/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2014-2018 Broadcom * All rights reserved. */ #include #include #include #include #include #include #include #include "bnxt.h" #include "bnxt_cpr.h" #include "bnxt_filter.h" #include "bnxt_hwrm.h" #include "bnxt_irq.h" #include "bnxt_ring.h" #include "bnxt_rxq.h" #include "bnxt_rxr.h" #include "bnxt_stats.h" #include "bnxt_txq.h" #include "bnxt_txr.h" #include "bnxt_vnic.h" #include "hsi_struct_def_dpdk.h" #include "bnxt_nvm_defs.h" #include "bnxt_util.h" #define DRV_MODULE_NAME "bnxt" static const char bnxt_version[] = "Broadcom NetXtreme driver " DRV_MODULE_NAME "\n"; int bnxt_logtype_driver; #define PCI_VENDOR_ID_BROADCOM 0x14E4 #define BROADCOM_DEV_ID_STRATUS_NIC_VF1 0x1606 #define BROADCOM_DEV_ID_STRATUS_NIC_VF2 0x1609 #define BROADCOM_DEV_ID_STRATUS_NIC 0x1614 #define BROADCOM_DEV_ID_57414_VF 0x16c1 #define BROADCOM_DEV_ID_57301 0x16c8 #define BROADCOM_DEV_ID_57302 0x16c9 #define BROADCOM_DEV_ID_57304_PF 0x16ca #define BROADCOM_DEV_ID_57304_VF 0x16cb #define BROADCOM_DEV_ID_57417_MF 0x16cc #define BROADCOM_DEV_ID_NS2 0x16cd #define BROADCOM_DEV_ID_57311 0x16ce #define BROADCOM_DEV_ID_57312 0x16cf #define BROADCOM_DEV_ID_57402 0x16d0 #define BROADCOM_DEV_ID_57404 0x16d1 #define BROADCOM_DEV_ID_57406_PF 0x16d2 #define BROADCOM_DEV_ID_57406_VF 0x16d3 #define BROADCOM_DEV_ID_57402_MF 0x16d4 #define BROADCOM_DEV_ID_57407_RJ45 0x16d5 #define BROADCOM_DEV_ID_57412 0x16d6 #define BROADCOM_DEV_ID_57414 0x16d7 #define BROADCOM_DEV_ID_57416_RJ45 0x16d8 #define BROADCOM_DEV_ID_57417_RJ45 0x16d9 #define BROADCOM_DEV_ID_5741X_VF 0x16dc #define BROADCOM_DEV_ID_57412_MF 0x16de #define BROADCOM_DEV_ID_57314 0x16df #define BROADCOM_DEV_ID_57317_RJ45 0x16e0 #define BROADCOM_DEV_ID_5731X_VF 0x16e1 #define BROADCOM_DEV_ID_57417_SFP 0x16e2 #define BROADCOM_DEV_ID_57416_SFP 0x16e3 #define BROADCOM_DEV_ID_57317_SFP 0x16e4 #define BROADCOM_DEV_ID_57404_MF 0x16e7 #define BROADCOM_DEV_ID_57406_MF 0x16e8 #define BROADCOM_DEV_ID_57407_SFP 0x16e9 #define BROADCOM_DEV_ID_57407_MF 0x16ea #define BROADCOM_DEV_ID_57414_MF 0x16ec #define BROADCOM_DEV_ID_57416_MF 0x16ee #define BROADCOM_DEV_ID_58802 0xd802 #define BROADCOM_DEV_ID_58804 0xd804 #define BROADCOM_DEV_ID_58808 0x16f0 #define BROADCOM_DEV_ID_58802_VF 0xd800 static const struct rte_pci_id bnxt_pci_id_map[] = { { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC_VF1) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC_VF2) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) }, { .vendor_id = 0, /* sentinel */ }, }; #define BNXT_ETH_RSS_SUPPORT ( \ ETH_RSS_IPV4 | \ ETH_RSS_NONFRAG_IPV4_TCP | \ ETH_RSS_NONFRAG_IPV4_UDP | \ ETH_RSS_IPV6 | \ ETH_RSS_NONFRAG_IPV6_TCP | \ ETH_RSS_NONFRAG_IPV6_UDP) #define BNXT_DEV_TX_OFFLOAD_SUPPORT (DEV_TX_OFFLOAD_VLAN_INSERT | \ DEV_TX_OFFLOAD_IPV4_CKSUM | \ DEV_TX_OFFLOAD_TCP_CKSUM | \ DEV_TX_OFFLOAD_UDP_CKSUM | \ DEV_TX_OFFLOAD_TCP_TSO | \ DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | \ DEV_TX_OFFLOAD_VXLAN_TNL_TSO | \ DEV_TX_OFFLOAD_GRE_TNL_TSO | \ DEV_TX_OFFLOAD_IPIP_TNL_TSO | \ DEV_TX_OFFLOAD_GENEVE_TNL_TSO | \ DEV_TX_OFFLOAD_MULTI_SEGS) #define BNXT_DEV_RX_OFFLOAD_SUPPORT (DEV_RX_OFFLOAD_VLAN_FILTER | \ DEV_RX_OFFLOAD_VLAN_STRIP | \ DEV_RX_OFFLOAD_IPV4_CKSUM | \ DEV_RX_OFFLOAD_UDP_CKSUM | \ DEV_RX_OFFLOAD_TCP_CKSUM | \ DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | \ DEV_RX_OFFLOAD_JUMBO_FRAME | \ DEV_RX_OFFLOAD_KEEP_CRC | \ DEV_RX_OFFLOAD_TCP_LRO) static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask); static void bnxt_print_link_info(struct rte_eth_dev *eth_dev); static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu); static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev); /***********************/ /* * High level utility functions */ static void bnxt_free_mem(struct bnxt *bp) { bnxt_free_filter_mem(bp); bnxt_free_vnic_attributes(bp); bnxt_free_vnic_mem(bp); bnxt_free_stats(bp); bnxt_free_tx_rings(bp); bnxt_free_rx_rings(bp); } static int bnxt_alloc_mem(struct bnxt *bp) { int rc; rc = bnxt_alloc_vnic_mem(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_vnic_attributes(bp); if (rc) goto alloc_mem_err; rc = bnxt_alloc_filter_mem(bp); if (rc) goto alloc_mem_err; return 0; alloc_mem_err: bnxt_free_mem(bp); return rc; } static int bnxt_init_chip(struct bnxt *bp) { struct bnxt_rx_queue *rxq; struct rte_eth_link new; struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev); struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf; struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; uint64_t rx_offloads = dev_conf->rxmode.offloads; uint32_t intr_vector = 0; uint32_t queue_id, base = BNXT_MISC_VEC_ID; uint32_t vec = BNXT_MISC_VEC_ID; unsigned int i, j; int rc; /* disable uio/vfio intr/eventfd mapping */ rte_intr_disable(intr_handle); if (bp->eth_dev->data->mtu > ETHER_MTU) { bp->eth_dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; bp->flags |= BNXT_FLAG_JUMBO; } else { bp->eth_dev->data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; bp->flags &= ~BNXT_FLAG_JUMBO; } rc = bnxt_alloc_all_hwrm_stat_ctxs(bp); if (rc) { PMD_DRV_LOG(ERR, "HWRM stat ctx alloc failure rc: %x\n", rc); goto err_out; } rc = bnxt_alloc_hwrm_rings(bp); if (rc) { PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc); goto err_out; } rc = bnxt_alloc_all_hwrm_ring_grps(bp); if (rc) { PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc); goto err_out; } rc = bnxt_mq_rx_configure(bp); if (rc) { PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc); goto err_out; } /* VNIC configuration */ for (i = 0; i < bp->nr_vnics; i++) { struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf; struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; uint32_t size = sizeof(*vnic->fw_grp_ids) * bp->max_ring_grps; vnic->fw_grp_ids = rte_zmalloc("vnic_fw_grp_ids", size, 0); if (!vnic->fw_grp_ids) { PMD_DRV_LOG(ERR, "Failed to alloc %d bytes for group ids\n", size); rc = -ENOMEM; goto err_out; } memset(vnic->fw_grp_ids, -1, size); PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n", i, vnic, vnic->fw_grp_ids); rc = bnxt_hwrm_vnic_alloc(bp, vnic); if (rc) { PMD_DRV_LOG(ERR, "HWRM vnic %d alloc failure rc: %x\n", i, rc); goto err_out; } /* Alloc RSS context only if RSS mode is enabled */ if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) { rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic); if (rc) { PMD_DRV_LOG(ERR, "HWRM vnic %d ctx alloc failure rc: %x\n", i, rc); goto err_out; } } /* * Firmware sets pf pair in default vnic cfg. If the VLAN strip * setting is not available at this time, it will not be * configured correctly in the CFA. */ if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP) vnic->vlan_strip = true; else vnic->vlan_strip = false; rc = bnxt_hwrm_vnic_cfg(bp, vnic); if (rc) { PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n", i, rc); goto err_out; } rc = bnxt_set_hwrm_vnic_filters(bp, vnic); if (rc) { PMD_DRV_LOG(ERR, "HWRM vnic %d filter failure rc: %x\n", i, rc); goto err_out; } for (j = 0; j < bp->rx_nr_rings; j++) { rxq = bp->eth_dev->data->rx_queues[j]; PMD_DRV_LOG(DEBUG, "rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n", j, rxq->vnic, rxq->vnic->fw_grp_ids); if (rxq->rx_deferred_start) rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID; } rc = bnxt_vnic_rss_configure(bp, vnic); if (rc) { PMD_DRV_LOG(ERR, "HWRM vnic set RSS failure rc: %x\n", rc); goto err_out; } bnxt_hwrm_vnic_plcmode_cfg(bp, vnic); if (bp->eth_dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO) bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1); else bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0); } rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL); if (rc) { PMD_DRV_LOG(ERR, "HWRM cfa l2 rx mask failure rc: %x\n", rc); goto err_out; } /* check and configure queue intr-vector mapping */ if ((rte_intr_cap_multiple(intr_handle) || !