATTN_BITS_CLR); } else { reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER * 8); } val = ~deasserted; PMD_DRV_LOG(DEBUG, "about to mask 0x%08x at %s addr 0x%08x", val, (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); REG_WR(sc, reg_addr, val); if (~sc->attn_state & deasserted) { PMD_DRV_LOG(ERR, "IGU error"); } reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : MISC_REG_AEU_MASK_ATTN_FUNC_0; bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); aeu_mask = REG_RD(sc, reg_addr); aeu_mask |= (deasserted & 0x3ff); REG_WR(sc, reg_addr, aeu_mask); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); sc->attn_state &= ~deasserted; } static void bnx2x_attn_int(struct bnx2x_softc *sc) { /* read local copy of bits */ uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); uint32_t attn_state = sc->attn_state; /* look for changed bits */ uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; uint32_t deasserted = ~attn_bits & attn_ack & attn_state; PMD_DRV_LOG(DEBUG, "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x", attn_bits, attn_ack, asserted, deasserted); if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { PMD_DRV_LOG(ERR, "BAD attention state"); } /* handle bits that were raised */ if (asserted) { bnx2x_attn_int_asserted(sc, asserted); } if (deasserted) { bnx2x_attn_int_deasserted(sc, deasserted); } } static uint16_t bnx2x_update_dsb_idx(struct bnx2x_softc *sc) { struct host_sp_status_block *def_sb = sc->def_sb; uint16_t rc = 0; mb(); /* status block is written to by the chip */ if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; rc |= BNX2X_DEF_SB_ATT_IDX; } if (sc->def_idx != def_sb->sp_sb.running_index) { sc->def_idx = def_sb->sp_sb.running_index; rc |= BNX2X_DEF_SB_IDX; } mb(); return rc; } static struct ecore_queue_sp_obj *bnx2x_cid_to_q_obj(struct bnx2x_softc *sc, uint32_t cid) { return &sc->sp_objs[CID_TO_FP(cid, sc)].q_obj; } static void bnx2x_handle_mcast_eqe(struct bnx2x_softc *sc) { struct ecore_mcast_ramrod_params rparam; int rc; memset(&rparam, 0, sizeof(rparam)); rparam.mcast_obj = &sc->mcast_obj; /* clear pending state for the last command */ sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); /* if there are pending mcast commands - send them */ if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); if (rc < 0) { PMD_DRV_LOG(INFO, "Failed to send pending mcast commands (%d)", rc); } } } static void bnx2x_handle_classification_eqe(struct bnx2x_softc *sc, union event_ring_elem *elem) { unsigned long ramrod_flags = 0; int rc = 0; uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK; struct ecore_vlan_mac_obj *vlan_mac_obj; /* always push next commands out, don't wait here */ bnx2x_set_bit(RAMROD_CONT, &ramrod_flags); switch (le32toh(elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) { case ECORE_FILTER_MAC_PENDING: PMD_DRV_LOG(DEBUG, "Got SETUP_MAC completions"); vlan_mac_obj = &sc->sp_objs[cid].mac_obj; break; case ECORE_FILTER_MCAST_PENDING: PMD_DRV_LOG(DEBUG, "Got SETUP_MCAST completions"); bnx2x_handle_mcast_eqe(sc); return; default: PMD_DRV_LOG(NOTICE, "Unsupported classification command: %d", elem->message.data.eth_event.echo); return; } rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); if (rc < 0) { PMD_DRV_LOG(NOTICE, "Failed to schedule new commands (%d)", rc); } else if (rc > 0) { PMD_DRV_LOG(DEBUG, "Scheduled next pending commands..."); } } static void bnx2x_handle_rx_mode_eqe(struct bnx2x_softc *sc) { bnx2x_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); /* send rx_mode command again if was requested */ if (bnx2x_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state)) { bnx2x_set_storm_rx_mode(sc); } } static void bnx2x_update_eq_prod(struct bnx2x_softc *sc, uint16_t prod) { storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); wmb(); /* keep prod updates ordered */ } static void bnx2x_eq_int(struct bnx2x_softc *sc) { uint16_t hw_cons, sw_cons, sw_prod; union event_ring_elem *elem; uint8_t echo; uint32_t cid; uint8_t opcode; int spqe_cnt = 0; struct ecore_queue_sp_obj *q_obj; struct ecore_func_sp_obj *f_obj = &sc->func_obj; struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; hw_cons = le16toh(*sc->eq_cons_sb); /* * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. * when we get to the next-page we need to adjust so the loop * condition below will be met. The next element is the size of a * regular element and hence incrementing by 1 */ if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { hw_cons++; } /* * This function may never run in parallel with itself for a * specific sc and no need for a read memory barrier here. */ sw_cons = sc->eq_cons; sw_prod = sc->eq_prod; for (; sw_cons != hw_cons; sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { elem = &sc->eq[EQ_DESC(sw_cons)]; /* elem CID originates from FW, actually LE */ cid = SW_CID(elem->message.data.cfc_del_event.cid); opcode = elem->message.opcode; /* handle eq element */ switch (opcode) { case EVENT_RING_OPCODE_STAT_QUERY: PMD_DEBUG_PERIODIC_LOG(DEBUG, "got statistics completion event %d", sc->stats_comp++); /* nothing to do with stats comp */ goto next_spqe; case EVENT_RING_OPCODE_CFC_DEL: /* handle according to cid range */ /* we may want to verify here that the sc state is HALTING */ PMD_DRV_LOG(DEBUG, "got delete ramrod for MULTI[%d]", cid); q_obj = bnx2x_cid_to_q_obj(sc, cid); if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { break; } goto next_spqe; case EVENT_RING_OPCODE_STOP_TRAFFIC: PMD_DRV_LOG(DEBUG, "got STOP TRAFFIC"); if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { break; } goto next_spqe; case EVENT_RING_OPCODE_START_TRAFFIC: PMD_DRV_LOG(DEBUG, "got START TRAFFIC"); if (f_obj->complete_cmd (sc, f_obj, ECORE_F_CMD_TX_START)) { break; } goto next_spqe; case EVENT_RING_OPCODE_FUNCTION_UPDATE: echo = elem->message.data.function_update_event.echo; if (echo == SWITCH_UPDATE) { PMD_DRV_LOG(DEBUG, "got FUNC_SWITCH_UPDATE ramrod"); if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_SWITCH_UPDATE)) { break; } } else { PMD_DRV_LOG(DEBUG, "AFEX: ramrod completed FUNCTION_UPDATE"); f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE); } goto next_spqe; case EVENT_RING_OPCODE_FORWARD_SETUP: q_obj = &bnx2x_fwd_sp_obj(sc, q_obj); if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_SETUP_TX_ONLY)) { break; } goto next_spqe; case EVENT_RING_OPCODE_FUNCTION_START: PMD_DRV_LOG(DEBUG, "got FUNC_START ramrod"); if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { break; } goto next_spqe; case EVENT_RING_OPCODE_FUNCTION_STOP: PMD_DRV_LOG(DEBUG, "got FUNC_STOP ramrod"); if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { break; } goto next_spqe; } switch (opcode | sc->state) { case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN): case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAITING_PORT): cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK; PMD_DRV_LOG(DEBUG, "got RSS_UPDATE ramrod. CID %d", cid); rss_raw->clear_pending(rss_raw); break; case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAITING_HALT): case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN): case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG): case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAITING_HALT): PMD_DRV_LOG(DEBUG, "got (un)set mac ramrod"); bnx2x_handle_classification_eqe(sc, elem); break; case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN): case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG): case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAITING_HALT): PMD_DRV_LOG(DEBUG, "got mcast ramrod"); bnx2x_handle_mcast_eqe(sc); break; case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN): case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG): case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAITING_HALT): PMD_DRV_LOG(DEBUG, "got rx_mode ramrod"); bnx2x_handle_rx_mode_eqe(sc); break; default: /* unknown event log error and continue */ PMD_DRV_LOG(INFO, "Unknown EQ event %d, sc->state 0x%x", elem->message.opcode, sc->state); } next_spqe: spqe_cnt++; } /* for */ mb(); atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); sc->eq_cons = sw_cons; sc->eq_prod = sw_prod; /* make sure that above mem writes were issued towards the memory */ wmb(); /* update producer */ bnx2x_update_eq_prod(sc, sc->eq_prod); } static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc) { uint16_t status; int rc = 0; /* what work needs to be performed? */ status = bnx2x_update_dsb_idx(sc); /* HW attentions */ if (status & BNX2X_DEF_SB_ATT_IDX) { PMD_DRV_LOG(DEBUG, "---> ATTN INTR <---"); bnx2x_attn_int(sc); status &= ~BNX2X_DEF_SB_ATT_IDX; rc = 1; } /* SP events: STAT_QUERY and others */ if (status & BNX2X_DEF_SB_IDX) { /* handle EQ completions */ PMD_DEBUG_PERIODIC_LOG(DEBUG, "---> EQ INTR <---"); bnx2x_eq_int(sc); bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, le16toh(sc->def_idx), IGU_INT_NOP, 1); status &= ~BNX2X_DEF_SB_IDX; } /* if status is non zero then something went wrong */ if (unlikely(status)) { PMD_DRV_LOG(INFO, "Got an unknown SP interrupt! (0x%04x)", status); } /* ack status block only if something was actually handled */ bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); return rc; } static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp) { struct bnx2x_softc *sc = fp->sc; uint8_t more_rx = FALSE; /* update the fastpath index */ bnx2x_update_fp_sb_idx(fp); if (scan_fp) { if (bnx2x_has_rx_work(fp)) { more_rx = bnx2x_rxeof(sc, fp); } if (more_rx) { /* still more work to do */ bnx2x_handle_fp_tq(fp, scan_fp); return; } } bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, le16toh(fp->fp_hc_idx), IGU_INT_DISABLE, 1); } /* * Legacy interrupt entry point. * * Verifies that the controller generated the interrupt and * then calls a separate routine to handle the various * interrupt causes: link, RX, and TX. */ int bnx2x_intr_legacy(struct bnx2x_softc *sc, int scan_fp) { struct bnx2x_fastpath *fp; uint32_t status, mask; int i, rc = 0; /* * 0 for ustorm, 1 for cstorm * the bits returned from ack_int() are 0-15 * bit 0 = attention status block * bit 1 = fast path status block * a mask of 0x2 or more = tx/rx event * a mask of 1 = slow path event */ status = bnx2x_ack_int(sc); /* the interrupt is not for us */ if (unlikely(status == 0)) { return 0; } PMD_DEBUG_PERIODIC_LOG(DEBUG, "Interrupt status 0x%04x", status); //bnx2x_dump_status_block(sc); FOR_EACH_ETH_QUEUE(sc, i) { fp = &sc->fp[i]; mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); if (status & mask) { bnx2x_handle_fp_tq(fp, scan_fp); status &= ~mask; } } if (unlikely(status & 0x1)) { rc = bnx2x_handle_sp_tq(sc); status &= ~0x1; } if (unlikely(status)) { PMD_DRV_LOG(WARNING, "Unexpected fastpath status (0x%08x)!", status); } return rc; } static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc); static int bnx2x_init_hw_common(struct bnx2x_softc *sc); static int bnx2x_init_hw_port(struct bnx2x_softc *sc); static int bnx2x_init_hw_func(struct bnx2x_softc *sc); static void bnx2x_reset_common(struct bnx2x_softc *sc); static void bnx2x_reset_port(struct bnx2x_softc *sc); static void bnx2x_reset_func(struct bnx2x_softc *sc); static int bnx2x_init_firmware(struct bnx2x_softc *sc); static void bnx2x_release_firmware(struct bnx2x_softc *sc); static struct ecore_func_sp_drv_ops bnx2x_func_sp_drv = { .init_hw_cmn_chip = bnx2x_init_hw_common_chip, .init_hw_cmn = bnx2x_init_hw_common, .init_hw_port = bnx2x_init_hw_port, .init_hw_func = bnx2x_init_hw_func, .reset_hw_cmn = bnx2x_reset_common, .reset_hw_port = bnx2x_reset_port, .reset_hw_func = bnx2x_reset_func, .init_fw = bnx2x_init_firmware, .release_fw = bnx2x_release_firmware, }; static void bnx2x_init_func_obj(struct bnx2x_softc *sc) { sc->dmae_ready = 0; PMD_INIT_FUNC_TRACE(); ecore_init_func_obj(sc, &sc->func_obj, BNX2X_SP(sc, func_rdata), (phys_addr_t)BNX2X_SP_MAPPING(sc, func_rdata), BNX2X_SP(sc, func_afex_rdata), (phys_addr_t)BNX2X_SP_MAPPING(sc, func_afex_rdata), &bnx2x_func_sp_drv); } static int bnx2x_init_hw(struct bnx2x_softc *sc, uint32_t load_code) { struct ecore_func_state_params func_params = { NULL }; int rc; PMD_INIT_FUNC_TRACE(); /* prepare the parameters for function state transitions */ bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); func_params.f_obj = &sc->func_obj; func_params.cmd = ECORE_F_CMD_HW_INIT; func_params.params.hw_init.load_phase = load_code; /* * Via a plethora of function pointers, we will eventually reach * bnx2x_init_hw_common(), bnx2x_init_hw_port(), or bnx2x_init_hw_func(). */ rc = ecore_func_state_change(sc, &func_params); return rc; } static void bnx2x_fill(struct bnx2x_softc *sc, uint32_t addr, int fill, uint32_t len) { uint32_t i; if (!(len % 4) && !(addr % 4)) { for (i = 0; i < len; i += 4) { REG_WR(sc, (addr + i), fill); } } else { for (i = 0; i < len; i++) { REG_WR8(sc, (addr + i), fill); } } } /* writes FP SP data to FW - data_size in dwords */ static void bnx2x_wr_fp_sb_data(struct bnx2x_softc *sc, int fw_sb_id, uint32_t * sb_data_p, uint32_t data_size) { uint32_t index; for (index = 0; index < data_size; index++) { REG_WR(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + (sizeof(uint32_t) * index)), *(sb_data_p + index)); } } static void bnx2x_zero_fp_sb(struct bnx2x_softc *sc, int fw_sb_id) { struct hc_status_block_data_e2 sb_data_e2; struct hc_status_block_data_e1x sb_data_e1x; uint32_t *sb_data_p; uint32_t data_size = 0; if (!CHIP_IS_E1x(sc)) { memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); sb_data_e2.common.state = SB_DISABLED; sb_data_e2.common.p_func.vf_valid = FALSE; sb_data_p = (uint32_t *) & sb_data_e2; data_size = (sizeof(struct hc_status_block_data_e2) / sizeof(uint32_t)); } else { memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); sb_data_e1x.common.state = SB_DISABLED; sb_data_e1x.common.p_func.vf_valid = FALSE; sb_data_p = (uint32_t *) & sb_data_e1x; data_size = (sizeof(struct hc_status_block_data_e1x) / sizeof(uint32_t)); } bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0, CSTORM_STATUS_BLOCK_SIZE); bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 0, CSTORM_SYNC_BLOCK_SIZE); } static void bnx2x_wr_sp_sb_data(struct bnx2x_softc *sc, struct hc_sp_status_block_data *sp_sb_data) { uint32_t i; for (i = 0; i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); i++) { REG_WR(sc, (BAR_CSTRORM_INTMEM + CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + (i * sizeof(uint32_t))), *((uint32_t *) sp_sb_data + i)); } } static void bnx2x_zero_sp_sb(struct bnx2x_softc *sc) { struct hc_sp_status_block_data sp_sb_data; memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); sp_sb_data.state = SB_DISABLED; sp_sb_data.p_func.vf_valid = FALSE; bnx2x_wr_sp_sb_data(sc, &sp_sb_data); bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 0, CSTORM_SP_STATUS_BLOCK_SIZE); bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 0, CSTORM_SP_SYNC_BLOCK_SIZE); } static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id, int igu_seg_id) { hc_sm->igu_sb_id = igu_sb_id; hc_sm->igu_seg_id = igu_seg_id; hc_sm->timer_value = 0xFF; hc_sm->time_to_expire = 0xFFFFFFFF; } static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) { /* zero out state machine indices */ /* rx indices */ index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; /* tx indices */ index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; /* map indices */ /* rx indices */ index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); /* tx indices */ index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); } static void bnx2x_init_sb(struct bnx2x_softc *sc, phys_addr_t busaddr, int vfid, uint8_t vf_valid, int fw_sb_id, int igu_sb_id) { struct hc_status_block_data_e2 sb_data_e2; struct hc_status_block_data_e1x sb_data_e1x; struct hc_status_block_sm *hc_sm_p; uint32_t *sb_data_p; int igu_seg_id; int data_size; if (CHIP_INT_MODE_IS_BC(sc)) { igu_seg_id = HC_SEG_ACCESS_NORM; } else { igu_seg_id = IGU_SEG_ACCESS_NORM; } bnx2x_zero_fp_sb(sc, fw_sb_id); if (!CHIP_IS_E1x(sc)) { memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); sb_data_e2.common.state = SB_ENABLED; sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); sb_data_e2.common.p_func.vf_id = vfid; sb_data_e2.common.p_func.vf_valid = vf_valid; sb_data_e2.common.p_func.vnic_id = SC_VN(sc); sb_data_e2.common.same_igu_sb_1b = TRUE; sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); hc_sm_p = sb_data_e2.common.state_machine; sb_data_p = (uint32_t *) & sb_data_e2; data_size = (sizeof(struct hc_status_block_data_e2) / sizeof(uint32_t)); bnx2x_map_sb_state_machines(sb_data_e2.index_data); } else { memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); sb_data_e1x.common.state = SB_ENABLED; sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); sb_data_e1x.common.p_func.vf_id = 0xff; sb_data_e1x.common.p_func.vf_valid = FALSE; sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); sb_data_e1x.common.same_igu_sb_1b = TRUE; sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); hc_sm_p = sb_data_e1x.common.state_machine; sb_data_p = (uint32_t *) & sb_data_e1x; data_size = (sizeof(struct hc_status_block_data_e1x) / sizeof(uint32_t)); bnx2x_map_sb_state_machines(sb_data_e1x.index_data); } bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); /* write indices to HW - PCI guarantees endianity of regpairs */ bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); } static uint8_t bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp) { if (CHIP_IS_E1x(fp->sc)) { return fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H; } else { return fp->cl_id; } } static uint32_t bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp) { uint32_t offset = BAR_USTRORM_INTMEM; if (IS_VF(sc)) { return PXP_VF_ADDR_USDM_QUEUES_START + (sc->acquire_resp.resc.hw_qid[fp->index] * sizeof(struct ustorm_queue_zone_data)); } else if (!CHIP_IS_E1x(sc)) { offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); } else { offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); } return offset; } static void bnx2x_init_eth_fp(struct bnx2x_softc *sc, int idx) { struct bnx2x_fastpath *fp = &sc->fp[idx]; uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; unsigned long q_type = 0; int cos; fp->sc = sc; fp->index = idx; fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); if (CHIP_IS_E1x(sc)) fp->cl_id = SC_L_ID(sc) + idx; else /* want client ID same as IGU SB ID for non-E1 */ fp->cl_id = fp->igu_sb_id; fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); /* setup sb indices */ if (!CHIP_IS_E1x(sc)) { fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; } else { fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; } /* init shortcut */ fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(sc, fp); fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; for (cos = 0; cos < sc->max_cos; cos++) { cids[cos] = idx; } fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; /* nothing more for a VF to do */ if (IS_VF(sc)) { return; } bnx2x_init_sb(sc, fp->sb_dma.paddr, BNX2X_VF_ID_INVALID, FALSE, fp->fw_sb_id, fp->igu_sb_id); bnx2x_update_fp_sb_idx(fp); /* Configure Queue State object */ bnx2x_set_bit(ECORE_Q_TYPE_HAS_RX, &q_type); bnx2x_set_bit(ECORE_Q_TYPE_HAS_TX, &q_type); ecore_init_queue_obj(sc, &sc->sp_objs[idx].q_obj, fp->cl_id, cids, sc->max_cos, SC_FUNC(sc), BNX2X_SP(sc, q_rdata), (phys_addr_t)BNX2X_SP_MAPPING(sc, q_rdata), q_type); /* configure classification DBs */ ecore_init_mac_obj(sc, &sc->sp_objs[idx].mac_obj, fp->cl_id, idx, SC_FUNC(sc), BNX2X_SP(sc, mac_rdata), (phys_addr_t)BNX2X_SP_MAPPING(sc, mac_rdata), ECORE_FILTER_MAC_PENDING, &sc->sp_state, ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool); } static void bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint16_t rx_bd_prod, uint16_t rx_cq_prod) { union ustorm_eth_rx_producers rx_prods; uint32_t i; /* update producers */ rx_prods.prod.bd_prod = rx_bd_prod; rx_prods.prod.cqe_prod = rx_cq_prod; rx_prods.prod.reserved = 0; /* * Make sure that the BD and SGE data is updated before updating the * producers since FW might read the BD/SGE right after the producer * is updated. * This is only applicable for weak-ordered memory model archs such * as IA-64. The following barrier is also mandatory since FW will * assumes BDs must have buffers. */ wmb(); for (i = 0; i < (sizeof(rx_prods) / 4); i++) { REG_WR(sc, (fp->ustorm_rx_prods_offset + (i * 4)), rx_prods.raw_data[i]); } wmb(); /* keep prod updates ordered */ } static void bnx2x_init_rx_rings(struct bnx2x_softc *sc) { struct bnx2x_fastpath *fp; int i; struct bnx2x_rx_queue *rxq; for (i = 0; i < sc->num_queues; i++) { fp = &sc->fp[i]; rxq = sc->rx_queues[fp->index]; if (!rxq) { PMD_RX_LOG(ERR, "RX queue is NULL"); return; } rxq->rx_bd_head = 0; rxq->rx_bd_tail = rxq->nb_rx_desc; rxq->rx_cq_head = 0; rxq->rx_cq_tail = TOTAL_RCQ_ENTRIES(rxq); *fp->rx_cq_cons_sb = 0; /* * Activate the BD ring... * Warning, this will generate an interrupt (to the TSTORM) * so this can only be done after the chip is initialized */ bnx2x_update_rx_prod(sc, fp, rxq->rx_bd_tail, rxq->rx_cq_tail); if (i != 0) { continue; } } } static void bnx2x_init_tx_ring_one(struct bnx2x_fastpath *fp) { struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index]; fp->tx_db.data.header.header = 1 << DOORBELL_HDR_DB_TYPE_SHIFT; fp->tx_db.data.zero_fill1 = 0; fp->tx_db.data.prod = 0; if (!txq) { PMD_TX_LOG(ERR, "ERROR: TX queue is NULL"); return; } txq->tx_pkt_tail = 0; txq->tx_pkt_head = 0; txq->tx_bd_tail = 0; txq->tx_bd_head = 0; } static void bnx2x_init_tx_rings(struct bnx2x_softc *sc) { int i; for (i = 0; i < sc->num_queues; i++) { bnx2x_init_tx_ring_one(&sc->fp[i]); } } static void bnx2x_init_def_sb(struct bnx2x_softc *sc) { struct host_sp_status_block *def_sb = sc->def_sb; phys_addr_t mapping = sc->def_sb_dma.paddr; int igu_sp_sb_index; int igu_seg_id; int port = SC_PORT(sc); int func = SC_FUNC(sc); int reg_offset, reg_offset_en5; uint64_t section; int index, sindex; struct hc_sp_status_block_data sp_sb_data; memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); if (CHIP_INT_MODE_IS_BC(sc)) { igu_sp_sb_index = DEF_SB_IGU_ID; igu_seg_id = HC_SEG_ACCESS_DEF; } else { igu_sp_sb_index = sc->igu_dsb_id; igu_seg_id = IGU_SEG_ACCESS_DEF; } /* attentions */ section = ((uint64_t) mapping + offsetof(struct host_sp_status_block, atten_status_block)); def_sb->atten_status_block.status_block_id = igu_sp_sb_index; sc->attn_state = 0; reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { /* take care of sig[0]..sig[4] */ for (sindex = 0; sindex < 4; sindex++) { sc->attn_group[index].sig[sindex] = REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); } if (!CHIP_IS_E1x(sc)) { /* * enable5 is separate from the rest of the registers, * and the address skip is 4 and not 16 between the * different groups */ sc->attn_group[index].sig[4] = REG_RD(sc, (reg_offset_en5 + (0x4 * index))); } else { sc->attn_group[index].sig[4] = 0; } } if (sc->devinfo.int_block == INT_BLOCK_HC) { reg_offset = port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L; REG_WR(sc, reg_offset, U64_LO(section)); REG_WR(sc, (reg_offset + 4), U64_HI(section)); } else if (!CHIP_IS_E1x(sc)) { REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); } section = ((uint64_t) mapping + offsetof(struct host_sp_status_block, sp_sb)); bnx2x_zero_sp_sb(sc); /* PCI guarantees endianity of regpair */ sp_sb_data.state = SB_ENABLED; sp_sb_data.host_sb_addr.lo = U64_LO(section); sp_sb_data.host_sb_addr.hi = U64_HI(section); sp_sb_data.igu_sb_id = igu_sp_sb_index; sp_sb_data.igu_seg_id = igu_seg_id; sp_sb_data.p_func.pf_id = func; sp_sb_data.p_func.vnic_id = SC_VN(sc); sp_sb_data.p_func.vf_id = 0xff; bnx2x_wr_sp_sb_data(sc, &sp_sb_data); bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); } static void bnx2x_init_sp_ring(struct bnx2x_softc *sc) { atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); sc->spq_prod_idx = 0; sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; sc->spq_prod_bd = sc->spq; sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); } static void bnx2x_init_eq_ring(struct bnx2x_softc *sc) { union event_ring_elem *elem; int i; for (i = 1; i <= NUM_EQ_PAGES; i++) { elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + BNX2X_PAGE_SIZE * (i % NUM_EQ_PAGES))); elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + BNX2X_PAGE_SIZE * (i % NUM_EQ_PAGES))); } sc->eq_cons = 0; sc->eq_prod = NUM_EQ_DESC; sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; atomic_store_rel_long(&sc->eq_spq_left, (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), NUM_EQ_DESC) - 1)); } static void bnx2x_init_internal_common(struct bnx2x_softc *sc) { int i; if (IS_MF_SI(sc)) { /* * In switch independent mode, the TSTORM needs to accept * packets that failed classification, since approximate match * mac addresses aren't written to NIG LLH. */ REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 2); } else REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 0); /* * Zero this manually as its initialization is currently missing * in the initTool. */ for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { REG_WR(sc, (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 0); } if (!CHIP_IS_E1x(sc)) { REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); } } static void bnx2x_init_internal(struct bnx2x_softc *sc, uint32_t load_code) { switch (load_code) { case FW_MSG_CODE_DRV_LOAD_COMMON: case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: bnx2x_init_internal_common(sc); /* no break */ case FW_MSG_CODE_DRV_LOAD_PORT: /* nothing to do */ /* no break */ case FW_MSG_CODE_DRV_LOAD_FUNCTION: /* internal memory per function is initialized inside bnx2x_pf_init */ break; default: PMD_DRV_LOG(NOTICE, "Unknown load_code (0x%x) from MCP", load_code); break; } } static void storm_memset_func_cfg(struct bnx2x_softc *sc, struct tstorm_eth_function_common_config *tcfg, uint16_t abs_fid) { uint32_t addr; size_t size; addr = (BAR_TSTRORM_INTMEM + TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); size = sizeof(struct tstorm_eth_function_common_config); ecore_storm_memset_struct(sc, addr, size, (uint32_t *) tcfg); } static void bnx2x_func_init(struct bnx2x_softc *sc, struct bnx2x_func_init_params *p) { struct tstorm_eth_function_common_config tcfg = { 0 }; if (CHIP_IS_E1x(sc)) { storm_memset_func_cfg(sc, &tcfg, p->func_id); } /* Enable the function in the FW */ storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); storm_memset_func_en(sc, p->func_id, 1); /* spq */ if (p->func_flgs & FUNC_FLG_SPQ) { storm_memset_spq_addr(sc, p->spq_map, p->func_id); REG_WR(sc, (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod); } } /* * Calculates the sum of vn_min_rates. * It's needed for further normalizing of the min_rates. * Returns: * sum of vn_min_rates. * or * 0 - if all the min_rates are 0. * In the later case fainess algorithm should be deactivated. * If all min rates are not zero then those that are zeroes will be set to 1. */ static void bnx2x_calc_vn_min(struct bnx2x_softc *sc, struct cmng_init_input *input) { uint32_t vn_cfg; uint32_t vn_min_rate; int all_zero = 1; int vn; for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { vn_cfg = sc->devinfo.mf_info.mf_config[vn]; vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT) * 100); if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { /* skip hidden VNs */ vn_min_rate = 0; } else if (!vn_min_rate) { /* If min rate is zero - set it to 100 */ vn_min_rate = DEF_MIN_RATE; } else { all_zero = 0; } input->vnic_min_rate[vn] = vn_min_rate; } /* if ETS or all min rates are zeros - disable fairness */ if (all_zero) { input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; } else { input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; } } static uint16_t bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc *sc, uint32_t mf_cfg) { uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); if (!max_cfg) { PMD_DRV_LOG(DEBUG, "Max BW configured to 0 - using 100 instead"); max_cfg = 100; } return max_cfg; } static void bnx2x_calc_vn_max(struct bnx2x_softc *sc, int vn, struct cmng_init_input *input) { uint16_t vn_max_rate; uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; uint32_t max_cfg; if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { vn_max_rate = 0; } else { max_cfg = bnx2x_extract_max_cfg(sc, vn_cfg); if (IS_MF_SI(sc)) { /* max_cfg in percents of linkspeed */ vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); } else { /* SD modes */ /* max_cfg is absolute in 100Mb units */ vn_max_rate = (max_cfg * 100); } } input->vnic_max_rate[vn] = vn_max_rate; } static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type) { struct cmng_init_input input; int vn; memset(&input, 0, sizeof(struct cmng_init_input)); input.port_rate = sc->link_vars.line_speed; if (cmng_type == CMNG_FNS_MINMAX) { /* read mf conf from shmem */ if (read_cfg) { bnx2x_read_mf_cfg(sc); } /* get VN min rate and enable fairness if not 0 */ bnx2x_calc_vn_min(sc, &input); /* get VN max rate */ if (sc->port.pmf) { for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { bnx2x_calc_vn_max(sc, vn, &input); } } /* always enable rate shaping and fairness */ input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; ecore_init_cmng(&input, &sc->cmng); return; } } static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc) { if (CHIP_REV_IS_SLOW(sc)) { return CMNG_FNS_NONE; } if (IS_MF(sc)) { return CMNG_FNS_MINMAX; } return CMNG_FNS_NONE; } static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port) { int vn; int func; uint32_t addr; size_t size; addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); size = sizeof(struct cmng_struct_per_port); ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng->port); for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { func = func_by_vn(sc, vn); addr = (BAR_XSTRORM_INTMEM + XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); size = sizeof(struct rate_shaping_vars_per_vn); ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng-> vnic.vnic_max_rate[vn]); addr = (BAR_XSTRORM_INTMEM + XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); size = sizeof(struct fairness_vars_per_vn); ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng-> vnic.vnic_min_rate[vn]); } } static void bnx2x_pf_init(struct bnx2x_softc *sc) { struct bnx2x_func_init_params func_init; struct event_ring_data eq_data; uint16_t flags; memset(&eq_data, 0, sizeof(struct event_ring_data)); memset(&func_init, 0, sizeof(struct bnx2x_func_init_params)); if (!CHIP_IS_E1x(sc)) { /* reset IGU PF statistics: MSIX + ATTN */ /* PF */ REG_WR(sc, (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + (BNX2X_IGU_STAS_MSG_VF_CNT * 4) + ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 0); /* ATTN */ REG_WR(sc, (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + (BNX2X_IGU_STAS_MSG_VF_CNT * 4) + (BNX2X_IGU_STAS_MSG_PF_CNT * 4) + ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 0); } /* function setup flags */ flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); func_init.func_flgs = flags; func_init.pf_id = SC_FUNC(sc); func_init.func_id = SC_FUNC(sc); func_init.spq_map = sc->spq_dma.paddr; func_init.spq_prod = sc->spq_prod_idx; bnx2x_func_init(sc, &func_init); memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); /* * Congestion management values depend on the link rate. * There is no active link so initial link rate is set to 10Gbps. * When the link comes up the congestion management values are * re-calculated according to the actual link rate. */ sc->link_vars.line_speed = SPEED_10000; bnx2x_cmng_fns_init(sc, TRUE, bnx2x_get_cmng_fns_mode(sc)); /* Only the PMF sets the HW */ if (sc->port.pmf) { storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); } /* init Event Queue - PCI bus guarantees correct endainity */ eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); eq_data.producer = sc->eq_prod; eq_data.index_id = HC_SP_INDEX_EQ_CONS; eq_data.sb_id = DEF_SB_ID; storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); } static void bnx2x_hc_int_enable(struct bnx2x_softc *sc) { int port = SC_PORT(sc); uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; uint32_t val = REG_RD(sc, addr); uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX); uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX); uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI); if (msix) { val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | HC_CONFIG_0_REG_INT_LINE_EN_0); val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0); if (single_msix) { val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; } } else if (msi) { val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0); } else { val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0); REG_WR(sc, addr, val); val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; } REG_WR(sc, addr, val); /* ensure that HC_CONFIG is written before leading/trailing edge config */ mb(); /* init leading/trailing edge */ if (IS_MF(sc)) { val = (0xee0f | (1 << (SC_VN(sc) + 4))); if (sc->port.pmf) { /* enable nig and gpio3 attention */ val |= 0x1100; } } else { val = 0xffff; } REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port * 8), val); REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port * 8), val); /* make sure that interrupts are indeed enabled from here on */ mb(); } static void bnx2x_igu_int_enable(struct bnx2x_softc *sc) { uint32_t val; uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX); uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX); uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI); val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); if (msix) { val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN); val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN); if (single_msix) { val |= IGU_PF_CONF_SINGLE_ISR_EN; } } else if (msi) { val &= ~IGU_PF_CONF_INT_LINE_EN; val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN); } else { val &= ~IGU_PF_CONF_MSI_MSIX_EN; val |= (IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN); } /* clean previous status - need to configure igu prior to ack */ if ((!msix) || single_msix) { REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); bnx2x_ack_int(sc); } val |= IGU_PF_CONF_FUNC_EN; PMD_DRV_LOG(DEBUG, "write 0x%x to IGU mode %s", val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); mb(); /* init leading/trailing edge */ if (IS_MF(sc)) { val = (0xee0f | (1 << (SC_VN(sc) + 4))); if (sc->port.pmf) { /* enable nig and gpio3 attention */ val |= 0x1100; } } else { val = 0xffff; } REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); /* make sure that interrupts are indeed enabled from here on */ mb(); } static void bnx2x_int_enable(struct bnx2x_softc *sc) { if (sc->devinfo.int_block == INT_BLOCK_HC) { bnx2x_hc_int_enable(sc); } else { bnx2x_igu_int_enable(sc); } } static void bnx2x_hc_int_disable(struct bnx2x_softc *sc) { int port = SC_PORT(sc); uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; uint32_t val = REG_RD(sc, addr); val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0); /* flush all outstanding writes */ mb(); REG_WR(sc, addr, val); if (REG_RD(sc, addr) != val) { PMD_DRV_LOG(ERR, "proper val not read from HC IGU!"); } } static void bnx2x_igu_int_disable(struct bnx2x_softc *sc) { uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); val &= ~(IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN); PMD_DRV_LOG(DEBUG, "write %x to IGU", val); /* flush all outstanding writes */ mb(); REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { PMD_DRV_LOG(ERR, "proper val not read from IGU!"); } } static void bnx2x_int_disable(struct bnx2x_softc *sc) { if (sc->devinfo.int_block == INT_BLOCK_HC) { bnx2x_hc_int_disable(sc); } else { bnx2x_igu_int_disable(sc); } } static void bnx2x_nic_init(struct bnx2x_softc *sc, int load_code) { int i; PMD_INIT_FUNC_TRACE(); for (i = 0; i < sc->num_queues; i++) { bnx2x_init_eth_fp(sc, i); } rmb(); /* ensure status block indices were read */ bnx2x_init_rx_rings(sc); bnx2x_init_tx_rings(sc); if (IS_VF(sc)) { bnx2x_memset_stats(sc); return; } /* initialize MOD_ABS interrupts */ elink_init_mod_abs_int(sc, &sc->link_vars, sc->devinfo.chip_id, sc->devinfo.shmem_base, sc->devinfo.shmem2_base, SC_PORT(sc)); bnx2x_init_def_sb(sc); bnx2x_update_dsb_idx(sc); bnx2x_init_sp_ring(sc); bnx2x_init_eq_ring(sc); bnx2x_init_internal(sc, load_code); bnx2x_pf_init(sc); bnx2x_stats_init(sc); /* flush all before enabling interrupts */ mb(); bnx2x_int_enable(sc); /* check for SPIO5 */ bnx2x_attn_int_deasserted0(sc, REG_RD(sc, (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + SC_PORT(sc) * 4)) & AEU_INPUTS_ATTN_BITS_SPIO5); } static void bnx2x_init_objs(struct bnx2x_softc *sc) { /* mcast rules must be added to tx if tx switching is enabled */ ecore_obj_type o_type; if (sc->flags & BNX2X_TX_SWITCHING) o_type = ECORE_OBJ_TYPE_RX_TX; else o_type = ECORE_OBJ_TYPE_RX; /* RX_MODE controlling object */ ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); /* multicast configuration controlling object */ ecore_init_mcast_obj(sc, &sc->mcast_obj, sc->fp[0].cl_id, sc->fp[0].index, SC_FUNC(sc), SC_FUNC(sc), BNX2X_SP(sc, mcast_rdata), (phys_addr_t)BNX2X_SP_MAPPING(sc, mcast_rdata), ECORE_FILTER_MCAST_PENDING, &sc->sp_state, o_type); /* Setup CAM credit pools */ ecore_init_mac_credit_pool(sc, &sc->macs_pool, SC_FUNC(sc), CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : VNICS_PER_PATH(sc)); ecore_init_vlan_credit_pool(sc, &sc->vlans_pool, SC_ABS_FUNC(sc) >> 1, CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : VNICS_PER_PATH(sc)); /* RSS configuration object */ ecore_init_rss_config_obj(&sc->rss_conf_obj, sc->fp[0].cl_id, sc->fp[0].index, SC_FUNC(sc), SC_FUNC(sc), BNX2X_SP(sc, rss_rdata), (phys_addr_t)BNX2X_SP_MAPPING(sc, rss_rdata), ECORE_FILTER_RSS_CONF_PENDING, &sc->sp_state, ECORE_OBJ_TYPE_RX); } /* * Initialize the function. This must be called before sending CLIENT_SETUP * for the first client. */ static int bnx2x_func_start(struct bnx2x_softc *sc) { struct ecore_func_state_params func_params = { NULL }; struct ecore_func_start_params *start_params = &func_params.params.start; /* Prepare parameters for function state transitions */ bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); func_params.f_obj = &sc->func_obj; func_params.cmd = ECORE_F_CMD_START; /* Function parameters */ start_params->mf_mode = sc->devinfo.mf_info.mf_mode; start_params->sd_vlan_tag = OVLAN(sc); if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { start_params->network_cos_mode = STATIC_COS; } else { /* CHIP_IS_E1X */ start_params->network_cos_mode = FW_WRR; } start_params->gre_tunnel_mode = 0; start_params->gre_tunnel_rss = 0; return ecore_func_state_change(sc, &func_params); } static int bnx2x_set_power_state(struct bnx2x_softc *sc, uint8_t state) { uint16_t pmcsr; /* If there is no power capability, silently succeed */ if (!(sc->devinfo.pcie_cap_flags & BNX2X_PM_CAPABLE_FLAG)) { PMD_DRV_LOG(WARNING, "No power capability"); return 0; } pci_read(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), &pmcsr, 2); switch (state) { case PCI_PM_D0: pci_write_word(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME)); if (pmcsr & PCIM_PSTAT_DMASK) { /* delay required during transition out of D3hot */ DELAY(20000); } break; case PCI_PM_D3hot: /* don't shut down the power for emulation and FPGA */ if (CHIP_REV_IS_SLOW(sc)) { return 0; } pmcsr &= ~PCIM_PSTAT_DMASK; pmcsr |= PCIM_PSTAT_D3; if (sc->wol) { pmcsr |= PCIM_PSTAT_PMEENABLE; } pci_write_long(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), pmcsr); /* * No more memory access after this point until device is brought back * to D0 state. */ break; default: PMD_DRV_LOG(NOTICE, "Can't support PCI power state = %d", state); return -1; } return 0; } /* return true if succeeded to acquire the lock */ static uint8_t bnx2x_trylock_hw_lock(struct bnx2x_softc *sc, uint32_t resource) { uint32_t lock_status; uint32_t resource_bit = (1 << resource); int func = SC_FUNC(sc); uint32_t hw_lock_control_reg; /* Validating that the resource is within range */ if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { PMD_DRV_LOG(INFO, "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)", resource, HW_LOCK_MAX_RESOURCE_VALUE); return FALSE; } if (func <= 5) { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func * 8); } else { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8); } /* try to acquire the lock */ REG_WR(sc, hw_lock_control_reg + 4, resource_bit); lock_status = REG_RD(sc, hw_lock_control_reg); if (lock_status & resource_bit) { return TRUE; } PMD_DRV_LOG(NOTICE, "Failed to get a resource lock 0x%x", resource); return FALSE; } /* * Get the recovery leader resource id according to the engine this function * belongs to. Currently only only 2 engines is supported. */ static int bnx2x_get_leader_lock_resource(struct bnx2x_softc *sc) { if (SC_PATH(sc)) { return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; } else { return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; } } /* try to acquire a leader lock for current engine */ static uint8_t bnx2x_trylock_leader_lock(struct bnx2x_softc *sc) { return bnx2x_trylock_hw_lock(sc, bnx2x_get_leader_lock_resource(sc)); } static int bnx2x_release_leader_lock(struct bnx2x_softc *sc) { return bnx2x_release_hw_lock(sc, bnx2x_get_leader_lock_resource(sc)); } /* close gates #2, #3 and #4 */ static void bnx2x_set_234_gates(struct bnx2x_softc *sc, uint8_t close) { uint32_t val; /* gates #2 and #4a are closed/opened */ /* #4 */ REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, ! !close); /* #2 */ REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, ! !close); /* #3 */ if (CHIP_IS_E1x(sc)) { /* prevent interrupts from HC on both ports */ val = REG_RD(sc, HC_REG_CONFIG_1); if (close) REG_WR(sc, HC_REG_CONFIG_1, (val & ~(uint32_t) HC_CONFIG_1_REG_BLOCK_DISABLE_1)); else REG_WR(sc, HC_REG_CONFIG_1, (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1)); val = REG_RD(sc, HC_REG_CONFIG_0); if (close) REG_WR(sc, HC_REG_CONFIG_0, (val & ~(uint32_t) HC_CONFIG_0_REG_BLOCK_DISABLE_0)); else REG_WR(sc, HC_REG_CONFIG_0, (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0)); } else { /* Prevent incomming interrupts in IGU */ val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); if (close) REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, (val & ~(uint32_t) IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); else REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); } wmb(); } /* poll for pending writes bit, it should get cleared in no more than 1s */ static int bnx2x_er_poll_igu_vq(struct bnx2x_softc *sc) { uint32_t cnt = 1000; uint32_t pend_bits = 0; do { pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); if (pend_bits == 0) { break; } DELAY(1000); } while (cnt-- > 0); if (cnt <= 0) { PMD_DRV_LOG(NOTICE, "Still pending IGU requests bits=0x%08x!", pend_bits); return -1; } return 0; } #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ static void bnx2x_clp_reset_prep(struct bnx2x_softc *sc, uint32_t * magic_val) { /* Do some magic... */ uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); *magic_val = val & SHARED_MF_CLP_MAGIC; MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); } /* restore the value of the 'magic' bit */ static void bnx2x_clp_reset_done(struct bnx2x_softc *sc, uint32_t magic_val) { /* Restore the 'magic' bit value... */ uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); MFCFG_WR(sc, shared_mf_config.clp_mb, (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); } /* prepare for MCP reset, takes care of CLP configurations */ static void bnx2x_reset_mcp_prep(struct bnx2x_softc *sc, uint32_t * magic_val) { uint32_t shmem; uint32_t validity_offset; /* set `magic' bit in order to save MF config */ bnx2x_clp_reset_prep(sc, magic_val); /* get shmem offset */ shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); validity_offset = offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); /* Clear validity map flags */ if (shmem > 0) { REG_WR(sc, shmem + validity_offset, 0); } } #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ #define MCP_ONE_TIMEOUT 100 /* 100 ms */ static void bnx2x_mcp_wait_one(struct bnx2x_softc *sc) { /* special handling for emulation and FPGA (10 times longer) */ if (CHIP_REV_IS_SLOW(sc)) { DELAY((MCP_ONE_TIMEOUT * 10) * 1000); } else { DELAY((MCP_ONE_TIMEOUT) * 1000); } } /* initialize shmem_base and waits for validity signature to appear */ static int bnx2x_init_shmem(struct bnx2x_softc *sc) { int cnt = 0; uint32_t val = 0; do { sc->devinfo.shmem_base = sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); if (sc->devinfo.shmem_base) { val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); if (val & SHR_MEM_VALIDITY_MB) return 0; } bnx2x_mcp_wait_one(sc); } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); PMD_DRV_LOG(NOTICE, "BAD MCP validity signature"); return -1; } static int bnx2x_reset_mcp_comp(struct bnx2x_softc *sc, uint32_t magic_val) { int rc = bnx2x_init_shmem(sc); /* Restore the `magic' bit value */ bnx2x_clp_reset_done(sc, magic_val); return rc; } static void bnx2x_pxp_prep(struct bnx2x_softc *sc) { REG_WR(sc, PXP2_REG_RD_START_INIT, 0); REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); wmb(); } /* * Reset the whole chip except for: * - PCIE core * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) * - IGU * - MISC (including AEU) * - GRC * - RBCN, RBCP */ static void bnx2x_process_kill_chip_reset(struct bnx2x_softc *sc, uint8_t global) { uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; uint32_t global_bits2, stay_reset2; /* * Bits that have to be set in reset_mask2 if we want to reset 'global' * (per chip) blocks. */ global_bits2 = MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; /* * Don't reset the following blocks. * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be * reset, as in 4 port device they might still be owned * by the MCP (there is only one leader per path). */ not_reset_mask1 = MISC_REGISTERS_RESET_REG_1_RST_HC | MISC_REGISTERS_RESET_REG_1_RST_PXPV | MISC_REGISTERS_RESET_REG_1_RST_PXP; not_reset_mask2 = MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | MISC_REGISTERS_RESET_REG_2_RST_RBCN | MISC_REGISTERS_RESET_REG_2_RST_GRC | MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | MISC_REGISTERS_RESET_REG_2_RST_ATC | MISC_REGISTERS_RESET_REG_2_PGLC | MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1; /* * Keep the following blocks in reset: * - all xxMACs are handled by the elink code. */ stay_reset2 = MISC_REGISTERS_RESET_REG_2_XMAC | MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; /* Full reset masks according to the chip */ reset_mask1 = 0xffffffff; if (CHIP_IS_E1H(sc)) reset_mask2 = 0x1ffff; else if (CHIP_IS_E2(sc)) reset_mask2 = 0xfffff; else /* CHIP_IS_E3 */ reset_mask2 = 0x3ffffff; /* Don't reset global blocks unless we need to */ if (!global) reset_mask2 &= ~global_bits2; /* * In case of attention in the QM, we need to reset PXP * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM * because otherwise QM reset would release 'close the gates' shortly * before resetting the PXP, then the PSWRQ would send a write * request to PGLUE. Then when PXP is reset, PGLUE would try to * read the payload data from PSWWR, but PSWWR would not * respond. The write queue in PGLUE would stuck, dmae commands * would not return. Therefore it's important to reset the second * reset register (containing the * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM * bit). */ REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, reset_mask2 & (~not_reset_mask2)); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, reset_mask1 & (~not_reset_mask1)); mb(); wmb(); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, reset_mask2 & (~stay_reset2)); mb(); wmb(); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); wmb(); } static int bnx2x_process_kill(struct bnx2x_softc *sc, uint8_t global) { int cnt = 1000; uint32_t val = 0; uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; uint32_t tags_63_32 = 0; /* Empty the Tetris buffer, wait for 1s */ do { sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); if (CHIP_IS_E3(sc)) { tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); } if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && ((port_is_idle_0 & 0x1) == 0x1) && ((port_is_idle_1 & 0x1) == 0x1) && (pgl_exp_rom2 == 0xffffffff) && (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) break; DELAY(1000); } while (cnt-- > 0); if (cnt <= 0) { PMD_DRV_LOG(NOTICE, "ERROR: Tetris buffer didn't get empty or there " "are still outstanding read requests after 1s! " "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x", sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2); return -1; } mb(); /* Close gates #2, #3 and #4 */ bnx2x_set_234_gates(sc, TRUE); /* Poll for IGU VQs for 57712 and newer chips */ if (!CHIP_IS_E1x(sc) && bnx2x_er_poll_igu_vq(sc)) { return -1; } /* clear "unprepared" bit */ REG_WR(sc, MISC_REG_UNPREPARED, 0); mb(); /* Make sure all is written to the chip before the reset */ wmb(); /* * Wait for 1ms to empty GLUE and PCI-E core queues, * PSWHST, GRC and PSWRD Tetris buffer. */ DELAY(1000); /* Prepare to chip reset: */ /* MCP */ if (global) { bnx2x_reset_mcp_prep(sc, &val); } /* PXP */ bnx2x_pxp_prep(sc); mb(); /* reset the chip */ bnx2x_process_kill_chip_reset(sc, global); mb(); /* Recover after reset: */ /* MCP */ if (global && bnx2x_reset_mcp_comp(sc, val)) { return -1; } /* Open the gates #2, #3 and #4 */ bnx2x_set_234_gates(sc, FALSE); return 0; } static int bnx2x_leader_reset(struct bnx2x_softc *sc) { int rc = 0; uint8_t global = bnx2x_reset_is_global(sc); uint32_t load_code; /* * If not going to reset MCP, load "fake" driver to reset HW while * driver is owner of the HW. */ if (!global && !BNX2X_NOMCP(sc)) { load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, DRV_MSG_CODE_LOAD_REQ_WITH_LFA); if (!load_code) { PMD_DRV_LOG(NOTICE, "MCP response failure, aborting"); rc = -1; goto exit_leader_reset; } if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { PMD_DRV_LOG(NOTICE, "MCP unexpected response, aborting"); rc = -1; goto exit_leader_reset2; } load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); if (!load_code) { PMD_DRV_LOG(NOTICE, "MCP response failure, aborting"); rc = -1; goto exit_leader_reset2; } } /* try to recover after the failure */ if (bnx2x_process_kill(sc, global)) { PMD_DRV_LOG(NOTICE, "Something bad occurred on engine %d!", SC_PATH(sc)); rc = -1; goto exit_leader_reset2; } /* * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver * state. */ bnx2x_set_reset_done(sc); if (global) { bnx2x_clear_reset_global(sc); } exit_leader_reset2: /* unload "fake driver" if it was loaded */ if (!global &&!BNX2X_NOMCP(sc)) { bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); } exit_leader_reset: sc->is_leader = 0; bnx2x_release_leader_lock(sc); mb(); return rc; } /* * prepare INIT transition, parameters configured: * - HC configuration * - Queue's CDU context */ static void bnx2x_pf_q_prep_init(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, struct ecore_queue_init_params *init_params) { uint8_t cos; int cxt_index, cxt_offset; bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); /* HC rate */ init_params->rx.hc_rate = sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; init_params->tx.hc_rate = sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; /* FW SB ID */ init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; /* CQ index among the SB indices */ init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; /* set maximum number of COSs supported by this queue */ init_params->max_cos = sc->max_cos; /* set the context pointers queue object */ for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { cxt_index = fp->index / ILT_PAGE_CIDS; cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; } } /* set flags that are common for the Tx-only and not normal connections */ static unsigned long bnx2x_get_common_flags(struct bnx2x_softc *sc, uint8_t zero_stats) { unsigned long flags = 0; /* PF driver will always initialize the Queue to an ACTIVE state */ bnx2x_set_bit(ECORE_Q_FLG_ACTIVE, &flags); /* * tx only connections collect statistics (on the same index as the * parent connection). The statistics are zeroed when the parent * connection is initialized. */ bnx2x_set_bit(ECORE_Q_FLG_STATS, &flags); if (zero_stats) { bnx2x_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); } /* * tx only connections can support tx-switching, though their * CoS-ness doesn't survive the loopback */ if (sc->flags & BNX2X_TX_SWITCHING) { bnx2x_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); } bnx2x_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); return flags; } static unsigned long bnx2x_get_q_flags(struct bnx2x_softc *sc, uint8_t leading) { unsigned long flags = 0; if (IS_MF_SD(sc)) { bnx2x_set_bit(ECORE_Q_FLG_OV, &flags); } if (leading) { bnx2x_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); bnx2x_set_bit(ECORE_Q_FLG_MCAST, &flags); } bnx2x_set_bit(ECORE_Q_FLG_VLAN, &flags); /* merge with common flags */ return flags | bnx2x_get_common_flags(sc, TRUE); } static void bnx2x_pf_q_prep_general(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, struct ecore_general_setup_params *gen_init, uint8_t cos) { gen_init->stat_id = bnx2x_stats_id(fp); gen_init->spcl_id = fp->cl_id; gen_init->mtu = sc->mtu; gen_init->cos = cos; } static void bnx2x_pf_rx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, struct ecore_rxq_setup_params *rxq_init) { struct bnx2x_rx_queue *rxq; rxq = sc->rx_queues[fp->index]; if (!rxq) { PMD_RX_LOG(ERR, "RX queue is NULL"); return; } /* pause */ pause->bd_th_lo = BD_TH_LO(sc); pause->bd_th_hi = BD_TH_HI(sc); pause->rcq_th_lo = RCQ_TH_LO(sc); pause->rcq_th_hi = RCQ_TH_HI(sc); /* validate rings have enough entries to cross high thresholds */ if (sc->dropless_fc && pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) { PMD_DRV_LOG(WARNING, "rx bd ring threshold limit"); } if (sc->dropless_fc && pause->rcq_th_hi + FW_PREFETCH_CNT > USABLE_RCQ_ENTRIES(rxq)) { PMD_DRV_LOG(WARNING, "rcq ring threshold limit"); } pause->pri_map = 1; /* rxq setup */ rxq_init->dscr_map = (phys_addr_t)rxq->rx_ring_phys_addr; rxq_init->rcq_map = (phys_addr_t)rxq->cq_ring_phys_addr; rxq_init->rcq_np_map = (phys_addr_t)(rxq->cq_ring_phys_addr + BNX2X_PAGE_SIZE); /* * This should be a maximum number of data bytes that may be * placed on the BD (not including paddings). */ rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING); rxq_init->cl_qzone_id = fp->cl_qzone_id; rxq_init->rss_engine_id = SC_FUNC(sc); rxq_init->mcast_engine_id = SC_FUNC(sc); rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; rxq_init->fw_sb_id = fp->fw_sb_id; rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; /* * configure silent vlan removal * if multi function mode is afex, then mask default vlan */ if (IS_MF_AFEX(sc)) { rxq_init->silent_removal_value = sc->devinfo.mf_info.afex_def_vlan_tag; rxq_init->silent_removal_mask = EVL_VLID_MASK; } } static void bnx2x_pf_tx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, struct ecore_txq_setup_params *txq_init, uint8_t cos) { struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index]; if (!txq) { PMD_TX_LOG(ERR, "ERROR: TX queue is NULL"); return; } txq_init->dscr_map = (phys_addr_t)txq->tx_ring_phys_addr; txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; txq_init->fw_sb_id = fp->fw_sb_id; /* * set the TSS leading client id for TX classfication to the * leading RSS client id */ txq_init->tss_leading_cl_id = BNX2X_FP(sc, 0, cl_id); } /* * This function performs 2 steps in a queue state machine: * 1) RESET->INIT * 2) INIT->SETUP */ static int bnx2x_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint8_t leading) { struct ecore_queue_state_params q_params = { NULL }; struct ecore_queue_setup_params *setup_params = &q_params.params.setup; int rc; PMD_DRV_LOG(DEBUG, "setting up queue %d", fp->index); bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); q_params.q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj; /* we want to wait for completion in this context */ bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); /* prepare the INIT parameters */ bnx2x_pf_q_prep_init(sc, fp, &q_params.params.init); /* Set the command */ q_params.cmd = ECORE_Q_CMD_INIT; /* Change the state to INIT */ rc = ecore_queue_state_change(sc, &q_params); if (rc) { PMD_DRV_LOG(NOTICE, "Queue(%d) INIT failed", fp->index); return rc; } PMD_DRV_LOG(DEBUG, "init complete"); /* now move the Queue to the SETUP state */ memset(setup_params, 0, sizeof(*setup_params)); /* set Queue flags */ setup_params->flags = bnx2x_get_q_flags(sc, leading); /* set general SETUP parameters */ bnx2x_pf_q_prep_general(sc, fp, &setup_params->gen_params, FIRST_TX_COS_INDEX); bnx2x_pf_rx_q_prep(sc, fp, &setup_params->pause_params, &setup_params->rxq_params); bnx2x_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX); /* Set the command */ q_params.cmd = ECORE_Q_CMD_SETUP; /* change the state to SETUP */ rc = ecore_queue_state_change(sc, &q_params); if (rc) { PMD_DRV_LOG(NOTICE, "Queue(%d) SETUP failed", fp->index); return rc; } return rc; } static int bnx2x_setup_leading(struct bnx2x_softc *sc) { if (IS_PF(sc)) return bnx2x_setup_queue(sc, &sc->fp[0], TRUE); else /* VF */ return bnx2x_vf_setup_queue(sc, &sc->fp[0], TRUE); } static int bnx2x_config_rss_pf(struct bnx2x_softc *sc, struct ecore_rss_config_obj *rss_obj, uint8_t config_hash) { struct ecore_config_rss_params params = { NULL }; uint32_t i; /* * Although RSS is meaningless when there is a single HW queue we * still need it enabled in order to have HW Rx hash generated. */ params.rss_obj = rss_obj; bnx2x_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); bnx2x_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); /* RSS configuration */ bnx2x_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); bnx2x_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); bnx2x_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); bnx2x_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); if (rss_obj->udp_rss_v4) { bnx2x_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); } if (rss_obj->udp_rss_v6) { bnx2x_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); } /* Hash bits */ params.rss_result_mask = MULTI_MASK; (void)rte_memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); if (config_hash) { /* RSS keys */ for (i = 0; i < sizeof(params.rss_key) / 4; i++) { params.rss_key[i] = (uint32_t) rte_rand(); } bnx2x_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); } if (IS_PF(sc)) return ecore_config_rss(sc, ¶ms); else return bnx2x_vf_config_rss(sc, ¶ms); } static int bnx2x_config_rss_eth(struct bnx2x_softc *sc, uint8_t config_hash) { return bnx2x_config_rss_pf(sc, &sc->rss_conf_obj, config_hash); } static int bnx2x_init_rss_pf(struct bnx2x_softc *sc) { uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(sc); uint32_t i; /* * Prepare the initial contents of the indirection table if * RSS is enabled */ for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { sc->rss_conf_obj.ind_table[i] = (sc->fp->cl_id + (i % num_eth_queues)); } if (sc->udp_rss) { sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; } /* * For 57711 SEARCHER configuration (rss_keys) is * per-port, so if explicit configuration is needed, do it only * for a PMF. * * For 57712 and newer it's a per-function configuration. */ return bnx2x_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)); } static int bnx2x_set_mac_one(struct bnx2x_softc *sc, uint8_t * mac, struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type, unsigned long *ramrod_flags) { struct ecore_vlan_mac_ramrod_params ramrod_param; int rc; memset(&ramrod_param, 0, sizeof(ramrod_param)); /* fill in general parameters */ ramrod_param.vlan_mac_obj = obj; ramrod_param.ramrod_flags = *ramrod_flags; /* fill a user request section if needed */ if (!bnx2x_test_bit(RAMROD_CONT, ramrod_flags)) { (void)rte_memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); bnx2x_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); /* Set the command: ADD or DEL */ ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : ECORE_VLAN_MAC_DEL; } rc = ecore_config_vlan_mac(sc, &ramrod_param); if (rc == ECORE_EXISTS) { PMD_DRV_LOG(INFO, "Failed to schedule ADD operations (EEXIST)"); /* do not treat adding same MAC as error */ rc = 0; } else if (rc < 0) { PMD_DRV_LOG(ERR, "%s MAC failed (%d)", (set ? "Set" : "Delete"), rc); } return rc; } static int bnx2x_set_eth_mac(struct bnx2x_softc *sc, uint8_t set) { unsigned long ramrod_flags = 0; PMD_DRV_LOG(DEBUG, "Adding Ethernet MAC"); bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); /* Eth MAC is set on RSS leading client (fp[0]) */ return bnx2x_set_mac_one(sc, sc->link_params.mac_addr, &sc->sp_objs->mac_obj, set, ECORE_ETH_MAC, &ramrod_flags); } static int bnx2x_get_cur_phy_idx(struct bnx2x_softc *sc) { uint32_t sel_phy_idx = 0; if (sc->link_params.num_phys <= 1) { return ELINK_INT_PHY; } if (sc->link_vars.link_up) { sel_phy_idx = ELINK_EXT_PHY1; /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && (sc->link_params.phy[ELINK_EXT_PHY2].supported & ELINK_SUPPORTED_FIBRE)) sel_phy_idx = ELINK_EXT_PHY2; } else { switch (elink_phy_selection(&sc->link_params)) { case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: sel_phy_idx = ELINK_EXT_PHY1; break; case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: sel_phy_idx = ELINK_EXT_PHY2; break; } } return sel_phy_idx; } static int bnx2x_get_link_cfg_idx(struct bnx2x_softc *sc) { uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(sc); /* * The selected activated PHY is always after swapping (in case PHY * swapping is enabled). So when swapping is enabled, we need to reverse * the configuration */ if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { if (sel_phy_idx == ELINK_EXT_PHY1) sel_phy_idx = ELINK_EXT_PHY2; else if (sel_phy_idx == ELINK_EXT_PHY2) sel_phy_idx = ELINK_EXT_PHY1; } return ELINK_LINK_CONFIG_IDX(sel_phy_idx); } static void bnx2x_set_requested_fc(struct bnx2x_softc *sc) { /* * Initialize link parameters structure variables * It is recommended to turn off RX FC for jumbo frames * for better performance */ if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; } else { sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; } } static void bnx2x_calc_fc_adv(struct bnx2x_softc *sc) { uint8_t cfg_idx = bnx2x_get_link_cfg_idx(sc); switch (sc->link_vars.ieee_fc & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: default: sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause); break; case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | ADVERTISED_Pause); break; case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; break; } } static uint16_t bnx2x_get_mf_speed(struct bnx2x_softc *sc) { uint16_t line_speed = sc->link_vars.line_speed; if (IS_MF(sc)) { uint16_t maxCfg = bnx2x_extract_max_cfg(sc, sc->devinfo. mf_info.mf_config[SC_VN (sc)]); /* calculate the current MAX line speed limit for the MF devices */ if (IS_MF_SI(sc)) { line_speed = (line_speed * maxCfg) / 100; } else { /* SD mode */ uint16_t vn_max_rate = maxCfg * 100; if (vn_max_rate < line_speed) { line_speed = vn_max_rate; } } } return line_speed; } static void bnx2x_fill_report_data(struct bnx2x_softc *sc, struct bnx2x_link_report_data *data) { uint16_t line_speed = bnx2x_get_mf_speed(sc); memset(data, 0, sizeof(*data)); /* fill the report data with the effective line speed */ data->line_speed = line_speed; /* Link is down */ if (!sc->link_vars.link_up || (sc->flags & BNX2X_MF_FUNC_DIS)) { bnx2x_set_bit(BNX2X_LINK_REPORT_LINK_DOWN, &data->link_report_flags); } /* Full DUPLEX */ if (sc->link_vars.duplex == DUPLEX_FULL) { bnx2x_set_bit(BNX2X_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); } /* Rx Flow Control is ON */ if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { bnx2x_set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags); } /* Tx Flow Control is ON */ if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { bnx2x_set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags); } } /* report link status to OS, should be called under phy_lock */ static void bnx2x_link_report(struct bnx2x_softc *sc) { struct bnx2x_link_report_data cur_data; /* reread mf_cfg */ if (IS_PF(sc)) { bnx2x_read_mf_cfg(sc); } /* Read the current link report info */ bnx2x_fill_report_data(sc, &cur_data); /* Don't report link down or exactly the same link status twice */ if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN, &sc->last_reported_link.link_report_flags) && bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN, &cur_data.link_report_flags))) { return; } sc->link_cnt++; /* report new link params and remember the state for the next time */ (void)rte_memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); if (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN, &cur_data.link_report_flags)) { PMD_DRV_LOG(INFO, "NIC Link is Down"); } else { __rte_unused const char *duplex; __rte_unused const char *flow; if (bnx2x_test_and_clear_bit(BNX2X_LINK_REPORT_FULL_DUPLEX, &cur_data.link_report_flags)) { duplex = "full"; } else { duplex = "half"; } /* * Handle the FC at the end so that only these flags would be * possibly set. This way we may easily check if there is no FC * enabled. */ if (cur_data.link_report_flags) { if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON, &cur_data.link_report_flags) && bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON, &cur_data.link_report_flags)) { flow = "ON - receive & transmit"; } else if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON, &cur_data.link_report_flags) && !bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON, &cur_data.link_report_flags)) { flow = "ON - receive"; } else if (!bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON, &cur_data.link_report_flags) && bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON, &cur_data.link_report_flags)) { flow = "ON - transmit"; } else { flow = "none"; /* possible? */ } } else { flow = "none"; } PMD_DRV_LOG(INFO, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s", cur_data.line_speed, duplex, flow); } } void bnx2x_link_status_update(struct bnx2x_softc *sc) { if (sc->state != BNX2X_STATE_OPEN) { return; } if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { elink_link_status_update(&sc->link_params, &sc->link_vars); } else { sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | ELINK_SUPPORTED_10baseT_Full | ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_2500baseX_Full | ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause); sc->port.advertising[0] = sc->port.supported[0]; sc->link_params.sc = sc; sc->link_params.port = SC_PORT(sc); sc->link_params.req_duplex[0] = DUPLEX_FULL; sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; sc->link_params.req_line_speed[0] = SPEED_10000; sc->link_params.speed_cap_mask[0] = 0x7f0000; sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; if (CHIP_REV_IS_FPGA(sc)) { sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; sc->link_vars.line_speed = ELINK_SPEED_1000; sc->link_vars.link_status = (LINK_STATUS_LINK_UP | LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); } else { sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; sc->link_vars.line_speed = ELINK_SPEED_10000; sc->link_vars.link_status = (LINK_STATUS_LINK_UP | LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); } sc->link_vars.link_up = 1; sc->link_vars.duplex = DUPLEX_FULL; sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; if (IS_PF(sc)) { REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port * 4, 0); bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP); bnx2x_link_report(sc); } } if (IS_PF(sc)) { if (sc->link_vars.link_up) { bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP); } else { bnx2x_stats_handle(sc, STATS_EVENT_STOP); } bnx2x_link_report(sc); } else { bnx2x_link_report(sc); bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP); } } static void bnx2x_periodic_start(struct bnx2x_softc *sc) { atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); } static void bnx2x_periodic_stop(struct bnx2x_softc *sc) { atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); } static int bnx2x_initial_phy_init(struct bnx2x_softc *sc, int load_mode) { int rc, cfg_idx = bnx2x_get_link_cfg_idx(sc); uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; struct elink_params *lp = &sc->link_params; bnx2x_set_requested_fc(sc); if (load_mode == LOAD_DIAG) { lp->loopback_mode = ELINK_LOOPBACK_XGXS; /* Prefer doing PHY loopback at 10G speed, if possible */ if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { if (lp->speed_cap_mask[cfg_idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; } else { lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; } } } if (load_mode == LOAD_LOOPBACK_EXT) { lp->loopback_mode = ELINK_LOOPBACK_EXT; } rc = elink_phy_init(&sc->link_params, &sc->link_vars); bnx2x_calc_fc_adv(sc); if (sc->link_vars.link_up) { bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP); bnx2x_link_report(sc); } if (!CHIP_REV_IS_SLOW(sc)) { bnx2x_periodic_start(sc); } sc->link_params.req_line_speed[cfg_idx] = req_line_speed; return rc; } /* update flags in shmem */ static void bnx2x_update_drv_flags(struct bnx2x_softc *sc, uint32_t flags, uint32_t set) { uint32_t drv_flags; if (SHMEM2_HAS(sc, drv_flags)) { bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); drv_flags = SHMEM2_RD(sc, drv_flags); if (set) { drv_flags |= flags; } else { drv_flags &= ~flags; } SHMEM2_WR(sc, drv_flags, drv_flags); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); } } /* periodic timer callout routine, only runs when the interface is up */ void bnx2x_periodic_callout(struct bnx2x_softc *sc) { if ((sc->state != BNX2X_STATE_OPEN) || (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { PMD_DRV_LOG(WARNING, "periodic callout exit (state=0x%x)", sc->state); return; } if (!CHIP_REV_IS_SLOW(sc)) { /* * This barrier is needed to ensure the ordering between the writing * to the sc->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and * the reading here. */ mb(); if (sc->port.pmf) { elink_period_func(&sc->link_params, &sc->link_vars); } } #ifdef BNX2X_PULSE if (IS_PF(sc) && !BNX2X_NOMCP(sc)) { int mb_idx = SC_FW_MB_IDX(sc); uint32_t drv_pulse; uint32_t mcp_pulse; ++sc->fw_drv_pulse_wr_seq; sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; drv_pulse = sc->fw_drv_pulse_wr_seq; bnx2x_drv_pulse(sc); mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & MCP_PULSE_SEQ_MASK); /* * The delta between driver pulse and mcp response should * be 1 (before mcp response) or 0 (after mcp response). */ if ((drv_pulse != mcp_pulse) && (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { /* someone lost a heartbeat... */ PMD_DRV_LOG(ERR, "drv_pulse (0x%x) != mcp_pulse (0x%x)", drv_pulse, mcp_pulse); } } #endif } /* start the controller */ static __attribute__ ((noinline)) int bnx2x_nic_load(struct bnx2x_softc *sc) { uint32_t val; uint32_t load_code = 0; int i, rc = 0; PMD_INIT_FUNC_TRACE(); sc->state = BNX2X_STATE_OPENING_WAITING_LOAD; if (IS_PF(sc)) { /* must be called before memory allocation and HW init */ bnx2x_ilt_set_info(sc); } bnx2x_set_fp_rx_buf_size(sc); if (IS_PF(sc)) { if (bnx2x_alloc_mem(sc) != 0) { sc->state = BNX2X_STATE_CLOSED; rc = -ENOMEM; goto bnx2x_nic_load_error0; } } if (bnx2x_alloc_fw_stats_mem(sc) != 0) { sc->state = BNX2X_STATE_CLOSED; rc = -ENOMEM; goto bnx2x_nic_load_error0; } if (IS_VF(sc)) { rc = bnx2x_vf_init(sc); if (rc) { sc->state = BNX2X_STATE_ERROR; goto bnx2x_nic_load_error0; } } if (IS_PF(sc)) { /* set pf load just before approaching the MCP */ bnx2x_set_pf_load(sc); /* if MCP exists send load request and analyze response */ if (!BNX2X_NOMCP(sc)) { /* attempt to load pf */ if (bnx2x_nic_load_request(sc, &load_code) != 0) { sc->state = BNX2X_STATE_CLOSED; rc = -ENXIO; goto bnx2x_nic_load_error1; } /* what did the MCP say? */ if (bnx2x_nic_load_analyze_req(sc, load_code) != 0) { bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); sc->state = BNX2X_STATE_CLOSED; rc = -ENXIO; goto bnx2x_nic_load_error2; } } else { PMD_DRV_LOG(INFO, "Device has no MCP!"); load_code = bnx2x_nic_load_no_mcp(sc); } /* mark PMF if applicable */ bnx2x_nic_load_pmf(sc, load_code); /* Init Function state controlling object */ bnx2x_init_func_obj(sc); /* Initialize HW */ if (bnx2x_init_hw(sc, load_code) != 0) { PMD_DRV_LOG(NOTICE, "HW init failed"); bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); sc->state = BNX2X_STATE_CLOSED; rc = -ENXIO; goto bnx2x_nic_load_error2; } } bnx2x_nic_init(sc, load_code); /* Init per-function objects */ if (IS_PF(sc)) { bnx2x_init_objs(sc); /* set AFEX default VLAN tag to an invalid value */ sc->devinfo.mf_info.afex_def_vlan_tag = -1; sc->state = BNX2X_STATE_OPENING_WAITING_PORT; rc = bnx2x_func_start(sc); if (rc) { PMD_DRV_LOG(NOTICE, "Function start failed!"); bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); sc->state = BNX2X_STATE_ERROR; goto bnx2x_nic_load_error3; } /* send LOAD_DONE command to MCP */ if (!BNX2X_NOMCP(sc)) { load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); if (!load_code) { PMD_DRV_LOG(NOTICE, "MCP response failure, aborting"); sc->state = BNX2X_STATE_ERROR; rc = -ENXIO; goto bnx2x_nic_load_error3; } } } rc = bnx2x_setup_leading(sc); if (rc) { PMD_DRV_LOG(NOTICE, "Setup leading failed!"); sc->state = BNX2X_STATE_ERROR; goto bnx2x_nic_load_error3; } FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { if (IS_PF(sc)) rc = bnx2x_setup_queue(sc, &sc->fp[i], FALSE); else /* IS_VF(sc) */ rc = bnx2x_vf_setup_queue(sc, &sc->fp[i], FALSE); if (rc) { PMD_DRV_LOG(NOTICE, "Queue(%d) setup failed", i); sc->state = BNX2X_STATE_ERROR; goto bnx2x_nic_load_error3; } } rc = bnx2x_init_rss_pf(sc); if (rc) { PMD_DRV_LOG(NOTICE, "PF RSS init failed"); sc->state = BNX2X_STATE_ERROR; goto bnx2x_nic_load_error3; } /* now when Clients are configured we are ready to work */ sc->state = BNX2X_STATE_OPEN; /* Configure a ucast MAC */ if (IS_PF(sc)) { rc = bnx2x_set_eth_mac(sc, TRUE); } else { /* IS_VF(sc) */ rc = bnx2x_vf_set_mac(sc, TRUE); } if (rc) { PMD_DRV_LOG(NOTICE, "Setting Ethernet MAC failed"); sc->state = BNX2X_STATE_ERROR; goto bnx2x_nic_load_error3; } if (sc->port.pmf) { rc = bnx2x_initial_phy_init(sc, LOAD_OPEN); if (rc) { sc->state = BNX2X_STATE_ERROR; goto bnx2x_nic_load_error3; } } sc->link_params.feature_config_flags &= ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; /* start the Tx */ switch (LOAD_OPEN) { case LOAD_NORMAL: case LOAD_OPEN: break; case LOAD_DIAG: case LOAD_LOOPBACK_EXT: sc->state = BNX2X_STATE_DIAG; break; default: break; } if (sc->port.pmf) { bnx2x_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); } else { bnx2x_link_status_update(sc); } if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { /* mark driver is loaded in shmem2 */ val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], (val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | DRV_FLAGS_CAPABILITIES_LOADED_L2)); } /* start fast path */ /* Initialize Rx filter */ bnx2x_set_rx_mode(sc); /* wait for all pending SP commands to complete */ if (IS_PF(sc) && !bnx2x_wait_sp_comp(sc, ~0x0UL)) { PMD_DRV_LOG(NOTICE, "Timeout waiting for all SPs to complete!"); bnx2x_periodic_stop(sc); bnx2x_nic_unload(sc, UNLOAD_CLOSE, FALSE); return -ENXIO; } PMD_DRV_LOG(DEBUG, "NIC successfully loaded"); return 0; bnx2x_nic_load_error3: if (IS_PF(sc)) { bnx2x_int_disable_sync(sc, 1); /* clean out queued objects */ bnx2x_squeeze_objects(sc); } bnx2x_nic_load_error2: if (IS_PF(sc) && !BNX2X_NOMCP(sc)) { bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); } sc->port.pmf = 0; bnx2x_nic_load_error1: /* clear pf_load status, as it was already set */ if (IS_PF(sc)) { bnx2x_clear_pf_load(sc); } bnx2x_nic_load_error0: bnx2x_free_fw_stats_mem(sc); bnx2x_free_mem(sc); return rc; } /* * Handles controller initialization. */ int bnx2x_init(struct bnx2x_softc *sc) { int other_engine = SC_PATH(sc) ? 0 : 1; uint8_t other_load_status, load_status; uint8_t global = FALSE; int rc; /* Check if the driver is still running and bail out if it is. */ if (sc->state != BNX2X_STATE_CLOSED) { PMD_DRV_LOG(DEBUG, "Init called while driver is running!"); rc = 0; goto bnx2x_init_done; } bnx2x_set_power_state(sc, PCI_PM_D0); /* * If parity occurred during the unload, then attentions and/or * RECOVERY_IN_PROGRESS may still be set. If so we want the first function * loaded on the current engine to complete the recovery. Parity recovery * is only relevant for PF driver. */ if (IS_PF(sc)) { other_load_status = bnx2x_get_load_status(sc, other_engine); load_status = bnx2x_get_load_status(sc, SC_PATH(sc)); if (!bnx2x_reset_is_done(sc, SC_PATH(sc)) || bnx2x_chk_parity_attn(sc, &global, TRUE)) { do { /* * If there are attentions and they are in global blocks, set * the GLOBAL_RESET bit regardless whether it will be this * function that will complete the recovery or not. */ if (global) { bnx2x_set_reset_global(sc); } /* * Only the first function on the current engine should try * to recover in open. In case of attentions in global blocks * only the first in the chip should try to recover. */ if ((!load_status && (!global ||!other_load_status)) && bnx2x_trylock_leader_lock(sc) && !bnx2x_leader_reset(sc)) { PMD_DRV_LOG(INFO, "Recovered during init"); break; } /* recovery has failed... */ bnx2x_set_power_state(sc, PCI_PM_D3hot); sc->recovery_state = BNX2X_RECOVERY_FAILED; PMD_DRV_LOG(NOTICE, "Recovery flow hasn't properly " "completed yet, try again later. " "If you still see this message after a " "few retries then power cycle is required."); rc = -ENXIO; goto bnx2x_init_done; } while (0); } } sc->recovery_state = BNX2X_RECOVERY_DONE; rc = bnx2x_nic_load(sc); bnx2x_init_done: if (rc) { PMD_DRV_LOG(NOTICE, "Initialization failed, " "stack notified driver is NOT running!"); } return rc; } static void bnx2x_get_function_num(struct bnx2x_softc *sc) { uint32_t val = 0; /* * Read the ME register to get the function number. The ME register * holds the relative-function number and absolute-function number. The * absolute-function number appears only in E2 and above. Before that * these bits always contained zero, therefore we cannot blindly use them. */ val = REG_RD(sc, BAR_ME_REGISTER); sc->pfunc_rel = (uint8_t) ((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); sc->path_id = (uint8_t) ((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); } else { sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); } PMD_DRV_LOG(DEBUG, "Relative function %d, Absolute function %d, Path %d", sc->pfunc_rel, sc->pfunc_abs, sc->path_id); } static uint32_t bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc *sc) { uint32_t shmem2_size; uint32_t offset; uint32_t mf_cfg_offset_value; /* Non 57712 */ offset = (SHMEM_ADDR(sc, func_mb) + (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); /* 57712 plus */ if (sc->devinfo.shmem2_base != 0) { shmem2_size = SHMEM2_RD(sc, size); if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { offset = mf_cfg_offset_value; } } } return offset; } static uint32_t bnx2x_pcie_capability_read(struct bnx2x_softc *sc, int reg) { uint32_t ret; struct bnx2x_pci_cap *caps; /* ensure PCIe capability is enabled */ caps = pci_find_cap(sc, PCIY_EXPRESS, BNX2X_PCI_CAP); if (NULL != caps) { PMD_DRV_LOG(DEBUG, "Found PCIe capability: " "id=0x%04X type=0x%04X addr=0x%08X", caps->id, caps->type, caps->addr); pci_read(sc, (caps->addr + reg), &ret, 2); return ret; } PMD_DRV_LOG(WARNING, "PCIe capability NOT FOUND!!!"); return 0; } static uint8_t bnx2x_is_pcie_pending(struct bnx2x_softc *sc) { return bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA) & PCIM_EXP_STA_TRANSACTION_PND; } /* * Walk the PCI capabiites list for the device to find what features are * supported. These capabilites may be enabled/disabled by firmware so it's * best to walk the list rather than make assumptions. */ static void bnx2x_probe_pci_caps(struct bnx2x_softc *sc) { PMD_INIT_FUNC_TRACE(); struct bnx2x_pci_cap *caps; uint16_t link_status; #ifdef RTE_LIBRTE_BNX2X_DEBUG int reg = 0; #endif /* check if PCI Power Management is enabled */ caps = pci_find_cap(sc, PCIY_PMG, BNX2X_PCI_CAP); if (NULL != caps) { PMD_DRV_LOG(DEBUG, "Found PM capability: " "id=0x%04X type=0x%04X addr=0x%08X", caps->id, caps->type, caps->addr); sc->devinfo.pcie_cap_flags |= BNX2X_PM_CAPABLE_FLAG; sc->devinfo.pcie_pm_cap_reg = caps->addr; } link_status = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA); sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED); sc->devinfo.pcie_link_width = ((link_status & PCIM_LINK_STA_WIDTH) >> 4); PMD_DRV_LOG(DEBUG, "PCIe link speed=%d width=%d", sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); sc->devinfo.pcie_cap_flags |= BNX2X_PCIE_CAPABLE_FLAG; /* check if MSI capability is enabled */ caps = pci_find_cap(sc, PCIY_MSI, BNX2X_PCI_CAP); if (NULL != caps) { PMD_DRV_LOG(DEBUG, "Found MSI capability at 0x%04x", reg); sc->devinfo.pcie_cap_flags |= BNX2X_MSI_CAPABLE_FLAG; sc->devinfo.pcie_msi_cap_reg = caps->addr; } /* check if MSI-X capability is enabled */ caps = pci_find_cap(sc, PCIY_MSIX, BNX2X_PCI_CAP); if (NULL != caps) { PMD_DRV_LOG(DEBUG, "Found MSI-X capability at 0x%04x", reg); sc->devinfo.pcie_cap_flags |= BNX2X_MSIX_CAPABLE_FLAG; sc->devinfo.pcie_msix_cap_reg = caps->addr; } } static int bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc *sc) { struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info; uint32_t val; /* get the outer vlan if we're in switch-dependent mode */ val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); mf_info->ext_id = (uint16_t) val; mf_info->multi_vnics_mode = 1; if (!VALID_OVLAN(mf_info->ext_id)) { PMD_DRV_LOG(NOTICE, "Invalid VLAN (%d)", mf_info->ext_id); return 1; } /* get the capabilities */ if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == FUNC_MF_CFG_PROTOCOL_ISCSI) { mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == FUNC_MF_CFG_PROTOCOL_FCOE) { mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; } else { mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; } mf_info->vnics_per_port = (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; return 0; } static uint32_t bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc *sc) { uint32_t retval = 0; uint32_t val; val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { retval |= MF_PROTO_SUPPORT_ETHERNET; } if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { retval |= MF_PROTO_SUPPORT_ISCSI; } if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { retval |= MF_PROTO_SUPPORT_FCOE; } } return retval; } static int bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc *sc) { struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info; uint32_t val; /* * There is no outer vlan if we're in switch-independent mode. * If the mac is valid then assume multi-function. */ val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); mf_info->mf_protos_supported = bnx2x_get_shmem_ext_proto_support_flags(sc); mf_info->vnics_per_port = (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; return 0; } static int bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc *sc) { struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info; uint32_t e1hov_tag; uint32_t func_config; uint32_t niv_config; mf_info->multi_vnics_mode = 1; e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); mf_info->ext_id = (uint16_t) ((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> FUNC_MF_CFG_E1HOV_TAG_SHIFT); mf_info->default_vlan = (uint16_t) ((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> FUNC_MF_CFG_AFEX_VLAN_SHIFT); mf_info->niv_allowed_priorities = (uint8_t) ((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); mf_info->niv_default_cos = (uint8_t) ((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); mf_info->afex_vlan_mode = ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); mf_info->niv_mba_enabled = ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); mf_info->mf_protos_supported = bnx2x_get_shmem_ext_proto_support_flags(sc); mf_info->vnics_per_port = (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; return 0; } static int bnx2x_check_valid_mf_cfg(struct bnx2x_softc *sc) { struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info; uint32_t mf_cfg1; uint32_t mf_cfg2; uint32_t ovlan1; uint32_t ovlan2; uint8_t i, j; /* various MF mode sanity checks... */ if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { PMD_DRV_LOG(NOTICE, "Enumerated function %d is marked as hidden", SC_PORT(sc)); return 1; } if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { PMD_DRV_LOG(NOTICE, "vnics_per_port=%d multi_vnics_mode=%d", mf_info->vnics_per_port, mf_info->multi_vnics_mode); return 1; } if (mf_info->mf_mode == MULTI_FUNCTION_SD) { /* vnic id > 0 must have valid ovlan in switch-dependent mode */ if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { PMD_DRV_LOG(NOTICE, "mf_mode=SD vnic_id=%d ovlan=%d", SC_VN(sc), OVLAN(sc)); return 1; } if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { PMD_DRV_LOG(NOTICE, "mf_mode=SD multi_vnics_mode=%d ovlan=%d", mf_info->multi_vnics_mode, OVLAN(sc)); return 1; } /* * Verify all functions are either MF or SF mode. If MF, make sure * sure that all non-hidden functions have a valid ovlan. If SF, * make sure that all non-hidden functions have an invalid ovlan. */ FOREACH_ABS_FUNC_IN_PORT(sc, i) { mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { PMD_DRV_LOG(NOTICE, "mf_mode=SD function %d MF config " "mismatch, multi_vnics_mode=%d ovlan=%d", i, mf_info->multi_vnics_mode, ovlan1); return 1; } } /* Verify all funcs on the same port each have a different ovlan. */ FOREACH_ABS_FUNC_IN_PORT(sc, i) { mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); /* iterate from the next function on the port to the max func */ for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && VALID_OVLAN(ovlan1) && !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && VALID_OVLAN(ovlan2) && (ovlan1 == ovlan2)) { PMD_DRV_LOG(NOTICE, "mf_mode=SD functions %d and %d " "have the same ovlan (%d)", i, j, ovlan1); return 1; } } } } /* MULTI_FUNCTION_SD */ return 0; } static int bnx2x_get_mf_cfg_info(struct bnx2x_softc *sc) { struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info; uint32_t val, mac_upper; uint8_t i, vnic; /* initialize mf_info defaults */ mf_info->vnics_per_port = 1; mf_info->multi_vnics_mode = FALSE; mf_info->path_has_ovlan = FALSE; mf_info->mf_mode = SINGLE_FUNCTION; if (!CHIP_IS_MF_CAP(sc)) { return 0; } if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { PMD_DRV_LOG(NOTICE, "Invalid mf_cfg_base!"); return 1; } /* get the MF mode (switch dependent / independent / single-function) */ val = SHMEM_RD(sc, dev_info.shared_feature_config.config); switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) { case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); /* check for legal upper mac bytes */ if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { mf_info->mf_mode = MULTI_FUNCTION_SI; } else { PMD_DRV_LOG(NOTICE, "Invalid config for Switch Independent mode"); } break; case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: /* get outer vlan configuration */ val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { mf_info->mf_mode = MULTI_FUNCTION_SD; } else { PMD_DRV_LOG(NOTICE, "Invalid config for Switch Dependent mode"); } break; case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ return 0; case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: /* * Mark MF mode as NIV if MCP version includes NPAR-SD support * and the MAC address is valid. */ mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); if ((SHMEM2_HAS(sc, afex_driver_support)) && (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { mf_info->mf_mode = MULTI_FUNCTION_AFEX; } else { PMD_DRV_LOG(NOTICE, "Invalid config for AFEX mode"); } break; default: PMD_DRV_LOG(NOTICE, "Unknown MF mode (0x%08x)", (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); return 1; } /* set path mf_mode (which could be different than function mf_mode) */ if (mf_info->mf_mode == MULTI_FUNCTION_SD) { mf_info->path_has_ovlan = TRUE; } else if (mf_info->mf_mode == SINGLE_FUNCTION) { /* * Decide on path multi vnics mode. If we're not in MF mode and in * 4-port mode, this is good enough to check vnic-0 of the other port * on the same path */ if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { uint8_t other_port = !