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) && bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) { intr_vector = bp->eth_dev->data->nb_rx_queues; PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector); if (intr_vector > bp->rx_cp_nr_rings) { PMD_DRV_LOG(ERR, "At most %d intr queues supported", bp->rx_cp_nr_rings); return -ENOTSUP; } if (rte_intr_efd_enable(intr_handle, intr_vector)) return -1; } if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) { intr_handle->intr_vec = rte_zmalloc("intr_vec", bp->eth_dev->data->nb_rx_queues * sizeof(int), 0); if (intr_handle->intr_vec == NULL) { PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues" " intr_vec", bp->eth_dev->data->nb_rx_queues); return -ENOMEM; } PMD_DRV_LOG(DEBUG, "intr_handle->intr_vec = %p " "intr_handle->nb_efd = %d intr_handle->max_intr = %d\n", intr_handle->intr_vec, intr_handle->nb_efd, intr_handle->max_intr); } for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues; queue_id++) { intr_handle->intr_vec[queue_id] = vec; if (vec < base + intr_handle->nb_efd - 1) vec++; } /* enable uio/vfio intr/eventfd mapping */ rte_intr_enable(intr_handle); rc = bnxt_get_hwrm_link_config(bp, &new); if (rc) { PMD_DRV_LOG(ERR, "HWRM Get link config failure rc: %x\n", rc); goto err_out; } if (!bp->link_info.link_up) { rc = bnxt_set_hwrm_link_config(bp, true); if (rc) { PMD_DRV_LOG(ERR, "HWRM link config failure rc: %x\n", rc); goto err_out; } } bnxt_print_link_info(bp->eth_dev); return 0; err_out: bnxt_free_all_hwrm_resources(bp); /* Some of the error status returned by FW may not be from errno.h */ if (rc > 0) rc = -EIO; return rc; } static int bnxt_shutdown_nic(struct bnxt *bp) { bnxt_free_all_hwrm_resources(bp); bnxt_free_all_filters(bp); bnxt_free_all_vnics(bp); return 0; } static int bnxt_init_nic(struct bnxt *bp) { int rc; rc = bnxt_init_ring_grps(bp); if (rc) return rc; bnxt_init_vnics(bp); bnxt_init_filters(bp); return 0; } /* * Device configuration and status function */ static void bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *dev_info) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; uint16_t max_vnics, i, j, vpool, vrxq; unsigned int max_rx_rings; /* MAC Specifics */ dev_info->max_mac_addrs = bp->max_l2_ctx; dev_info->max_hash_mac_addrs = 0; /* PF/VF specifics */ if (BNXT_PF(bp)) dev_info->max_vfs = bp->pdev->max_vfs; max_rx_rings = RTE_MIN(bp->max_vnics, bp->max_stat_ctx); /* For the sake of symmetry, max_rx_queues = max_tx_queues */ dev_info->max_rx_queues = max_rx_rings; dev_info->max_tx_queues = max_rx_rings; dev_info->reta_size = HW_HASH_INDEX_SIZE; dev_info->hash_key_size = 40; max_vnics = bp->max_vnics; /* Fast path specifics */ dev_info->min_rx_bufsize = 1; dev_info->max_rx_pktlen = BNXT_MAX_MTU + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE * 2; dev_info->rx_offload_capa = BNXT_DEV_RX_OFFLOAD_SUPPORT; if (bp->flags & BNXT_FLAG_PTP_SUPPORTED) dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP; dev_info->tx_offload_capa = BNXT_DEV_TX_OFFLOAD_SUPPORT; dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT; /* *INDENT-OFF* */ dev_info->default_rxconf = (struct rte_eth_rxconf) { .rx_thresh = { .pthresh = 8, .hthresh = 8, .wthresh = 0, }, .rx_free_thresh = 32, /* If no descriptors available, pkts are dropped by default */ .rx_drop_en = 1, }; dev_info->default_txconf = (struct rte_eth_txconf) { .tx_thresh = { .pthresh = 32, .hthresh = 0, .wthresh = 0, }, .tx_free_thresh = 32, .tx_rs_thresh = 32, }; eth_dev->data->dev_conf.intr_conf.lsc = 1; eth_dev->data->dev_conf.intr_conf.rxq = 1; dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC; dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC; dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC; dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC; /* *INDENT-ON* */ /* * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim * need further investigation. */ /* VMDq resources */ vpool = 64; /* ETH_64_POOLS */ vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */ for (i = 0; i < 4; vpool >>= 1, i++) { if (max_vnics > vpool) { for (j = 0; j < 5; vrxq >>= 1, j++) { if (dev_info->max_rx_queues > vrxq) { if (vpool > vrxq) vpool = vrxq; goto found; } } /* Not enough resources to support VMDq */ break; } } /* Not enough resources to support VMDq */ vpool = 