(PORT_ID(sc) & 1); uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); val = MFCFG_RD(sc, func_mf_config [abs_func_other_port].e1hov_tag); mf_info->path_has_ovlan = VALID_OVLAN((uint16_t) val); } } if (mf_info->mf_mode == SINGLE_FUNCTION) { /* invalid MF config */ if (SC_VN(sc) >= 1) { PMD_DRV_LOG(NOTICE, "VNIC ID >= 1 in SF mode"); return 1; } return 0; } /* get the MF configuration */ mf_info->mf_config[SC_VN(sc)] = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); switch (mf_info->mf_mode) { case MULTI_FUNCTION_SD: bnx2x_get_shmem_mf_cfg_info_sd(sc); break; case MULTI_FUNCTION_SI: bnx2x_get_shmem_mf_cfg_info_si(sc); break; case MULTI_FUNCTION_AFEX: bnx2x_get_shmem_mf_cfg_info_niv(sc); break; default: PMD_DRV_LOG(NOTICE, "Get MF config failed (mf_mode=0x%08x)", mf_info->mf_mode); return 1; } /* get the congestion management parameters */ vnic = 0; FOREACH_ABS_FUNC_IN_PORT(sc, i) { /* get min/max bw */ val = MFCFG_RD(sc, func_mf_config[i].config); mf_info->min_bw[vnic] = ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); mf_info->max_bw[vnic] = ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); vnic++; } return bnx2x_check_valid_mf_cfg(sc); } static int bnx2x_get_shmem_info(struct bnx2x_softc *sc) { int port; uint32_t mac_hi, mac_lo, val; PMD_INIT_FUNC_TRACE(); port = SC_PORT(sc); mac_hi = mac_lo = 0; sc->link_params.sc = sc; sc->link_params.port = port; /* get the hardware config info */ sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config); sc->devinfo.hw_config2 = SHMEM_RD(sc, dev_info.shared_hw_config.config2); sc->link_params.hw_led_mode = ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> SHARED_HW_CFG_LED_MODE_SHIFT); /* get the port feature config */ sc->port.config = SHMEM_RD(sc, dev_info.port_feature_config[port].config); /* get the link params */ sc->link_params.speed_cap_mask[ELINK_INT_PHY] = SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask) & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; sc->link_params.speed_cap_mask[ELINK_EXT_PHY1] = SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2) & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; /* get the lane config */ sc->link_params.lane_config = SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); /* get the link config */ val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); sc->port.link_config[ELINK_INT_PHY] = val; sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); sc->port.link_config[ELINK_EXT_PHY1] = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); /* get the override preemphasis flag and enable it or turn it off */ val = SHMEM_RD(sc, dev_info.shared_feature_config.config); if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { sc->link_params.feature_config_flags |= ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; } else { sc->link_params.feature_config_flags &= ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; } /* get the initial value of the link params */ sc->link_params.multi_phy_config = SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); /* get external phy info */ sc->port.ext_phy_config = SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); /* get the multifunction configuration */ bnx2x_get_mf_cfg_info(sc); /* get the mac address */ if (IS_MF(sc)) { mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); } else { mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); } if ((mac_lo == 0) && (mac_hi == 0)) { *sc->mac_addr_str = 0; PMD_DRV_LOG(NOTICE, "No Ethernet address programmed!"); } else { sc->link_params.mac_addr[0] = (uint8_t) (mac_hi >> 8); sc->link_params.mac_addr[1] = (uint8_t) (mac_hi); sc->link_params.mac_addr[2] = (uint8_t) (mac_lo >> 24); sc->link_params.mac_addr[3] = (uint8_t) (mac_lo >> 16); sc->link_params.mac_addr[4] = (uint8_t) (mac_lo >> 8); sc->link_params.mac_addr[5] = (uint8_t) (mac_lo); snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), "%02x:%02x:%02x:%02x:%02x:%02x", sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); PMD_DRV_LOG(DEBUG, "Ethernet address: %s", sc->mac_addr_str); } return 0; } static void bnx2x_media_detect(struct bnx2x_softc *sc) { uint32_t phy_idx = bnx2x_get_cur_phy_idx(sc); switch (sc->link_params.phy[phy_idx].media_type) { case ELINK_ETH_PHY_SFPP_10G_FIBER: case ELINK_ETH_PHY_SFP_1G_FIBER: case ELINK_ETH_PHY_XFP_FIBER: case ELINK_ETH_PHY_KR: case ELINK_ETH_PHY_CX4: PMD_DRV_LOG(INFO, "Found 10GBase-CX4 media."); sc->media = IFM_10G_CX4; break; case ELINK_ETH_PHY_DA_TWINAX: PMD_DRV_LOG(INFO, "Found 10Gb Twinax media."); sc->media = IFM_10G_TWINAX; break; case ELINK_ETH_PHY_BASE_T: PMD_DRV_LOG(INFO, "Found 10GBase-T media."); sc->media = IFM_10G_T; break; case ELINK_ETH_PHY_NOT_PRESENT: PMD_DRV_LOG(INFO, "Media not present."); sc->media = 0; break; case ELINK_ETH_PHY_UNSPECIFIED: default: PMD_DRV_LOG(INFO, "Unknown media!"); sc->media = 0; break; } } #define GET_FIELD(value, fname) \ (((value) & (fname##_MASK)) >> (fname##_SHIFT)) #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) static int bnx2x_get_igu_cam_info(struct bnx2x_softc *sc) { int pfid = SC_FUNC(sc); int igu_sb_id; uint32_t val; uint8_t fid, igu_sb_cnt = 0; sc->igu_base_sb = 0xff; if (CHIP_INT_MODE_IS_BC(sc)) { int vn = SC_VN(sc); igu_sb_cnt = sc->igu_sb_cnt; sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * FP_SB_MAX_E1x); sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); return 0; } /* IGU in normal mode - read CAM */ for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) { val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { continue; } fid = IGU_FID(val); if ((fid & IGU_FID_ENCODE_IS_PF)) { if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { continue; } if (IGU_VEC(val) == 0) { /* default status block */ sc->igu_dsb_id = igu_sb_id; } else { if (sc->igu_base_sb == 0xff) { sc->igu_base_sb = igu_sb_id; } igu_sb_cnt++; } } } /* * Due to new PF resource allocation by MFW T7.4 and above, it's optional * that number of CAM entries will not be equal to the value advertised in * PCI. Driver should use the minimal value of both as the actual status * block count */ sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); if (igu_sb_cnt == 0) { PMD_DRV_LOG(ERR, "CAM configuration error"); return -1; } return 0; } /* * Gather various information from the device config space, the device itself, * shmem, and the user input. */ static int bnx2x_get_device_info(struct bnx2x_softc *sc) { uint32_t val; int rc; /* get the chip revision (chip metal comes from pci config space) */ sc->devinfo.chip_id = sc->link_params.chip_id = (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); /* force 57811 according to MISC register */ if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { if (CHIP_IS_57810(sc)) { sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | (sc-> devinfo.chip_id & 0x0000ffff)); } else if (CHIP_IS_57810_MF(sc)) { sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | (sc-> devinfo.chip_id & 0x0000ffff)); } sc->devinfo.chip_id |= 0x1; } PMD_DRV_LOG(DEBUG, "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)", sc->devinfo.chip_id, ((sc->devinfo.chip_id >> 16) & 0xffff), ((sc->devinfo.chip_id >> 12) & 0xf), ((sc->devinfo.chip_id >> 4) & 0xff), ((sc->devinfo.chip_id >> 0) & 0xf)); val = (REG_RD(sc, 0x2874) & 0x55); if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1H(sc) && (val == 0x55))) { sc->flags |= BNX2X_ONE_PORT_FLAG; PMD_DRV_LOG(DEBUG, "single port device"); } /* set the doorbell size */ sc->doorbell_size = (1 << BNX2X_DB_SHIFT); /* determine whether the device is in 2 port or 4 port mode */ sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1h */ if (CHIP_IS_E2E3(sc)) { /* * Read port4mode_en_ovwr[0]: * If 1, four port mode is in port4mode_en_ovwr[1]. * If 0, four port mode is in port4mode_en[0]. */ val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); if (val & 1) { val = ((val >> 1) & 1); } else { val = REG_RD(sc, MISC_REG_PORT4MODE_EN); } sc->devinfo.chip_port_mode = (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; PMD_DRV_LOG(DEBUG, "Port mode = %s", (val) ? "4" : "2"); } /* get the function and path info for the device */ bnx2x_get_function_num(sc); /* get the shared memory base address */ sc->devinfo.shmem_base = sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); sc->devinfo.shmem2_base = REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : MISC_REG_GENERIC_CR_0)); if (!sc->devinfo.shmem_base) { /* this should ONLY prevent upcoming shmem reads */ PMD_DRV_LOG(INFO, "MCP not active"); sc->flags |= BNX2X_NO_MCP_FLAG; return 0; } /* make sure the shared memory contents are valid */ val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { PMD_DRV_LOG(NOTICE, "Invalid SHMEM validity signature: 0x%08x", val); return 0; } /* get the bootcode version */ sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); snprintf(sc->devinfo.bc_ver_str, sizeof(sc->devinfo.bc_ver_str), "%d.%d.%d", ((sc->devinfo.bc_ver >> 24) & 0xff), ((sc->devinfo.bc_ver >> 16) & 0xff), ((sc->devinfo.bc_ver >> 8) & 0xff)); PMD_DRV_LOG(INFO, "Bootcode version: %s", sc->devinfo.bc_ver_str); /* get the bootcode shmem address */ sc->devinfo.mf_cfg_base = bnx2x_get_shmem_mf_cfg_base(sc); /* clean indirect addresses as they're not used */ pci_write_long(sc, PCICFG_GRC_ADDRESS, 0); if (IS_PF(sc)) { REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); if (CHIP_IS_E1x(sc)) { REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); } } /* get the nvram size */ val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); sc->devinfo.flash_size = (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); bnx2x_set_power_state(sc, PCI_PM_D0); /* get various configuration parameters from shmem */ bnx2x_get_shmem_info(sc); /* initialize IGU parameters */ if (CHIP_IS_E1x(sc)) { sc->devinfo.int_block = INT_BLOCK_HC; sc->igu_dsb_id = DEF_SB_IGU_ID; sc->igu_base_sb = 0; } else { sc->devinfo.int_block = INT_BLOCK_IGU; /* do not allow device reset during IGU info preocessing */ bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { int tout = 5000; val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { tout--; DELAY(1000); } if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { PMD_DRV_LOG(NOTICE, "FORCING IGU Normal Mode failed!!!"); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); return -1; } } if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { PMD_DRV_LOG(DEBUG, "IGU Backward Compatible Mode"); sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; } else { PMD_DRV_LOG(DEBUG, "IGU Normal Mode"); } rc = bnx2x_get_igu_cam_info(sc); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); if (rc) { return rc; } } /* * Get base FW non-default (fast path) status block ID. This value is * used to initialize the fw_sb_id saved on the fp/queue structure to * determine the id used by the FW. */ if (CHIP_IS_E1x(sc)) { sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); } else { /* * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of * the same queue are indicated on the same IGU SB). So we prefer * FW and IGU SBs to be the same value. */ sc->base_fw_ndsb = sc->igu_base_sb; } elink_phy_probe(&sc->link_params); return 0; } static void bnx2x_link_settings_supported(struct bnx2x_softc *sc, uint32_t switch_cfg) { uint32_t cfg_size = 0; uint32_t idx; uint8_t port = SC_PORT(sc); /* aggregation of supported attributes of all external phys */ sc->port.supported[0] = 0; sc->port.supported[1] = 0; switch (sc->link_params.num_phys) { case 1: sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; cfg_size = 1; break; case 2: sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; cfg_size = 1; break; case 3: if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { sc->port.supported[1] = sc->link_params.phy[ELINK_EXT_PHY1].supported; sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY2].supported; } else { sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; sc->port.supported[1] = sc->link_params.phy[ELINK_EXT_PHY2].supported; } cfg_size = 2; break; } if (!(sc->port.supported[0] || sc->port.supported[1])) { PMD_DRV_LOG(ERR, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)", SHMEM_RD(sc, dev_info.port_hw_config [port].external_phy_config), SHMEM_RD(sc, dev_info.port_hw_config [port].external_phy_config2)); return; } if (CHIP_IS_E3(sc)) sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); else { switch (switch_cfg) { case ELINK_SWITCH_CFG_1G: sc->port.phy_addr = REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10); break; case ELINK_SWITCH_CFG_10G: sc->port.phy_addr = REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18); break; default: PMD_DRV_LOG(ERR, "Invalid switch config in" "link_config=0x%08x", sc->port.link_config[0]); return; } } PMD_DRV_LOG(INFO, "PHY addr 0x%08x", sc->port.phy_addr); /* mask what we support according to speed_cap_mask per configuration */ for (idx = 0; idx < cfg_size; idx++) { if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; } if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; } if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; } if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; } if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; } if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; } if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; } if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; } } PMD_DRV_LOG(INFO, "PHY supported 0=0x%08x 1=0x%08x", sc->port.supported[0], sc->port.supported[1]); } static void bnx2x_link_settings_requested(struct bnx2x_softc *sc) { uint32_t link_config; uint32_t idx; uint32_t cfg_size = 0; sc->port.advertising[0] = 0; sc->port.advertising[1] = 0; switch (sc->link_params.num_phys) { case 1: case 2: cfg_size = 1; break; case 3: cfg_size = 2; break; } for (idx = 0; idx < cfg_size; idx++) { sc->link_params.req_duplex[idx] = DUPLEX_FULL; link_config = sc->port.link_config[idx]; switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { case PORT_FEATURE_LINK_SPEED_AUTO: if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; sc->port.advertising[idx] |= sc->port.supported[idx]; if (sc->link_params.phy[ELINK_EXT_PHY1].type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BNX2X84833) sc->port.advertising[idx] |= (ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full); } else { /* force 10G, no AN */ sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); continue; } break; case PORT_FEATURE_LINK_SPEED_10M_FULL: if (sc-> port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | ADVERTISED_TP); } else { PMD_DRV_LOG(ERR, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x", link_config, sc-> link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_10M_HALF: if (sc-> port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; sc->link_params.req_duplex[idx] = DUPLEX_HALF; sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | ADVERTISED_TP); } else { PMD_DRV_LOG(ERR, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x", link_config, sc-> link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_100M_FULL: if (sc-> port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | ADVERTISED_TP); } else { PMD_DRV_LOG(ERR, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x", link_config, sc-> link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_100M_HALF: if (sc-> port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; sc->link_params.req_duplex[idx] = DUPLEX_HALF; sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | ADVERTISED_TP); } else { PMD_DRV_LOG(ERR, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x", link_config, sc-> link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_1G: if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | ADVERTISED_TP); } else { PMD_DRV_LOG(ERR, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x", link_config, sc-> link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_2_5G: if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | ADVERTISED_TP); } else { PMD_DRV_LOG(ERR, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x", link_config, sc-> link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_10G_CX4: if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); } else { PMD_DRV_LOG(ERR, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x", link_config, sc-> link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_20G: sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; break; default: PMD_DRV_LOG(ERR, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x", link_config, sc->link_params.speed_cap_mask[idx]); sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; sc->port.advertising[idx] = sc->port.supported[idx]; break; } sc->link_params.req_flow_ctrl[idx] = (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { if (! (sc-> port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; } else { bnx2x_set_requested_fc(sc); } } } } static void bnx2x_get_phy_info(struct bnx2x_softc *sc) { uint8_t port = SC_PORT(sc); uint32_t eee_mode; PMD_INIT_FUNC_TRACE(); /* shmem data already read in bnx2x_get_shmem_info() */ bnx2x_link_settings_supported(sc, sc->link_params.switch_cfg); bnx2x_link_settings_requested(sc); /* configure link feature according to nvram value */ eee_mode = (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | ELINK_EEE_MODE_ENABLE_LPI | ELINK_EEE_MODE_OUTPUT_TIME); } else { sc->link_params.eee_mode = 0; } /* get the media type */ bnx2x_media_detect(sc); } static void bnx2x_set_modes_bitmap(struct bnx2x_softc *sc) { uint32_t flags = MODE_ASIC | MODE_PORT2; if (CHIP_IS_E2(sc)) { flags |= MODE_E2; } else if (CHIP_IS_E3(sc)) { flags |= MODE_E3; if (CHIP_REV(sc) == CHIP_REV_Ax) { flags |= MODE_E3_A0; } else { /*if (CHIP_REV(sc) == CHIP_REV_Bx) */ flags |= MODE_E3_B0 | MODE_COS3; } } if (IS_MF(sc)) { flags |= MODE_MF; switch (sc->devinfo.mf_info.mf_mode) { case MULTI_FUNCTION_SD: flags |= MODE_MF_SD; break; case MULTI_FUNCTION_SI: flags |= MODE_MF_SI; break; case MULTI_FUNCTION_AFEX: flags |= MODE_MF_AFEX; break; } } else { flags |= MODE_SF; } #if defined(__LITTLE_ENDIAN) flags |= MODE_LITTLE_ENDIAN; #else /* __BIG_ENDIAN */ flags |= MODE_BIG_ENDIAN; #endif INIT_MODE_FLAGS(sc) = flags; } int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc) { struct bnx2x_fastpath *fp; char buf[32]; uint32_t i; if (IS_PF(sc)) { /************************/ /* DEFAULT STATUS BLOCK */ /************************/ if (bnx2x_dma_alloc(sc, sizeof(struct host_sp_status_block), &sc->def_sb_dma, "def_sb", RTE_CACHE_LINE_SIZE) != 0) { return -1; } sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; /***************/ /* EVENT QUEUE */ /***************/ if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE, &sc->eq_dma, "ev_queue", RTE_CACHE_LINE_SIZE) != 0) { sc->def_sb = NULL; return -1; } sc->eq = (union event_ring_elem *)sc->eq_dma.vaddr; /*************/ /* SLOW PATH */ /*************/ if (bnx2x_dma_alloc(sc, sizeof(struct bnx2x_slowpath), &sc->sp_dma, "sp", RTE_CACHE_LINE_SIZE) != 0) { sc->eq = NULL; sc->def_sb = NULL; return -1; } sc->sp = (struct bnx2x_slowpath *)sc->sp_dma.vaddr; /*******************/ /* SLOW PATH QUEUE */ /*******************/ if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE, &sc->spq_dma, "sp_queue", RTE_CACHE_LINE_SIZE) != 0) { sc->sp = NULL; sc->eq = NULL; sc->def_sb = NULL; return -1; } sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; /***************************/ /* FW DECOMPRESSION BUFFER */ /***************************/ if (bnx2x_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, "fw_buf", RTE_CACHE_LINE_SIZE) != 0) { sc->spq = NULL; sc->sp = NULL; sc->eq = NULL; sc->def_sb = NULL; return -1; } sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; } /*************/ /* FASTPATHS */ /*************/ /* allocate DMA memory for each fastpath structure */ for (i = 0; i < sc->num_queues; i++) { fp = &sc->fp[i]; fp->sc = sc; fp->index = i; /*******************/ /* FP STATUS BLOCK */ /*******************/ snprintf(buf, sizeof(buf), "fp_%d_sb", i); if (bnx2x_dma_alloc(sc, sizeof(union bnx2x_host_hc_status_block), &fp->sb_dma, buf, RTE_CACHE_LINE_SIZE) != 0) { PMD_DRV_LOG(NOTICE, "Failed to alloc %s", buf); return -1; } else { if (CHIP_IS_E2E3(sc)) { fp->status_block.e2_sb = (struct host_hc_status_block_e2 *) fp->sb_dma.vaddr; } else { fp->status_block.e1x_sb = (struct host_hc_status_block_e1x *) fp->sb_dma.vaddr; } } } return 0; } void bnx2x_free_hsi_mem(struct bnx2x_softc *sc) { struct bnx2x_fastpath *fp; int i; for (i = 0; i < sc->num_queues; i++) { fp = &sc->fp[i]; /*******************/ /* FP STATUS BLOCK */ /*******************/ memset(&fp->status_block, 0, sizeof(fp->status_block)); } /***************************/ /* FW DECOMPRESSION BUFFER */ /***************************/ sc->gz_buf = NULL; /*******************/ /* SLOW PATH QUEUE */ /*******************/ sc->spq = NULL; /*************/ /* SLOW PATH */ /*************/ sc->sp = NULL; /***************/ /* EVENT QUEUE */ /***************/ sc->eq = NULL; /************************/ /* DEFAULT STATUS BLOCK */ /************************/ sc->def_sb = NULL; } /* * Previous driver DMAE transaction may have occurred when pre-boot stage * ended and boot began. This would invalidate the addresses of the * transaction, resulting in was-error bit set in the PCI causing all * hw-to-host PCIe transactions to timeout. If this happened we want to clear * the interrupt which detected this from the pglueb and the was-done bit */ static void bnx2x_prev_interrupted_dmae(struct bnx2x_softc *sc) { uint32_t val; if (!CHIP_IS_E1x(sc)) { val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); } } } static int bnx2x_prev_mcp_done(struct bnx2x_softc *sc) { uint32_t rc = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); if (!rc) { PMD_DRV_LOG(NOTICE, "MCP response failure, aborting"); return -1; } return 0; } static struct bnx2x_prev_list_node *bnx2x_prev_path_get_entry(struct bnx2x_softc *sc) { struct bnx2x_prev_list_node *tmp; LIST_FOREACH(tmp, &bnx2x_prev_list, node) { if ((sc->pcie_bus == tmp->bus) && (sc->pcie_device == tmp->slot) && (SC_PATH(sc) == tmp->path)) { return tmp; } } return NULL; } static uint8_t bnx2x_prev_is_path_marked(struct bnx2x_softc *sc) { struct bnx2x_prev_list_node *tmp; int rc = FALSE; rte_spinlock_lock(&bnx2x_prev_mtx); tmp = bnx2x_prev_path_get_entry(sc); if (tmp) { if (tmp->aer) { PMD_DRV_LOG(DEBUG, "Path %d/%d/%d was marked by AER", sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); } else { rc = TRUE; PMD_DRV_LOG(DEBUG, "Path %d/%d/%d was already cleaned from previous drivers", sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); } } rte_spinlock_unlock(&bnx2x_prev_mtx); return rc; } static int bnx2x_prev_mark_path(struct bnx2x_softc *sc, uint8_t after_undi) { struct bnx2x_prev_list_node *tmp; rte_spinlock_lock(&bnx2x_prev_mtx); /* Check whether the entry for this path already exists */ tmp = bnx2x_prev_path_get_entry(sc); if (tmp) { if (!tmp->aer) { PMD_DRV_LOG(DEBUG, "Re-marking AER in path %d/%d/%d", sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); } else { PMD_DRV_LOG(DEBUG, "Removing AER indication from path %d/%d/%d", sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); tmp->aer = 0; } rte_spinlock_unlock(&bnx2x_prev_mtx); return 0; } rte_spinlock_unlock(&bnx2x_prev_mtx); /* Create an entry for this path and add it */ tmp = rte_malloc("", sizeof(struct bnx2x_prev_list_node), RTE_CACHE_LINE_SIZE); if (!tmp) { PMD_DRV_LOG(NOTICE, "Failed to allocate 'bnx2x_prev_list_node'"); return -1; } tmp->bus = sc->pcie_bus; tmp->slot = sc->pcie_device; tmp->path = SC_PATH(sc); tmp->aer = 0; tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; rte_spinlock_lock(&bnx2x_prev_mtx); LIST_INSERT_HEAD(&bnx2x_prev_list, tmp, node); rte_spinlock_unlock(&bnx2x_prev_mtx); return 0; } static int bnx2x_do_flr(struct bnx2x_softc *sc) { int i; /* only E2 and onwards support FLR */ if (CHIP_IS_E1x(sc)) { PMD_DRV_LOG(WARNING, "FLR not supported in E1H"); return -1; } /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { PMD_DRV_LOG(WARNING, "FLR not supported by BC_VER: 0x%08x", sc->devinfo.bc_ver); return -1; } /* Wait for Transaction Pending bit clean */ for (i = 0; i < 4; i++) { if (i) { DELAY(((1 << (i - 1)) * 100) * 1000); } if (!bnx2x_is_pcie_pending(sc)) { goto clear; } } PMD_DRV_LOG(NOTICE, "PCIE transaction is not cleared, " "proceeding with reset anyway"); clear: bnx2x_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); return 0; } struct bnx2x_mac_vals { uint32_t xmac_addr; uint32_t xmac_val; uint32_t emac_addr; uint32_t emac_val; uint32_t umac_addr; uint32_t umac_val; uint32_t bmac_addr; uint32_t bmac_val[2]; }; static void bnx2x_prev_unload_close_mac(struct bnx2x_softc *sc, struct bnx2x_mac_vals *vals) { uint32_t val, base_addr, offset, mask, reset_reg; uint8_t mac_stopped = FALSE; uint8_t port = SC_PORT(sc); uint32_t wb_data[2]; /* reset addresses as they also mark which values were changed */ vals->bmac_addr = 0; vals->umac_addr = 0; vals->xmac_addr = 0; vals->emac_addr = 0; reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); if (!CHIP_IS_E3(sc)) { val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; if ((mask & reset_reg) && val) { base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM : NIG_REG_INGRESS_BMAC0_MEM; offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL : BIGMAC_REGISTER_BMAC_CONTROL; /* * use rd/wr since we cannot use dmae. This is safe * since MCP won't access the bus due to the request * to unload, and no function on the path can be * loaded at this time. */ wb_data[0] = REG_RD(sc, base_addr + offset); wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); vals->bmac_addr = base_addr + offset; vals->bmac_val[0] = wb_data[0]; vals->bmac_val[1] = wb_data[1]; wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; REG_WR(sc, vals->bmac_addr, wb_data[0]); REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); } vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc) * 4; vals->emac_val = REG_RD(sc, vals->emac_addr); REG_WR(sc, vals->emac_addr, 0); mac_stopped = TRUE; } else { if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); vals->xmac_addr = base_addr + XMAC_REG_CTRL; vals->xmac_val = REG_RD(sc, vals->xmac_addr); REG_WR(sc, vals->xmac_addr, 0); mac_stopped = TRUE; } mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; if (mask & reset_reg) { base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; vals->umac_val = REG_RD(sc, vals->umac_addr); REG_WR(sc, vals->umac_addr, 0); mac_stopped = TRUE; } } if (mac_stopped) { DELAY(20000); } } #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) static void bnx2x_prev_unload_undi_inc(struct bnx2x_softc *sc, uint8_t port, uint8_t inc) { uint16_t rcq, bd; uint32_t tmp_reg = REG_RD(sc, BNX2X_PREV_UNDI_PROD_ADDR(port)); rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); REG_WR(sc, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg); } static int bnx2x_prev_unload_common(struct bnx2x_softc *sc) { uint32_t reset_reg, tmp_reg = 0, rc; uint8_t prev_undi = FALSE; struct bnx2x_mac_vals mac_vals; uint32_t timer_count = 1000; uint32_t prev_brb; /* * It is possible a previous function received 'common' answer, * but hasn't loaded yet, therefore creating a scenario of * multiple functions receiving 'common' on the same path. */ memset(&mac_vals, 0, sizeof(mac_vals)); if (bnx2x_prev_is_path_marked(sc)) { return bnx2x_prev_mcp_done(sc); } reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); /* Reset should be performed after BRB is emptied */ if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { /* Close the MAC Rx to prevent BRB from filling up */ bnx2x_prev_unload_close_mac(sc, &mac_vals); /* close LLH filters towards the BRB */ elink_set_rx_filter(&sc->link_params, 0); /* * Check if the UNDI driver was previously loaded. * UNDI driver initializes CID offset for normal bell to 0x7 */ if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); if (tmp_reg == 0x7) { PMD_DRV_LOG(DEBUG, "UNDI previously loaded"); prev_undi = TRUE; /* clear the UNDI indication */ REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); /* clear possible idle check errors */ REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); } } /* wait until BRB is empty */ tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); while (timer_count) { prev_brb = tmp_reg; tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); if (!tmp_reg) { break; } PMD_DRV_LOG(DEBUG, "BRB still has 0x%08x", tmp_reg); /* reset timer as long as BRB actually gets emptied */ if (prev_brb > tmp_reg) { timer_count = 1000; } else { timer_count--; } /* If UNDI resides in memory, manually increment it */ if (prev_undi) { bnx2x_prev_unload_undi_inc(sc, SC_PORT(sc), 1); } DELAY(10); } if (!timer_count) { PMD_DRV_LOG(NOTICE, "Failed to empty BRB"); } } /* No packets are in the pipeline, path is ready for reset */ bnx2x_reset_common(sc); if (mac_vals.xmac_addr) { REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); } if (mac_vals.umac_addr) { REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); } if (mac_vals.emac_addr) { REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); } if (mac_vals.bmac_addr) { REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); } rc = bnx2x_prev_mark_path(sc, prev_undi); if (rc) { bnx2x_prev_mcp_done(sc); return rc; } return bnx2x_prev_mcp_done(sc); } static int bnx2x_prev_unload_uncommon(struct bnx2x_softc *sc) { int rc; /* Test if previous unload process was already finished for this path */ if (bnx2x_prev_is_path_marked(sc)) { return bnx2x_prev_mcp_done(sc); } /* * If function has FLR capabilities, and existing FW version matches * the one required, then FLR will be sufficient to clean any residue * left by previous driver */ rc = bnx2x_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); if (!rc) { /* fw version is good */ rc = bnx2x_do_flr(sc); } if (!rc) { /* FLR was performed */ return 0; } PMD_DRV_LOG(INFO, "Could not FLR"); /* Close the MCP request, return failure */ rc = bnx2x_prev_mcp_done(sc); if (!rc) { rc = BNX2X_PREV_WAIT_NEEDED; } return rc; } static int bnx2x_prev_unload(struct bnx2x_softc *sc) { int time_counter = 10; uint32_t fw, hw_lock_reg, hw_lock_val; uint32_t rc = 0; /* * Clear HW from errors which may have resulted from an interrupted * DMAE transaction. */ bnx2x_prev_interrupted_dmae(sc); /* Release previously held locks */ if (SC_FUNC(sc) <= 5) hw_lock_reg = (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8); else hw_lock_reg = (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); hw_lock_val = (REG_RD(sc, hw_lock_reg)); if (hw_lock_val) { if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); } REG_WR(sc, hw_lock_reg, 0xffffffff); } if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); } do { /* Lock MCP using an unload request */ fw = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); if (!fw) { PMD_DRV_LOG(NOTICE, "MCP response failure, aborting"); rc = -1; break; } if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { rc = bnx2x_prev_unload_common(sc); break; } /* non-common reply from MCP might require looping */ rc = bnx2x_prev_unload_uncommon(sc); if (rc != BNX2X_PREV_WAIT_NEEDED) { break; } DELAY(20000); } while (--time_counter); if (!time_counter || rc) { PMD_DRV_LOG(NOTICE, "Failed to unload previous driver!"); rc = -1; } return rc; } static void bnx2x_dcbx_set_state(struct bnx2x_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled) { if (!CHIP_IS_E1x(sc)) { sc->dcb_state = dcb_on; sc->dcbx_enabled = dcbx_enabled; } else { sc->dcb_state = FALSE; sc->dcbx_enabled = BNX2X_DCBX_ENABLED_INVALID; } PMD_DRV_LOG(DEBUG, "DCB state [%s:%s]", dcb_on ? "ON" : "OFF", (dcbx_enabled == BNX2X_DCBX_ENABLED_OFF) ? "user-mode" : (dcbx_enabled == BNX2X_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : (dcbx_enabled == BNX2X_DCBX_ENABLED_ON_NEG_ON) ? "on-chip with negotiation" : "invalid"); } static int bnx2x_set_qm_cid_count(struct bnx2x_softc *sc) { int cid_count = BNX2X_L2_MAX_CID(sc); if (CNIC_SUPPORT(sc)) { cid_count += CNIC_CID_MAX; } return roundup(cid_count, QM_CID_ROUND); } static void bnx2x_init_multi_cos(struct bnx2x_softc *sc) { int pri, cos; uint32_t pri_map = 0; for (pri = 0; pri < BNX2X_MAX_PRIORITY; pri++) { cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); if (cos < sc->max_cos) { sc->prio_to_cos[pri] = cos; } else { PMD_DRV_LOG(WARNING, "Invalid COS %d for priority %d " "(max COS is %d), setting to 0", cos, pri, (sc->max_cos - 1)); sc->prio_to_cos[pri] = 0; } } } static int bnx2x_pci_get_caps(struct bnx2x_softc *sc) { struct { uint8_t id; uint8_t next; } pci_cap; uint16_t status; struct bnx2x_pci_cap *cap; cap = sc->pci_caps = rte_zmalloc("caps", sizeof(struct bnx2x_pci_cap), RTE_CACHE_LINE_SIZE); if (!cap) { PMD_DRV_LOG(NOTICE, "Failed to allocate memory"); return -ENOMEM; } #ifndef __FreeBSD__ pci_read(sc, PCI_STATUS, &status, 2); if (!(status & PCI_STATUS_CAP_LIST)) { #else pci_read(sc, PCIR_STATUS, &status, 2); if (!(status & PCIM_STATUS_CAPPRESENT)) { #endif PMD_DRV_LOG(NOTICE, "PCIe capability reading failed"); return -1; } #ifndef __FreeBSD__ pci_read(sc, PCI_CAPABILITY_LIST, &pci_cap.next, 1); #else pci_read(sc, PCIR_CAP_PTR, &pci_cap.next, 1); #endif while (pci_cap.next) { cap->addr = pci_cap.next & ~3; pci_read(sc, pci_cap.next & ~3, &pci_cap, 2); if (pci_cap.id == 0xff) break; cap->id = pci_cap.id; cap->type = BNX2X_PCI_CAP; cap->next = rte_zmalloc("pci_cap", sizeof(struct bnx2x_pci_cap), RTE_CACHE_LINE_SIZE); if (!cap->next) { PMD_DRV_LOG(NOTICE, "Failed to allocate memory"); return -ENOMEM; } cap = cap->next; } return 0; } static void bnx2x_init_rte(struct bnx2x_softc *sc) { if (IS_VF(sc)) { sc->max_tx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF, sc->igu_sb_cnt); sc->max_rx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF, sc->igu_sb_cnt); } else { sc->max_rx_queues = BNX2X_MAX_RSS_COUNT(sc); sc->max_tx_queues = sc->max_rx_queues; } } #define FW_HEADER_LEN 104 #define FW_NAME_57711 "/lib/firmware/bnx2x/bnx2x-e1h-7.2.51.0.fw" #define FW_NAME_57810 "/lib/firmware/bnx2x/bnx2x-e2-7.2.51.0.fw" void bnx2x_load_firmware(struct bnx2x_softc *sc) { const char *fwname; int f; struct stat st; fwname = sc->devinfo.device_id == CHIP_NUM_57711 ? FW_NAME_57711 : FW_NAME_57810; f = open(fwname, O_RDONLY); if (f < 0) { PMD_DRV_LOG(NOTICE, "Can't open firmware file"); return; } if (fstat(f, &st) < 0) { PMD_DRV_LOG(NOTICE, "Can't stat firmware file"); close(f); return; } sc->firmware = rte_zmalloc("bnx2x_fw", st.st_size, RTE_CACHE_LINE_SIZE); if (!sc->firmware) { PMD_DRV_LOG(NOTICE, "Can't allocate memory for firmware"); close(f); return; } if (read(f, sc->firmware, st.st_size) != st.st_size) { PMD_DRV_LOG(NOTICE, "Can't read firmware data"); close(f); return; } close(f); sc->fw_len = st.st_size; if (sc->fw_len < FW_HEADER_LEN) { PMD_DRV_LOG(NOTICE, "Invalid fw size: %" PRIu64, sc->fw_len); return; } PMD_DRV_LOG(DEBUG, "fw_len = %" PRIu64, sc->fw_len); } static void bnx2x_data_to_init_ops(uint8_t * data, struct raw_op *dst, uint32_t len) { uint32_t *src = (uint32_t *) data; uint32_t i, j, tmp; for (i = 0, j = 0; i < len / 8; ++i, j += 2) { tmp = rte_be_to_cpu_32(src[j]); dst[i].op = (tmp >> 24) & 0xFF; dst[i].offset = tmp & 0xFFFFFF; dst[i].raw_data = rte_be_to_cpu_32(src[j + 1]); } } static void bnx2x_data_to_init_offsets(uint8_t * data, uint16_t * dst, uint32_t len) { uint16_t *src = (uint16_t *) data; uint32_t i; for (i = 0; i < len / 2; ++i) dst[i] = rte_be_to_cpu_16(src[i]); } static void bnx2x_data_to_init_data(uint8_t * data, uint32_t * dst, uint32_t len) { uint32_t *src = (uint32_t *) data; uint32_t i; for (i = 0; i < len / 4; ++i) dst[i] = rte_be_to_cpu_32(src[i]); } static void bnx2x_data_to_iro_array(uint8_t * data, struct iro *dst, uint32_t len) { uint32_t *src = (uint32_t *) data; uint32_t i, j, tmp; for (i = 0, j = 0; i < len / sizeof(struct iro); ++i, ++j) { dst[i].base = rte_be_to_cpu_32(src[j++]); tmp = rte_be_to_cpu_32(src[j]); dst[i].m1 = (tmp >> 16) & 0xFFFF; dst[i].m2 = tmp & 0xFFFF; ++j; tmp = rte_be_to_cpu_32(src[j]); dst[i].m3 = (tmp >> 16) & 0xFFFF; dst[i].size = tmp & 0xFFFF; } } /* * Device attach function. * * Allocates device resources, performs secondary chip identification, and * initializes driver instance variables. This function is called from driver * load after a successful probe. * * Returns: * 0 = Success, >0 = Failure */ int bnx2x_attach(struct bnx2x_softc *sc) { int rc; PMD_DRV_LOG(DEBUG, "Starting attach..."); rc = bnx2x_pci_get_caps(sc); if (rc) { PMD_DRV_LOG(NOTICE, "PCIe caps reading was failed"); return rc; } sc->state = BNX2X_STATE_CLOSED; pci_write_long(sc, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET); sc->igu_base_addr = IS_VF(sc) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; /* get PCI capabilites */ bnx2x_probe_pci_caps(sc); if (sc->devinfo.pcie_msix_cap_reg != 0) { uint32_t val; pci_read(sc, (sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), &val, 2); sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE) + 1; } else { sc->igu_sb_cnt = 1; } /* Init RTE stuff */ bnx2x_init_rte(sc); if (IS_PF(sc)) { /* Enable internal target-read (in case we are probed after PF * FLR). Must be done prior to any BAR read access. Only for * 57712 and up */ if (!CHIP_IS_E1x(sc)) { REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); DELAY(200000); } /* get device info and set params */ if (bnx2x_get_device_info(sc) != 0) { PMD_DRV_LOG(NOTICE, "getting device info"); return -ENXIO; } /* get phy settings from shmem and 'and' against admin settings */ bnx2x_get_phy_info(sc); } else { /* Left mac of VF unfilled, PF should set it for VF */ memset(sc->link_params.mac_addr, 0, ETHER_ADDR_LEN); } sc->wol = 0; /* set the default MTU (changed via ifconfig) */ sc->mtu = ETHER_MTU; bnx2x_set_modes_bitmap(sc); /* need to reset chip if UNDI was active */ if (IS_PF(sc) && !BNX2X_NOMCP(sc)) { /* init fw_seq */ sc->fw_seq = (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & DRV_MSG_SEQ_NUMBER_MASK); bnx2x_prev_unload(sc); } bnx2x_dcbx_set_state(sc, FALSE, BNX2X_DCBX_ENABLED_OFF); /* calculate qm_cid_count */ sc->qm_cid_count = bnx2x_set_qm_cid_count(sc); sc->max_cos = 1; bnx2x_init_multi_cos(sc); return 0; } static void bnx2x_igu_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t segment, uint16_t index, uint8_t op, uint8_t update) { uint32_t igu_addr = sc->igu_base_addr; igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id) * 8; bnx2x_igu_ack_sb_gen(sc, segment, index, op, update, igu_addr); } static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm, uint16_t index, uint8_t op, uint8_t update) { if (unlikely(sc->devinfo.int_block == INT_BLOCK_HC)) bnx2x_hc_ack_sb(sc, igu_sb_id, storm, index, op, update); else { uint8_t segment; if (CHIP_INT_MODE_IS_BC(sc)) { segment = storm; } else if (igu_sb_id != sc->igu_dsb_id) { segment = IGU_SEG_ACCESS_DEF; } else if (storm == ATTENTION_ID) { segment = IGU_SEG_ACCESS_ATTN; } else { segment = IGU_SEG_ACCESS_DEF; } bnx2x_igu_ack_sb(sc, igu_sb_id, segment, index, op, update); } } static void bnx2x_igu_clear_sb_gen(struct bnx2x_softc *sc, uint8_t func, uint8_t idu_sb_id, uint8_t is_pf) { uint32_t data, ctl, cnt = 100; uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id / 32) * 4; uint32_t sb_bit = 1 << (idu_sb_id % 32); uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; /* Not supported in BC mode */ if (CHIP_INT_MODE_IS_BC(sc)) { return; } data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP); ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | (func_encode << IGU_CTRL_REG_FID_SHIFT) | (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); REG_WR(sc, igu_addr_data, data); mb(); PMD_DRV_LOG(DEBUG, "write 0x%08x to IGU(via GRC) addr 0x%x", ctl, igu_addr_ctl); REG_WR(sc, igu_addr_ctl, ctl); mb(); /* wait for clean up to finish */ while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { DELAY(20000); } if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { PMD_DRV_LOG(DEBUG, "Unable to finish IGU cleanup: " "idu_sb_id %d offset %d bit %d (cnt %d)", idu_sb_id, idu_sb_id / 32, idu_sb_id % 32, cnt); } } static void bnx2x_igu_clear_sb(struct bnx2x_softc *sc, uint8_t idu_sb_id) { bnx2x_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); } /*******************/ /* ECORE CALLBACKS */ /*******************/ static void bnx2x_reset_common(struct bnx2x_softc *sc) { uint32_t val = 0x1400; PMD_INIT_FUNC_TRACE(); /* reset_common */ REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); if (CHIP_IS_E3(sc)) { val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; } REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); } static void bnx2x_common_init_phy(struct bnx2x_softc *sc) { uint32_t shmem_base[2]; uint32_t shmem2_base[2]; /* Avoid common init in case MFW supports LFA */ if (SHMEM2_RD(sc, size) > (uint32_t) offsetof(struct shmem2_region, lfa_host_addr[SC_PORT(sc)])) { return; } shmem_base[0] = sc->devinfo.shmem_base; shmem2_base[0] = sc->devinfo.shmem2_base; if (!CHIP_IS_E1x(sc)) { shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); } elink_common_init_phy(sc, shmem_base, shmem2_base, sc->devinfo.chip_id, 0); } static void bnx2x_pf_disable(struct bnx2x_softc *sc) { uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); val &= ~IGU_PF_CONF_FUNC_EN; REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); } static void bnx2x_init_pxp(struct bnx2x_softc *sc) { uint16_t devctl; int r_order, w_order; devctl = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL); w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); ecore_init_pxp_arb(sc, r_order, w_order); } static uint32_t bnx2x_get_pretend_reg(struct bnx2x_softc *sc) { uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); return base + (SC_ABS_FUNC(sc)) * stride; } /* * Called only on E1H or E2. * When pretending to be PF, the pretend value is the function number 0..7. * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID * combination. */ static int bnx2x_pretend_func(struct bnx2x_softc *sc, uint16_t pretend_func_val) { uint32_t pretend_reg; if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) return -1; /* get my own pretend register */ pretend_reg = bnx2x_get_pretend_reg(sc); REG_WR(sc, pretend_reg, pretend_func_val); REG_RD(sc, pretend_reg); return 0; } static void bnx2x_setup_fan_failure_detection(struct bnx2x_softc *sc) { int is_required; uint32_t val; int port; is_required = 0; val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & SHARED_HW_CFG_FAN_FAILURE_MASK); if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { is_required = 1; } /* * The fan failure mechanism is usually related to the PHY type since * the power consumption of the board is affected by the PHY. Currently, * fan is required for most designs with SFX7101, BNX2X8727 and BNX2X8481. */ else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { for (port = PORT_0; port < PORT_MAX; port++) { is_required |= elink_fan_failure_det_req(sc, sc-> devinfo.shmem_base, sc-> devinfo.shmem2_base, port); } } if (is_required == 0) { return; } /* Fan failure is indicated by SPIO 5 */ bnx2x_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); /* set to active low mode */ val = REG_RD(sc, MISC_REG_SPIO_INT); val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); REG_WR(sc, MISC_REG_SPIO_INT, val); /* enable interrupt to signal the IGU */ val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); val |= MISC_SPIO_SPIO5; REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); } static void bnx2x_enable_blocks_attention(struct bnx2x_softc *sc) { uint32_t val; REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); if (!CHIP_IS_E1x(sc)) { REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); } else { REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); } REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); /* * mask read length error interrupts in brb for parser * (parsing unit and 'checksum and crc' unit) * these errors are legal (PU reads fixed length and CAC can cause * read length error on truncated packets) */ REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); REG_WR(sc, QM_REG_QM_INT_MASK, 0); REG_WR(sc, TM_REG_TM_INT_MASK, 0); REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); if (!CHIP_IS_E1x(sc)) { val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); } REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ if (!CHIP_IS_E1x(sc)) { /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); } REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ } /** * bnx2x_init_hw_common - initialize the HW at the COMMON phase. * * @sc: driver handle */ static int bnx2x_init_hw_common(struct bnx2x_softc *sc) { uint8_t abs_func_id; uint32_t val; PMD_DRV_LOG(DEBUG, "starting common init for func %d", SC_ABS_FUNC(sc)); /* * take the RESET lock to protect undi_unload flow from accessing * registers while we are resetting the chip */ bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); bnx2x_reset_common(sc); REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); val = 0xfffc; if (CHIP_IS_E3(sc)) { val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; } REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); if (!CHIP_IS_E1x(sc)) { /* * 4-port mode or 2-port mode we need to turn off master-enable for * everyone. After that we turn it back on for self. So, we disregard * multi-function, and always disable all functions on the given path, * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 */ for (abs_func_id = SC_PATH(sc); abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) { if (abs_func_id == SC_ABS_FUNC(sc)) { REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); continue; } bnx2x_pretend_func(sc, abs_func_id); /* clear pf enable */ bnx2x_pf_disable(sc); bnx2x_pretend_func(sc, SC_ABS_FUNC(sc)); } } ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); bnx2x_init_pxp(sc); #ifdef __BIG_ENDIAN REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); /* make sure this value is 0 */ REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); #endif ecore_ilt_init_page_size(sc, INITOP_SET); if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); } /* let the HW do it's magic... */ DELAY(100000); /* finish PXP init */ val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); if (val != 1) { PMD_DRV_LOG(NOTICE, "PXP2 CFG failed"); return -1; } val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); if (val != 1) { PMD_DRV_LOG(NOTICE, "PXP2 RD_INIT failed"); return -1; } /* * Timer bug workaround for E2 only. We need to set the entire ILT to have * entries with value "0" and valid bit on. This needs to be done by the * first PF that is loaded in a path (i.e. common phase) */ if (!CHIP_IS_E1x(sc)) { /* * In E2 there is a bug in the timers block that can cause function 6 / 7 * (i.e. vnic3) to start even if it is marked as "scan-off". * This occurs when a different function (func2,3) is being marked * as "scan-off". Real-life scenario for example: if a driver is being * load-unloaded while func6,7 are down. This will cause the timer to access * the ilt, translate to a logical address and send a request to read/write. * Since the ilt for the function that is down is not valid, this will cause * a translation error which is unrecoverable. * The Workaround is intended to make sure that when this happens nothing * fatal will occur. The workaround: * 1. First PF driver which loads on a path will: * a. After taking the chip out of reset, by using pretend, * it will write "0" to the following registers of * the other vnics. * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); * And for itself it will write '1' to * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable * dmae-operations (writing to pram for example.) * note: can be done for only function 6,7 but cleaner this * way. * b. Write zero+valid to the entire ILT. * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of * VNIC3 (of that port). The range allocated will be the * entire ILT. This is needed to prevent ILT range error. * 2. Any PF driver load flow: * a. ILT update with the physical addresses of the allocated * logical pages. * b. Wait 20msec. - note that this timeout is needed to make * sure there are no requests in one of the PXP internal * queues with "old" ILT addresses. * c. PF enable in the PGLC. * d. Clear the was_error of the PF in the PGLC. (could have * occurred while driver was down) * e. PF enable in the CFC (WEAK + STRONG) * f. Timers scan enable * 3. PF driver unload flow: * a. Clear the Timers scan_en. * b. Polling for scan_on=0 for that PF. * c. Clear the PF enable bit in the PXP. * d. Clear the PF enable in the CFC (WEAK + STRONG) * e. Write zero+valid to all ILT entries (The valid bit must * stay set) * f. If this is VNIC 3 of a port then also init * first_timers_ilt_entry to zero and last_timers_ilt_entry * to the last enrty in the ILT. * * Notes: * Currently the PF error in the PGLC is non recoverable. * In the future the there will be a recovery routine for this error. * Currently attention is masked. * Having an MCP lock on the load/unload process does not guarantee that * there is no Timer disable during Func6/7 enable. This is because the * Timers scan is currently being cleared by the MCP on FLR. * Step 2.d can be done only for PF6/7 and the driver can also check if * there is error before clearing it. But the flow above is simpler and * more general. * All ILT entries are written by zero+valid and not just PF6/7 * ILT entries since in the future the ILT entries allocation for * PF-s might be dynamic. */ struct ilt_client_info ilt_cli; struct ecore_ilt ilt; memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); memset(&ilt, 0, sizeof(struct ecore_ilt)); /* initialize dummy TM client */ ilt_cli.start = 0; ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; ilt_cli.client_num = ILT_CLIENT_TM; /* * Step 1: set zeroes to all ilt page entries with valid bit on * Step 2: set the timers first/last ilt entry to point * to the entire range to prevent ILT range error for 3rd/4th * vnic (this code assumes existence of the vnic) * * both steps performed by call to ecore_ilt_client_init_op() * with dummy TM client * * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT * and his brother are split registers */ bnx2x_pretend_func(sc, (SC_PATH(sc) + 6)); ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); bnx2x_pretend_func(sc, SC_ABS_FUNC(sc)); REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); } REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); if (!CHIP_IS_E1x(sc)) { int factor = 0; ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); /* let the HW do it's magic... */ do { DELAY(200000); val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); } while (factor-- && (val != 1)); if (val != 1) { PMD_DRV_LOG(NOTICE, "ATC_INIT failed"); return -1; } } ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); /* clean the DMAE memory */ sc->dmae_ready = 1; ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8); ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); bnx2x_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); bnx2x_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); bnx2x_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); bnx2x_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); /* QM queues pointers table */ ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); /* soft reset pulse */ REG_WR(sc, QM_REG_SOFT_RESET, 1); REG_WR(sc, QM_REG_SOFT_RESET, 0); if (CNIC_SUPPORT(sc)) ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); REG_WR(sc, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT); if (!CHIP_REV_IS_SLOW(sc)) { /* enable hw interrupt from doorbell Q */ REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); } ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { if (IS_MF_AFEX(sc)) { /* * configure that AFEX and VLAN headers must be * received in AFEX mode */ REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); } else { /* * Bit-map indicating which L2 hdrs may appear * after the basic Ethernet header */ REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); } } ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); if (!CHIP_IS_E1x(sc)) { /* reset VFC memories */ REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, VFC_MEMORIES_RST_REG_CAM_RST | VFC_MEMORIES_RST_REG_RAM_RST); REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, VFC_MEMORIES_RST_REG_CAM_RST | VFC_MEMORIES_RST_REG_RAM_RST); DELAY(20000); } ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); /* sync semi rtc */ REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000); ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); if (!CHIP_IS_E1x(sc)) { if (IS_MF_AFEX(sc)) { /* * configure that AFEX and VLAN headers must be * sent in AFEX mode */ REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); } else { REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); } } REG_WR(sc, SRC_REG_SOFT_RST, 1); ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); if (CNIC_SUPPORT(sc)) { REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); } REG_WR(sc, SRC_REG_SOFT_RST, 0); if (sizeof(union cdu_context) != 1024) { /* we currently assume that a context is 1024 bytes */ PMD_DRV_LOG(NOTICE, "please adjust the size of cdu_context(%ld)", (long)sizeof(union cdu_context)); } ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); val = (4 << 24) + (0 << 12) + 1024; REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); /* enable context validation interrupt from CFC */ REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); /* set the thresholds to prevent CFC/CDU race */ REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); if (!CHIP_IS_E1x(sc) && BNX2X_NOMCP(sc)) { REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); } ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); /* Reset PCIE errors for debug */ REG_WR(sc, 0x2814, 0xffffffff); REG_WR(sc, 0x3820, 0xffffffff); if (!CHIP_IS_E1x(sc)) { REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); } ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); /* in E3 this done in per-port section */ if (!CHIP_IS_E3(sc)) REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); if (CHIP_IS_E1H(sc)) { /* not applicable for E2 (and above ...) */ REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); } if (CHIP_REV_IS_SLOW(sc)) { DELAY(200000); } /* finish CFC init */ val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); if (val != 1) { PMD_DRV_LOG(NOTICE, "CFC LL_INIT failed"); return -1; } val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); if (val != 1) { PMD_DRV_LOG(NOTICE, "CFC AC_INIT failed"); return -1; } val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); if (val != 1) { PMD_DRV_LOG(NOTICE, "CFC CAM_INIT failed"); return -1; } REG_WR(sc, CFC_REG_DEBUG0, 0); bnx2x_setup_fan_failure_detection(sc); /* clear PXP2 attentions */ REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); bnx2x_enable_blocks_attention(sc); if (!CHIP_REV_IS_SLOW(sc)) { ecore_enable_blocks_parity(sc); } if (!BNX2X_NOMCP(sc)) { if (CHIP_IS_E1x(sc)) { bnx2x_common_init_phy(sc); } } return 0; } /** * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. * * @sc: driver handle */ static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc) { int rc = bnx2x_init_hw_common(sc); if (rc) { return rc; } /* In E2 2-PORT mode, same ext phy is used for the two paths */ if (!BNX2X_NOMCP(sc)) { bnx2x_common_init_phy(sc); } return 0; } static int bnx2x_init_hw_port(struct bnx2x_softc *sc) { int port = SC_PORT(sc); int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; uint32_t low, high; uint32_t val; PMD_DRV_LOG(DEBUG, "starting port init for port %d", port); REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0); ecore_init_block(sc, BLOCK_MISC, init_phase); ecore_init_block(sc, BLOCK_PXP, init_phase); ecore_init_block(sc, BLOCK_PXP2, init_phase); /* * Timers bug workaround: disables the pf_master bit in pglue at * common phase, we need to enable it here before any dmae access are * attempted. Therefore we manually added the enable-master to the * port phase (it also happens in the function phase) */ if (!CHIP_IS_E1x(sc)) { REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); } ecore_init_block(sc, BLOCK_ATC, init_phase); ecore_init_block(sc, BLOCK_DMAE, init_phase); ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); ecore_init_block(sc, BLOCK_QM, init_phase); ecore_init_block(sc, BLOCK_TCM, init_phase); ecore_init_block(sc, BLOCK_UCM, init_phase); ecore_init_block(sc, BLOCK_CCM, init_phase); ecore_init_block(sc, BLOCK_XCM, init_phase); /* QM cid (connection) count */ ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); if (CNIC_SUPPORT(sc)) { ecore_init_block(sc, BLOCK_TM, init_phase); REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port * 4, 20); REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port * 4, 31); } ecore_init_block(sc, BLOCK_DORQ, init_phase); ecore_init_block(sc, BLOCK_BRB1, init_phase); if (CHIP_IS_E1H(sc)) { if (IS_MF(sc)) { low = (BNX2X_ONE_PORT(sc) ? 160 : 246); } else if (sc->mtu > 4096) { if (BNX2X_ONE_PORT(sc)) { low = 160; } else { val = sc->mtu; /* (24*1024 + val*4)/256 */ low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); } } else { low = (BNX2X_ONE_PORT(sc) ? 80 : 160); } high = (low + 56); /* 14*1024/256 */ REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low); REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high); } if (CHIP_IS_MODE_4_PORT(sc)) { REG_WR(sc, SC_PORT(sc) ? BRB1_REG_MAC_GUARANTIED_1 : BRB1_REG_MAC_GUARANTIED_0, 40); } ecore_init_block(sc, BLOCK_PRS, init_phase); if (CHIP_IS_E3B0(sc)) { if (IS_MF_AFEX(sc)) { /* configure headers for AFEX mode */ if (SC_PORT(sc)) { REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_1, 0xE); REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_1, 0x6); REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_1, 0xA); } else { REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); } } else { /* Ovlan exists only if we are in multi-function + * switch-dependent mode, in switch-independent there * is no ovlan headers */ REG_WR(sc, SC_PORT(sc) ? PRS_REG_HDRS_AFTER_BASIC_PORT_1 : PRS_REG_HDRS_AFTER_BASIC_PORT_0, (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); } } ecore_init_block(sc, BLOCK_TSDM, init_phase); ecore_init_block(sc, BLOCK_CSDM, init_phase); ecore_init_block(sc, BLOCK_USDM, init_phase); ecore_init_block(sc, BLOCK_XSDM, init_phase); ecore_init_block(sc, BLOCK_TSEM, init_phase); ecore_init_block(sc, BLOCK_USEM, init_phase); ecore_init_block(sc, BLOCK_CSEM, init_phase); ecore_init_block(sc, BLOCK_XSEM, init_phase); ecore_init_block(sc, BLOCK_UPB, init_phase); ecore_init_block(sc, BLOCK_XPB, init_phase); ecore_init_block(sc, BLOCK_PBF, init_phase); if (CHIP_IS_E1x(sc)) { /* configure PBF to work without PAUSE mtu 9000 */ REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0); /* update threshold */ REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040 / 16)); /* update init credit */ REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4, (9040 / 16) + 553 - 22); /* probe changes */ REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1); DELAY(50); REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0); } if (CNIC_SUPPORT(sc)) { ecore_init_block(sc, BLOCK_SRC, init_phase); } ecore_init_block(sc, BLOCK_CDU, init_phase); ecore_init_block(sc, BLOCK_CFC, init_phase); ecore_init_block(sc, BLOCK_HC, init_phase); ecore_init_block(sc, BLOCK_IGU, init_phase); ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); /* init aeu_mask_attn_func_0/1: * - SF mode: bits 3-7 are masked. only bits 0-2 are in use * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF * bits 4-7 are used for "per vn group attention" */ val = IS_MF(sc) ? 0xF7 : 0x7; val |= 0x10; REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, val); ecore_init_block(sc, BLOCK_NIG, init_phase); if (!CHIP_IS_E1x(sc)) { /* Bit-map indicating which L2 hdrs may appear after the * basic Ethernet header */ if (IS_MF_AFEX(sc)) { REG_WR(sc, SC_PORT(sc) ? NIG_REG_P1_HDRS_AFTER_BASIC : NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); } else { REG_WR(sc, SC_PORT(sc) ? NIG_REG_P1_HDRS_AFTER_BASIC : NIG_REG_P0_HDRS_AFTER_BASIC, IS_MF_SD(sc) ? 7 : 6); } if (CHIP_IS_E3(sc)) { REG_WR(sc, SC_PORT(sc) ? NIG_REG_LLH1_MF_MODE : NIG_REG_LLH_MF_MODE, IS_MF(sc)); } } if (!CHIP_IS_E3(sc)) { REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1); } /* 0x2 disable mf_ov, 0x1 enable */ REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4, (IS_MF_SD(sc) ? 0x1 : 0x2)); if (!CHIP_IS_E1x(sc)) { val = 0; switch (sc->devinfo.mf_info.mf_mode) { case MULTI_FUNCTION_SD: val = 1; break; case MULTI_FUNCTION_SI: case MULTI_FUNCTION_AFEX: val = 2; break; } REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : NIG_REG_LLH0_CLS_TYPE), val); } REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0); REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0); REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1); /* If SPIO5 is set to generate interrupts, enable it for this port */ val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); if (val & MISC_SPIO_SPIO5) { uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); val = REG_RD(sc, reg_addr); val |= AEU_INPUTS_ATTN_BITS_SPIO5; REG_WR(sc, reg_addr, val); } return 0; } static uint32_t bnx2x_flr_clnup_reg_poll(struct bnx2x_softc *sc, uint32_t reg, uint32_t expected, uint32_t poll_count) { uint32_t cur_cnt = poll_count; uint32_t val; while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { DELAY(FLR_WAIT_INTERVAL); } return val; } static int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x_softc *sc, uint32_t reg, __rte_unused const char *msg, uint32_t poll_cnt) { uint32_t val = bnx2x_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); if (val != 0) { PMD_DRV_LOG(NOTICE, "%s usage count=%d", msg, val); return -1; } return 0; } /* Common routines with VF FLR cleanup */ static uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x_softc *sc) { /* adjust polling timeout */ if (CHIP_REV_IS_EMUL(sc)) { return FLR_POLL_CNT * 2000; } if (CHIP_REV_IS_FPGA(sc)) { return FLR_POLL_CNT * 120; } return FLR_POLL_CNT; } static int bnx2x_poll_hw_usage_counters(struct bnx2x_softc *sc, uint32_t poll_cnt) { /* wait for CFC PF usage-counter to zero (includes all the VFs) */ if (bnx2x_flr_clnup_poll_hw_counter(sc, CFC_REG_NUM_LCIDS_INSIDE_PF, "CFC PF usage counter timed out", poll_cnt)) { return -1; } /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ if (bnx2x_flr_clnup_poll_hw_counter(sc, DORQ_REG_PF_USAGE_CNT, "DQ PF usage counter timed out", poll_cnt)) { return -1; } /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ if (bnx2x_flr_clnup_poll_hw_counter(sc, QM_REG_PF_USG_CNT_0 + 4 * SC_FUNC(sc), "QM PF usage counter timed out", poll_cnt)) { return -1; } /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ if (bnx2x_flr_clnup_poll_hw_counter(sc, TM_REG_LIN0_VNIC_UC + 4 * SC_PORT(sc), "Timers VNIC usage counter timed out", poll_cnt)) { return -1; } if (bnx2x_flr_clnup_poll_hw_counter(sc, TM_REG_LIN0_NUM_SCANS + 4 * SC_PORT(sc), "Timers NUM_SCANS usage counter timed out", poll_cnt)) { return -1; } /* Wait DMAE PF usage counter to zero */ if (bnx2x_flr_clnup_poll_hw_counter(sc, dmae_reg_go_c[INIT_DMAE_C(sc)], "DMAE dommand register timed out", poll_cnt)) { return -1; } return 0; } #define OP_GEN_PARAM(param) \ (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) #define OP_GEN_TYPE(type) \ (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) #define OP_GEN_AGG_VECT(index) \ (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) static int bnx2x_send_final_clnup(struct bnx2x_softc *sc, uint8_t clnup_func, uint32_t poll_cnt) { uint32_t op_gen_command = 0; uint32_t comp_addr = (BAR_CSTRORM_INTMEM + CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); int ret = 0; if (REG_RD(sc, comp_addr)) { PMD_DRV_LOG(NOTICE, "Cleanup complete was not 0 before sending"); return -1; } op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); op_gen_command |= OP_GEN_AGG_VECT(clnup_func); op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); if (bnx2x_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { PMD_DRV_LOG(NOTICE, "FW final cleanup did not succeed"); PMD_DRV_LOG(DEBUG, "At timeout completion address contained %x", (REG_RD(sc, comp_addr))); rte_panic("FLR cleanup failed"); return -1; } /* Zero completion for nxt FLR */ REG_WR(sc, comp_addr, 0); return ret; } static void bnx2x_pbf_pN_buf_flushed(struct bnx2x_softc *sc, struct pbf_pN_buf_regs *regs, uint32_t poll_count) { uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; uint32_t cur_cnt = poll_count; crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); crd = crd_start = REG_RD(sc, regs->crd); init_crd = REG_RD(sc, regs->init_crd); while ((crd != init_crd) && ((uint32_t) ((int32_t) crd_freed - (int32_t) crd_freed_start) < (init_crd - crd_start))) { if (cur_cnt--) { DELAY(FLR_WAIT_INTERVAL); crd = REG_RD(sc, regs->crd); crd_freed = REG_RD(sc, regs->crd_freed); } else { break; } } } static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x_softc *sc, struct pbf_pN_cmd_regs *regs, uint32_t poll_count) { uint32_t occup, to_free, freed, freed_start; uint32_t cur_cnt = poll_count; occup = to_free = REG_RD(sc, regs->lines_occup); freed = freed_start = REG_RD(sc, regs->lines_freed); while (occup && ((uint32_t) ((int32_t) freed - (int32_t) freed_start) < to_free)) { if (cur_cnt--) { DELAY(FLR_WAIT_INTERVAL); occup = REG_RD(sc, regs->lines_occup); freed = REG_RD(sc, regs->lines_freed); } else { break; } } } static void bnx2x_tx_hw_flushed(struct bnx2x_softc *sc, uint32_t poll_count) { struct pbf_pN_cmd_regs cmd_regs[] = { {0, (CHIP_IS_E3B0(sc)) ? PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY, (CHIP_IS_E3B0(sc)) ? PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT}, {1, (CHIP_IS_E3B0(sc)) ? PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY, (CHIP_IS_E3B0(sc)) ? PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT}, {4, (CHIP_IS_E3B0(sc)) ? PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY, (CHIP_IS_E3B0(sc)) ? PBF_REG_TQ_LINES_FREED_CNT_LB_Q : PBF_REG_P4_TQ_LINES_FREED_CNT} }; struct pbf_pN_buf_regs buf_regs[] = { {0, (CHIP_IS_E3B0(sc)) ? PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD, (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT, (CHIP_IS_E3B0(sc)) ? PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, {1, (CHIP_IS_E3B0(sc)) ? PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD, (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT, (CHIP_IS_E3B0(sc)) ? PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, {4, (CHIP_IS_E3B0(sc)) ? PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD, (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT, (CHIP_IS_E3B0(sc)) ? PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, }; uint32_t i; /* Verify the command queues are flushed P0, P1, P4 */ for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { bnx2x_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); } /* Verify the transmission buffers are flushed P0, P1, P4 */ for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { bnx2x_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); } } static void bnx2x_hw_enable_status(struct bnx2x_softc *sc) { __rte_unused uint32_t val; val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); PMD_DRV_LOG(DEBUG, "CFC_REG_WEAK_ENABLE_PF is 0x%x", val); val = REG_RD(sc, PBF_REG_DISABLE_PF); PMD_DRV_LOG(DEBUG, "PBF_REG_DISABLE_PF is 0x%x", val); val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSI_EN is 0x%x", val); val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSIX_EN is 0x%x", val); val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x", val); val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x", val); val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x", val); val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x", val); } /** * bnx2x_pf_flr_clnup * a. re-enable target read on the PF * b. poll cfc per function usgae counter * c. poll the qm perfunction usage counter * d. poll the tm per function usage counter * e. poll the tm per function scan-done indication * f. clear the dmae channel associated wit hthe PF * g. zero the igu 'trailing edge' and 'leading edge' regs (attentions) * h. call the common flr cleanup code with -1 (pf indication) */ static int bnx2x_pf_flr_clnup(struct bnx2x_softc *sc) { uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(sc); /* Re-enable PF target read access */ REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); /* Poll HW usage counters */ if (bnx2x_poll_hw_usage_counters(sc, poll_cnt)) { return -1; } /* Zero the igu 'trailing edge' and 'leading edge' */ /* Send the FW cleanup command */ if (bnx2x_send_final_clnup(sc, (uint8_t) SC_FUNC(sc), poll_cnt)) { return -1; } /* ATC cleanup */ /* Verify TX hw is flushed */ bnx2x_tx_hw_flushed(sc, poll_cnt); /* Wait 100ms (not adjusted according to platform) */ DELAY(100000); /* Verify no pending pci transactions */ if (bnx2x_is_pcie_pending(sc)) { PMD_DRV_LOG(NOTICE, "PCIE Transactions still pending"); } /* Debug */ bnx2x_hw_enable_status(sc); /* * Master enable - Due to WB DMAE writes performed before this * register is re-initialized as part of the regular function init */ REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); return 0; } static int bnx2x_init_hw_func(struct bnx2x_softc *sc) { int port = SC_PORT(sc); int func = SC_FUNC(sc); int init_phase = PHASE_PF0 + func; struct ecore_ilt *ilt = sc->ilt; uint16_t cdu_ilt_start; uint32_t addr, val; uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; int main_mem_width, rc; uint32_t i; PMD_DRV_LOG(DEBUG, "starting func init for func %d", func); /* FLR cleanup */ if (!CHIP_IS_E1x(sc)) { rc = bnx2x_pf_flr_clnup(sc); if (rc) { PMD_DRV_LOG(NOTICE, "FLR cleanup failed!"); return rc; } } /* set MSI reconfigure capability */ if (sc->devinfo.int_block == INT_BLOCK_HC) { addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); val = REG_RD(sc, addr); val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; REG_WR(sc, addr, val); } ecore_init_block(sc, BLOCK_PXP, init_phase); ecore_init_block(sc, BLOCK_PXP2, init_phase); ilt = sc->ilt; cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; for (i = 0; i < L2_ILT_LINES(sc); i++) { ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; ilt->lines[cdu_ilt_start + i].page_mapping = (phys_addr_t)sc->context[i].vcxt_dma.paddr; ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; } ecore_ilt_init_op(sc, INITOP_SET); REG_WR(sc, PRS_REG_NIC_MODE, 1); if (!CHIP_IS_E1x(sc)) { uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; /* Turn on a single ISR mode in IGU if driver is going to use * INT#x or MSI */ if ((sc->interrupt_mode != INTR_MODE_MSIX) || (sc->interrupt_mode != INTR_MODE_SINGLE_MSIX)) { pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; } /* * Timers workaround bug: function init part. * Need to wait 20msec after initializing ILT, * needed to make sure there are no requests in * one of the PXP internal queues with "old" ILT addresses */ DELAY(20000); /* * Master enable - Due to WB DMAE writes performed before this * register is re-initialized as part of the regular function * init */ REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); /* Enable the function in IGU */ REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); } sc->dmae_ready = 1; ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); if (!CHIP_IS_E1x(sc)) REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); ecore_init_block(sc, BLOCK_ATC, init_phase); ecore_init_block(sc, BLOCK_DMAE, init_phase); ecore_init_block(sc, BLOCK_NIG, init_phase); ecore_init_block(sc, BLOCK_SRC, init_phase); ecore_init_block(sc, BLOCK_MISC, init_phase); ecore_init_block(sc, BLOCK_TCM, init_phase); ecore_init_block(sc, BLOCK_UCM, init_phase); ecore_init_block(sc, BLOCK_CCM, init_phase); ecore_init_block(sc, BLOCK_XCM, init_phase); ecore_init_block(sc, BLOCK_TSEM, init_phase); ecore_init_block(sc, BLOCK_USEM, init_phase); ecore_init_block(sc, BLOCK_CSEM, init_phase); ecore_init_block(sc, BLOCK_XSEM, init_phase); if (!CHIP_IS_E1x(sc)) REG_WR(sc, QM_REG_PF_EN, 1); if (!CHIP_IS_E1x(sc)) { REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); } ecore_init_block(sc, BLOCK_QM, init_phase); ecore_init_block(sc, BLOCK_TM, init_phase); ecore_init_block(sc, BLOCK_DORQ, init_phase); ecore_init_block(sc, BLOCK_BRB1, init_phase); ecore_init_block(sc, BLOCK_PRS, init_phase); ecore_init_block(sc, BLOCK_TSDM, init_phase); ecore_init_block(sc, BLOCK_CSDM, init_phase); ecore_init_block(sc, BLOCK_USDM, init_phase); ecore_init_block(sc, BLOCK_XSDM, init_phase); ecore_init_block(sc, BLOCK_UPB, init_phase); ecore_init_block(sc, BLOCK_XPB, init_phase); ecore_init_block(sc, BLOCK_PBF, init_phase); if (!CHIP_IS_E1x(sc)) REG_WR(sc, PBF_REG_DISABLE_PF, 0); ecore_init_block(sc, BLOCK_CDU, init_phase); ecore_init_block(sc, BLOCK_CFC, init_phase); if (!CHIP_IS_E1x(sc)) REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); if (IS_MF(sc)) { REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1); REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, OVLAN(sc)); } ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); /* HC init per function */ if (sc->devinfo.int_block == INT_BLOCK_HC) { if (CHIP_IS_E1H(sc)) { REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0); REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0); REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0); } ecore_init_block(sc, BLOCK_HC, init_phase); } else { uint32_t num_segs, sb_idx, prod_offset; REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0); if (!CHIP_IS_E1x(sc)) { REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); } ecore_init_block(sc, BLOCK_IGU, init_phase); if (!CHIP_IS_E1x(sc)) { int dsb_idx = 0; /** * Producer memory: * E2 mode: address 0-135 match to the mapping memory; * 136 - PF0 default prod; 137 - PF1 default prod; * 138 - PF2 default prod; 139 - PF3 default prod; * 140 - PF0 attn prod; 141 - PF1 attn prod; * 142 - PF2 attn prod; 143 - PF3 attn prod; * 144-147 reserved. * * E1.5 mode - In backward compatible mode; * for non default SB; each even line in the memory * holds the U producer and each odd line hold * the C producer. The first 128 producers are for * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 * producers are for the DSB for each PF. * Each PF has five segments: (the order inside each * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; * 132-135 C prods; 136-139 X prods; 140-143 T prods; * 144-147 attn prods; */ /* non-default-status-blocks */ num_segs = CHIP_INT_MODE_IS_BC(sc) ? IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { prod_offset = (sc->igu_base_sb + sb_idx) * num_segs; for (i = 0; i < num_segs; i++) { addr = IGU_REG_PROD_CONS_MEMORY + (prod_offset + i) * 4; REG_WR(sc, addr, 0); } /* send consumer update with value 0 */ bnx2x_ack_sb(sc, sc->igu_base_sb + sb_idx, USTORM_ID, 0, IGU_INT_NOP, 1); bnx2x_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); } /* default-status-blocks */ num_segs = CHIP_INT_MODE_IS_BC(sc) ? IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; if (CHIP_IS_MODE_4_PORT(sc)) dsb_idx = SC_FUNC(sc); else dsb_idx = SC_VN(sc); prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? IGU_BC_BASE_DSB_PROD + dsb_idx : IGU_NORM_BASE_DSB_PROD + dsb_idx); /* * igu prods come in chunks of E1HVN_MAX (4) - * does not matters what is the current chip mode */ for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) { addr = IGU_REG_PROD_CONS_MEMORY + (prod_offset + i) * 4; REG_WR(sc, addr, 0); } /* send consumer update with 0 */ if (CHIP_INT_MODE_IS_BC(sc)) { bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_NOP, 1); bnx2x_ack_sb(sc, sc->igu_dsb_id, CSTORM_ID, 0, IGU_INT_NOP, 1); bnx2x_ack_sb(sc, sc->igu_dsb_id, XSTORM_ID, 0, IGU_INT_NOP, 1); bnx2x_ack_sb(sc, sc->igu_dsb_id, TSTORM_ID, 0, IGU_INT_NOP, 1); bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 0, IGU_INT_NOP, 1); } else { bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_NOP, 1); bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 0, IGU_INT_NOP, 1); } bnx2x_igu_clear_sb(sc, sc->igu_dsb_id); /* !!! these should become driver const once rf-tool supports split-68 const */ REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); } } /* Reset PCIE errors for debug */ REG_WR(sc, 0x2114, 0xffffffff); REG_WR(sc, 0x2120, 0xffffffff); if (CHIP_IS_E1x(sc)) { main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords */ main_mem_base = HC_REG_MAIN_MEMORY + SC_PORT(sc) * (main_mem_size * 4); main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; main_mem_width = 8; val = REG_RD(sc, main_mem_prty_clr); if (val) { PMD_DRV_LOG(DEBUG, "Parity errors in HC block during function init (0x%x)!", val); } /* Clear "false" parity errors in MSI-X table */ for (i = main_mem_base; i < main_mem_base + main_mem_size * 4; i += main_mem_width) { bnx2x_read_dmae(sc, i, main_mem_width / 4); bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data), i, main_mem_width / 4); } /* Clear HC parity attention */ REG_RD(sc, main_mem_prty_clr); } /* Enable STORMs SP logging */ REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); elink_phy_probe(&sc->link_params); return 0; } static void bnx2x_link_reset(struct bnx2x_softc *sc) { if (!BNX2X_NOMCP(sc)) { elink_lfa_reset(&sc->link_params, &sc->link_vars); } else { if (!CHIP_REV_IS_SLOW(sc)) { PMD_DRV_LOG(WARNING, "Bootcode is missing - cannot reset link"); } } } static void bnx2x_reset_port(struct bnx2x_softc *sc) { int port = SC_PORT(sc); uint32_t val; /* reset physical Link */ bnx2x_link_reset(sc); REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0); /* Do not rcv packets to BRB */ REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0); /* Do not direct rcv packets that are not for MCP to the BRB */ REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); /* Configure AEU */ REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0); DELAY(100000); /* Check for BRB port occupancy */ val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4); if (val) { PMD_DRV_LOG(DEBUG, "BRB1 is not empty, %d blocks are occupied", val); } } static void bnx2x_ilt_wr(struct bnx2x_softc *sc, uint32_t index, phys_addr_t addr) { int reg; uint32_t wb_write[2]; reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8; wb_write[0] = ONCHIP_ADDR1(addr); wb_write[1] = ONCHIP_ADDR2(addr); REG_WR_DMAE(sc, reg, wb_write, 2); } static void bnx2x_clear_func_ilt(struct bnx2x_softc *sc, uint32_t func) { uint32_t i, base = FUNC_ILT_BASE(func); for (i = base; i < base + ILT_PER_FUNC; i++) { bnx2x_ilt_wr(sc, i, 0); } } static void bnx2x_reset_func(struct bnx2x_softc *sc) { struct bnx2x_fastpath *fp; int port = SC_PORT(sc); int func = SC_FUNC(sc); int i; /* Disable the function in the FW */ REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); /* FP SBs */ FOR_EACH_ETH_QUEUE(sc, i) { fp = &sc->fp[i]; REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), SB_DISABLED); } /* SP SB */ REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED); for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); } /* Configure IGU */ if (sc->devinfo.int_block == INT_BLOCK_HC) { REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0); REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0); } else { REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); } if (CNIC_LOADED(sc)) { /* Disable Timer scan */ REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port * 4, 0); /* * Wait for at least 10ms and up to 2 second for the timers * scan to complete */ for (i = 0; i < 200; i++) { DELAY(10000); if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port * 4)) break; } } /* Clear ILT */ bnx2x_clear_func_ilt(sc, func); /* * Timers workaround bug for E2: if this is vnic-3, * we need to set the entire ilt range for this timers. */ if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { struct ilt_client_info ilt_cli; /* use dummy TM client */ memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); ilt_cli.start = 0; ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; ilt_cli.client_num = ILT_CLIENT_TM; ecore_ilt_boundry_init_op(sc, &ilt_cli, 0); } /* this assumes that reset_port() called before reset_func() */ if (!CHIP_IS_E1x(sc)) { bnx2x_pf_disable(sc); } sc->dmae_ready = 0; } static void bnx2x_release_firmware(struct bnx2x_softc *sc) { rte_free(sc->init_ops); rte_free(sc->init_ops_offsets); rte_free(sc->init_data); rte_free(sc->iro_array); } static int bnx2x_init_firmware(struct bnx2x_softc *sc) { uint32_t len, i; uint8_t *p = sc->firmware; uint32_t off[24]; for (i = 0; i < 24; ++i) off[i] = rte_be_to_cpu_32(*((uint32_t *) sc->firmware + i)); len = off[0]; sc->init_ops = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE); if (!sc->init_ops) goto alloc_failed; bnx2x_data_to_init_ops(p + off[1], sc->init_ops, len); len = off[2]; sc->init_ops_offsets = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE); if (!sc->init_ops_offsets) goto alloc_failed; bnx2x_data_to_init_offsets(p + off[3], sc->init_ops_offsets, len); len = off[4]; sc->init_data = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE); if (!sc->init_data) goto alloc_failed; bnx2x_data_to_init_data(p + off[5], sc->init_data, len); sc->tsem_int_table_data = p + off[7]; sc->tsem_pram_data = p + off[9]; sc->usem_int_table_data = p + off[11]; sc->usem_pram_data = p + off[13]; sc->csem_int_table_data = p + off[15]; sc->csem_pram_data = p + off[17]; sc->xsem_int_table_data = p + off[19]; sc->xsem_pram_data = p + off[21]; len = off[22]; sc->iro_array = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE); if (!sc->iro_array) goto alloc_failed; bnx2x_data_to_iro_array(p + off[23], sc->iro_array, len); return 0; alloc_failed: bnx2x_release_firmware(sc); return -1; } static int cut_gzip_prefix(const uint8_t * zbuf, int len) { #define MIN_PREFIX_SIZE (10) int n = MIN_PREFIX_SIZE; uint16_t xlen; if (!(zbuf[0] == 0x1f && zbuf[1] == 0x8b && zbuf[2] == Z_DEFLATED) || len <= MIN_PREFIX_SIZE) { return -1; } /* optional extra fields are present */ if (zbuf[3] & 0x4) { xlen = zbuf[13]; xlen <<= 8; xlen += zbuf[12]; n += xlen; } /* file name is present */ if (zbuf[3] & 0x8) { while ((zbuf[n++] != 0) && (n < len)) ; } return n; } static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t * zbuf, int len) { int ret; int data_begin = cut_gzip_prefix(zbuf, len); PMD_DRV_LOG(DEBUG, "ecore_gunzip %d", len); if (data_begin <= 0) { PMD_DRV_LOG(NOTICE, "bad gzip prefix"); return -1; } memset(&zlib_stream, 0, sizeof(zlib_stream)); zlib_stream.next_in = zbuf + data_begin; zlib_stream.avail_in = len - data_begin; zlib_stream.next_out = sc->gz_buf; zlib_stream.avail_out = FW_BUF_SIZE; ret = inflateInit2(&zlib_stream, -MAX_WBITS); if (ret != Z_OK) { PMD_DRV_LOG(NOTICE, "zlib inflateInit2 error"); return ret; } ret = inflate(&zlib_stream, Z_FINISH); if ((ret != Z_STREAM_END) && (ret != Z_OK)) { PMD_DRV_LOG(NOTICE, "zlib inflate error: %d %s", ret, zlib_stream.msg); } sc->gz_outlen = zlib_stream.total_out; if (sc->gz_outlen & 0x3) { PMD_DRV_LOG(NOTICE, "firmware is not aligned. gz_outlen == %d", sc->gz_outlen); } sc->gz_outlen >>= 2; inflateEnd(&zlib_stream); if (ret == Z_STREAM_END) return 0; return ret; } static void ecore_write_dmae_phys_len(struct bnx2x_softc *sc, phys_addr_t phys_addr, uint32_t addr, uint32_t len) { bnx2x_write_dmae_phys_len(sc, phys_addr, addr, len); } void ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size, uint32_t * data) { uint8_t i; for (i = 0; i < size / 4; i++) { REG_WR(sc, addr + (i * 4), data[i]); } } static const char *get_ext_phy_type(uint32_t ext_phy_type) { uint32_t phy_type_idx = ext_phy_type >> 8; static const char *types[] = { "DIRECT", "BNX2X-8071", "BNX2X-8072", "BNX2X-8073", "BNX2X-8705", "BNX2X-8706", "BNX2X-8726", "BNX2X-8481", "SFX-7101", "BNX2X-8727", "BNX2X-8727-NOC", "BNX2X-84823", "NOT_CONN", "FAILURE" }; if (phy_type_idx < 12) return types[phy_type_idx]; else if (PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN == ext_phy_type) return types[12]; else return types[13]; } static const char *get_state(uint32_t state) { uint32_t state_idx = state >> 12; static const char *states[] = { "CLOSED", "OPENING_WAIT4_LOAD", "OPENING_WAIT4_PORT", "OPEN", "CLOSING_WAIT4_HALT", "CLOSING_WAIT4_DELETE", "CLOSING_WAIT4_UNLOAD", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "DISABLED", "DIAG", "ERROR", "UNDEFINED" }; if (state_idx <= 0xF) return states[state_idx]; else return states[0x10]; } static const char *get_recovery_state(uint32_t state) { static const char *states[] = { "NONE", "DONE", "INIT", "WAIT", "FAILED", "NIC_LOADING" }; return states[state]; } static const char *get_rx_mode(uint32_t mode) { static const char *modes[] = { "NONE", "NORMAL", "ALLMULTI", "PROMISC", "MAX_MULTICAST", "ERROR" }; if (mode < 0x4) return modes[mode]; else if (BNX2X_MAX_MULTICAST == mode) return modes[4]; else return modes[5]; } #define BNX2X_INFO_STR_MAX 256 static const char *get_bnx2x_flags(uint32_t flags) { int i; static const char *flag[] = { "ONE_PORT ", "NO_ISCSI ", "NO_FCOE ", "NO_WOL ", "USING_DAC ", "USING_MSIX ", "USING_MSI ", "DISABLE_MSI ", "UNKNOWN ", "NO_MCP ", "SAFC_TX_FLAG ", "MF_FUNC_DIS ", "TX_SWITCHING " }; static char flag_str[BNX2X_INFO_STR_MAX]; memset(flag_str, 0, BNX2X_INFO_STR_MAX); for (i = 0; i < 5; i++) if (flags & (1 << i)) { strcat(flag_str, flag[i]); flags ^= (1 << i); } if (flags) { static char unknown[BNX2X_INFO_STR_MAX]; snprintf(unknown, 32, "Unknown flag mask %x", flags); strcat(flag_str, unknown); } return flag_str; } /* * Prints useful adapter info. */ void bnx2x_print_adapter_info(struct bnx2x_softc *sc) { int i = 0; __rte_unused uint32_t ext_phy_type; PMD_INIT_FUNC_TRACE(); if (sc->link_vars.phy_flags & PHY_XGXS_FLAG) ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(REG_RD(sc, sc-> devinfo.shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config [0].external_phy_config))); else ext_phy_type = ELINK_SERDES_EXT_PHY_TYPE(REG_RD(sc, sc-> devinfo.shmem_base + offsetof(struct shmem_region, dev_info.port_hw_config [0].external_phy_config))); PMD_INIT_LOG(DEBUG, "\n\n===================================\n"); /* Hardware chip info. */ PMD_INIT_LOG(DEBUG, "%12s : %#08x", "ASIC", sc->devinfo.chip_id); PMD_INIT_LOG(DEBUG, "%12s : %c%d", "Rev", (CHIP_REV(sc) >> 12) + 'A', (CHIP_METAL(sc) >> 4)); /* Bus info. */ PMD_INIT_LOG(DEBUG, "%12s : %d, ", "Bus PCIe", sc->devinfo.pcie_link_width); switch (sc->devinfo.pcie_link_speed) { case 1: PMD_INIT_LOG(DEBUG, "%23s", "2.5 Gbps"); break; case 2: PMD_INIT_LOG(DEBUG, "%21s", "5 Gbps"); break; case 4: PMD_INIT_LOG(DEBUG, "%21s", "8 Gbps"); break; default: PMD_INIT_LOG(DEBUG, "%33s", "Unknown link speed"); } /* Device features. */ PMD_INIT_LOG(DEBUG, "%12s : ", "Flags"); /* Miscellaneous flags. */ if (sc->devinfo.pcie_cap_flags & BNX2X_MSI_CAPABLE_FLAG) { PMD_INIT_LOG(DEBUG, "%18s", "MSI"); i++; } if (sc->devinfo.pcie_cap_flags & BNX2X_MSIX_CAPABLE_FLAG) { if (i > 0) PMD_INIT_LOG(DEBUG, "|"); PMD_INIT_LOG(DEBUG, "%20s", "MSI-X"); i++; } if (IS_PF(sc)) { PMD_INIT_LOG(DEBUG, "%12s : ", "Queues"); switch (sc->sp->rss_rdata.rss_mode) { case ETH_RSS_MODE_DISABLED: PMD_INIT_LOG(DEBUG, "%19s", "None"); break; case ETH_RSS_MODE_REGULAR: PMD_INIT_LOG(DEBUG, "%18s : %d", "RSS", sc->num_queues); break; default: PMD_INIT_LOG(DEBUG, "%22s", "Unknown"); break; } } /* RTE and Driver versions */ PMD_INIT_LOG(DEBUG, "%12s : %s", "DPDK", rte_version()); PMD_INIT_LOG(DEBUG, "%12s : %s", "Driver", bnx2x_pmd_version()); /* Firmware versions and device features. */ PMD_INIT_LOG(DEBUG, "%12s : %d.%d.%d", "Firmware", BNX2X_5710_FW_MAJOR_VERSION, BNX2X_5710_FW_MINOR_VERSION, BNX2X_5710_FW_REVISION_VERSION); PMD_INIT_LOG(DEBUG, "%12s : %s", "Bootcode", sc->devinfo.bc_ver_str); PMD_INIT_LOG(DEBUG, "\n\n===================================\n"); PMD_INIT_LOG(DEBUG, "%12s : %u", "Bnx2x Func", sc->pcie_func); PMD_INIT_LOG(DEBUG, "%12s : %s", "Bnx2x Flags", get_bnx2x_flags(sc->flags)); PMD_INIT_LOG(DEBUG, "%12s : %s", "DMAE Is", (sc->dmae_ready ? "Ready" : "Not Ready")); PMD_INIT_LOG(DEBUG, "%12s : %s", "OVLAN", (OVLAN(sc) ? "YES" : "NO")); PMD_INIT_LOG(DEBUG, "%12s : %s", "MF", (IS_MF(sc) ? "YES" : "NO")); PMD_INIT_LOG(DEBUG, "%12s : %u", "MTU", sc->mtu); PMD_INIT_LOG(DEBUG, "%12s : %s", "PHY Type", get_ext_phy_type(ext_phy_type)); PMD_INIT_LOG(DEBUG, "%12s : %x:%x:%x:%x:%x:%x", "MAC Addr", sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); PMD_INIT_LOG(DEBUG, "%12s : %s", "RX Mode", get_rx_mode(sc->rx_mode)); PMD_INIT_LOG(DEBUG, "%12s : %s", "State", get_state(sc->state)); if (sc->recovery_state) PMD_INIT_LOG(DEBUG, "%12s : %s", "Recovery", get_recovery_state(sc->recovery_state)); PMD_INIT_LOG(DEBUG, "%12s : CQ = %lx, EQ = %lx", "SPQ Left", sc->cq_spq_left, sc->eq_spq_left); PMD_INIT_LOG(DEBUG, "%12s : %x", "Switch", sc->link_params.switch_cfg); PMD_INIT_LOG(DEBUG, "\n\n===================================\n"); }