0; vrxq = 0; found: dev_info->max_vmdq_pools = vpool; dev_info->vmdq_queue_num = vrxq; dev_info->vmdq_pool_base = 0; dev_info->vmdq_queue_base = 0; } /* Configure the device based on the configuration provided */ static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads; int rc; bp->rx_queues = (void *)eth_dev->data->rx_queues; bp->tx_queues = (void *)eth_dev->data->tx_queues; bp->tx_nr_rings = eth_dev->data->nb_tx_queues; bp->rx_nr_rings = eth_dev->data->nb_rx_queues; if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) { rc = bnxt_hwrm_check_vf_rings(bp); if (rc) { PMD_DRV_LOG(ERR, "HWRM insufficient resources\n"); return -ENOSPC; } rc = bnxt_hwrm_func_reserve_vf_resc(bp, false); if (rc) { PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc); return -ENOSPC; } } else { /* legacy driver needs to get updated values */ rc = bnxt_hwrm_func_qcaps(bp); if (rc) { PMD_DRV_LOG(ERR, "hwrm func qcaps fail:%d\n", rc); return rc; } } /* Inherit new configurations */ if (eth_dev->data->nb_rx_queues > bp->max_rx_rings || eth_dev->data->nb_tx_queues > bp->max_tx_rings || eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues > bp->max_cp_rings || eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues > bp->max_stat_ctx || (uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps || (!(eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) && bp->max_vnics < eth_dev->data->nb_rx_queues)) { PMD_DRV_LOG(ERR, "Insufficient resources to support requested config\n"); PMD_DRV_LOG(ERR, "Num Queues Requested: Tx %d, Rx %d\n", eth_dev->data->nb_tx_queues, eth_dev->data->nb_rx_queues); PMD_DRV_LOG(ERR, "MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n", bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings, bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics); return -ENOSPC; } bp->rx_cp_nr_rings = bp->rx_nr_rings; bp->tx_cp_nr_rings = bp->tx_nr_rings; if (rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) { eth_dev->data->mtu = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len - ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE * BNXT_NUM_VLANS; bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu); } return 0; } static void bnxt_print_link_info(struct rte_eth_dev *eth_dev) { struct rte_eth_link *link = ð_dev->data->dev_link; if (link->link_status) PMD_DRV_LOG(INFO, "Port %d Link Up - speed %u Mbps - %s\n", eth_dev->data->port_id, (uint32_t)link->link_speed, (link->link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex\n")); else PMD_DRV_LOG(INFO, "Port %d Link Down\n", eth_dev->data->port_id); } static int bnxt_dev_lsc_intr_setup(struct rte_eth_dev *eth_dev) { bnxt_print_link_info(eth_dev); return 0; } static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads; int vlan_mask = 0; int rc; if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) { PMD_DRV_LOG(ERR, "RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n", bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS); } bp->dev_stopped = 0; rc = bnxt_init_chip(bp); if (rc) goto error; bnxt_link_update_op(eth_dev, 1); if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER) vlan_mask |= ETH_VLAN_FILTER_MASK; if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP) vlan_mask |= ETH_VLAN_STRIP_MASK; rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask); if (rc) goto error; bp->flags |= BNXT_FLAG_INIT_DONE; return 0; error: bnxt_shutdown_nic(bp); bnxt_free_tx_mbufs(bp); bnxt_free_rx_mbufs(bp); return rc; } static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; int rc = 0; if (!bp->link_info.link_up) rc = bnxt_set_hwrm_link_config(bp, true); if (!rc) eth_dev->data->dev_link.link_status = 1; bnxt_print_link_info(eth_dev); return 0; } static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; eth_dev->data->dev_link.link_status = 0; bnxt_set_hwrm_link_config(bp, false); bp->link_info.link_up = 0; return 0; } /* Unload the driver, release resources */ static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; bp->flags &= ~BNXT_FLAG_INIT_DONE; if (bp->eth_dev->data->dev_started) { /* TBD: STOP HW queues DMA */ eth_dev->data->dev_link.link_status = 0; } bnxt_set_hwrm_link_config(bp, false); bnxt_hwrm_port_clr_stats(bp); bnxt_free_tx_mbufs(bp); bnxt_free_rx_mbufs(bp); bnxt_shutdown_nic(bp); bp->dev_stopped = 1; } static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; if (bp->dev_stopped == 0) bnxt_dev_stop_op(eth_dev); if (eth_dev->data->mac_addrs != NULL) { rte_free(eth_dev->data->mac_addrs); eth_dev->data->mac_addrs = NULL; } if (bp->grp_info != NULL) { rte_free(bp->grp_info); bp->grp_info = NULL; } bnxt_dev_uninit(eth_dev); } static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev, uint32_t index) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; uint64_t pool_mask = eth_dev->data->mac_pool_sel[index]; struct bnxt_vnic_info *vnic; struct bnxt_filter_info *filter, *temp_filter; uint32_t i; /* * Loop through all VNICs from the specified filter flow pools to * remove the corresponding MAC addr filter */ for (i = 0; i < bp->nr_vnics; i++) { if (!(pool_mask & (1ULL << i))) continue; vnic = &bp->vnic_info[i]; filter = STAILQ_FIRST(&vnic->filter); while (filter) { temp_filter = STAILQ_NEXT(filter, next); if (filter->mac_index == index) { STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next); bnxt_hwrm_clear_l2_filter(bp, filter); filter->mac_index = INVALID_MAC_INDEX; memset(&filter->l2_addr, 0, ETHER_ADDR_LEN); STAILQ_INSERT_TAIL(&bp->free_filter_list, filter, next); } filter = temp_filter; } } } static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev, struct ether_addr *mac_addr, uint32_t index, uint32_t pool) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; struct bnxt_vnic_info *vnic = &bp->vnic_info[pool]; struct bnxt_filter_info *filter; if (BNXT_VF(bp) & !BNXT_VF_IS_TRUSTED(bp)) { PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n"); return -ENOTSUP; } if (!vnic) { PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool); return -EINVAL; } /* Attach requested MAC address to the new l2_filter */ STAILQ_FOREACH(filter, &vnic->filter, next) { if (filter->mac_index == index) { PMD_DRV_LOG(ERR, "MAC addr already existed for pool %d\n", pool); return 0; } } filter = bnxt_alloc_filter(bp); if (!filter) { PMD_DRV_LOG(ERR, "L2 filter alloc failed\n"); return -ENODEV; } STAILQ_INSERT_TAIL(&vnic->filter, filter, next); filter->mac_index = index; memcpy(filter->l2_addr, mac_addr, ETHER_ADDR_LEN); return bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter); } int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete) { int rc = 0; struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; struct rte_eth_link new; unsigned int cnt = BNXT_LINK_WAIT_CNT; memset(&new, 0, sizeof(new)); do { /* Retrieve link info from hardware */ rc = bnxt_get_hwrm_link_config(bp, &new); if (rc) { new.link_speed = ETH_LINK_SPEED_100M; new.link_duplex = ETH_LINK_FULL_DUPLEX; PMD_DRV_LOG(ERR, "Failed to retrieve link rc = 0x%x!\n", rc); goto out; } rte_delay_ms(BNXT_LINK_WAIT_INTERVAL); if (!wait_to_complete) break; } while (!new.link_status && cnt--); out: /* Timed out or success */ if (new.link_status != eth_dev->data->dev_link.link_status || new.link_speed != eth_dev->data->dev_link.link_speed) { memcpy(ð_dev->data->dev_link, &new, sizeof(struct rte_eth_link)); _rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL); bnxt_print_link_info(eth_dev); } return rc; } static void bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; struct bnxt_vnic_info *vnic; if (bp->vnic_info == NULL) return; vnic = &bp->vnic_info[0]; vnic->flags |= BNXT_VNIC_INFO_PROMISC; bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); } static void bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; struct bnxt_vnic_info *vnic; if (bp->vnic_info == NULL) return; vnic = &bp->vnic_info[0]; vnic->flags &= ~BNXT_VNIC_INFO_PROMISC; bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); } static void bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; struct bnxt_vnic_info *vnic; if (bp->vnic_info == NULL) return; vnic = &bp->vnic_info[0]; vnic->flags |= BNXT_VNIC_INFO_ALLMULTI; bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); } static void bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; struct bnxt_vnic_info *vnic; if (bp->vnic_info == NULL) return; vnic = &bp->vnic_info[0]; vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI; bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); } static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf; struct bnxt_vnic_info *vnic; int i; if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)) return -EINVAL; if (reta_size != HW_HASH_INDEX_SIZE) { PMD_DRV_LOG(ERR, "The configured hash table lookup size " "(%d) must equal the size supported by the hardware " "(%d)\n", reta_size, HW_HASH_INDEX_SIZE); return -EINVAL; } /* Update the RSS VNIC(s) */ for (i = 0; i < bp->max_vnics; i++) { vnic = &bp->vnic_info[i]; memcpy(vnic->rss_table, reta_conf, reta_size); bnxt_hwrm_vnic_rss_cfg(bp, vnic); } return 0; } static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; struct rte_intr_handle *intr_handle = &bp->pdev->intr_handle; /* Retrieve from the default VNIC */ if (!vnic) return -EINVAL; if (!vnic->rss_table) return -EINVAL; if (reta_size != HW_HASH_INDEX_SIZE) { PMD_DRV_LOG(ERR, "The configured hash table lookup size " "(%d) must equal the size supported by the hardware " "(%d)\n", reta_size, HW_HASH_INDEX_SIZE); return -EINVAL; } /* EW - need to revisit here copying from uint64_t to uint16_t */ memcpy(reta_conf, vnic->rss_table, reta_size); if (rte_intr_allow_others(intr_handle)) { if (eth_dev->data->dev_conf.intr_conf.lsc != 0) bnxt_dev_lsc_intr_setup(eth_dev); } return 0; } static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev, struct rte_eth_rss_conf *rss_conf) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf; struct bnxt_vnic_info *vnic; uint16_t hash_type = 0; unsigned int i; /* * If RSS enablement were different than dev_configure, * then return -EINVAL */ if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) { if (!rss_conf->rss_hf) PMD_DRV_LOG(ERR, "Hash type NONE\n"); } else { if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT) return -EINVAL; } bp->flags |= BNXT_FLAG_UPDATE_HASH; memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf)); if (rss_conf->rss_hf & ETH_RSS_IPV4) hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4; if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_TCP) hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4; if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_UDP) hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4; if (rss_conf->rss_hf & ETH_RSS_IPV6) hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6; if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_TCP) hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6; if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_UDP) hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6; /* Update the RSS VNIC(s) */ for (i = 0; i < bp->nr_vnics; i++) { vnic = &bp->vnic_info[i]; vnic->hash_type = hash_type; /* * Use the supplied key if the key length is * acceptable and the rss_key is not NULL */ if (rss_conf->rss_key && rss_conf->rss_key_len <= HW_HASH_KEY_SIZE) memcpy(vnic->rss_hash_key, rss_conf->rss_key, rss_conf->rss_key_len); bnxt_hwrm_vnic_rss_cfg(bp, vnic); } return 0; } static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev, struct rte_eth_rss_conf *rss_conf) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; int len; uint32_t hash_types; /* RSS configuration is the same for all VNICs */ if (vnic && vnic->rss_hash_key) { if (rss_conf->rss_key) { len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ? rss_conf->rss_key_len : HW_HASH_KEY_SIZE; memcpy(rss_conf->rss_key, vnic->rss_hash_key, len); } hash_types = vnic->hash_type; rss_conf->rss_hf = 0; if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) { rss_conf->rss_hf |= ETH_RSS_IPV4; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4; } if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) { rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4; } if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) { rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4; } if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) { rss_conf->rss_hf |= ETH_RSS_IPV6; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6; } if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) { rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6; } if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) { rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP; hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6; } if (hash_types) { PMD_DRV_LOG(ERR, "Unknwon RSS config from firmware (%08x), RSS disabled", vnic->hash_type); return -ENOTSUP; } } else { rss_conf->rss_hf = 0; } return 0; } static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; struct rte_eth_link link_info; int rc; rc = bnxt_get_hwrm_link_config(bp, &link_info); if (rc) return rc; memset(fc_conf, 0, sizeof(*fc_conf)); if (bp->link_info.auto_pause) fc_conf->autoneg = 1; switch (bp->link_info.pause) { case 0: fc_conf->mode = RTE_FC_NONE; break; case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX: fc_conf->mode = RTE_FC_TX_PAUSE; break; case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX: fc_conf->mode = RTE_FC_RX_PAUSE; break; case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX | HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX): fc_conf->mode = RTE_FC_FULL; break; } return 0; } static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) { PMD_DRV_LOG(ERR, "Flow Control Settings cannot be modified\n"); return -ENOTSUP; } switch (fc_conf->mode) { case RTE_FC_NONE: bp->link_info.auto_pause = 0; bp->link_info.force_pause = 0; break; case RTE_FC_RX_PAUSE: if (fc_conf->autoneg) { bp->link_info.auto_pause = HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX; bp->link_info.force_pause = 0; } else { bp->link_info.auto_pause = 0; bp->link_info.force_pause = HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX; } break; case RTE_FC_TX_PAUSE: if (fc_conf->autoneg) { bp->link_info.auto_pause = HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX; bp->link_info.force_pause = 0; } else { bp->link_info.auto_pause = 0; bp->link_info.force_pause = HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX; } break; case RTE_FC_FULL: if (fc_conf->autoneg) { bp->link_info.auto_pause = HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX | HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX; bp->link_info.force_pause = 0; } else { bp->link_info.auto_pause = 0; bp->link_info.force_pause = HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX | HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX; } break; } return bnxt_set_hwrm_link_config(bp, true); } /* Add UDP tunneling port */ static int bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev, struct rte_eth_udp_tunnel *udp_tunnel) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; uint16_t tunnel_type = 0; int rc = 0; switch (udp_tunnel->prot_type) { case RTE_TUNNEL_TYPE_VXLAN: if (bp->vxlan_port_cnt) { PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n", udp_tunnel->udp_port); if (bp->vxlan_port != udp_tunnel->udp_port) { PMD_DRV_LOG(ERR, "Only one port allowed\n"); return -ENOSPC; } bp->vxlan_port_cnt++; return 0; } tunnel_type = HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN; bp->vxlan_port_cnt++; break; case RTE_TUNNEL_TYPE_GENEVE: if (bp->geneve_port_cnt) { PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n", udp_tunnel->udp_port); if (bp->geneve_port != udp_tunnel->udp_port) { PMD_DRV_LOG(ERR, "Only one port allowed\n"); return -ENOSPC; } bp->geneve_port_cnt++; return 0; } tunnel_type = HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE; bp->geneve_port_cnt++; break; default: PMD_DRV_LOG(ERR, "Tunnel type is not supported\n"); return -ENOTSUP; } rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port, tunnel_type); return rc; } static int bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev, struct rte_eth_udp_tunnel *udp_tunnel) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; uint16_t tunnel_type = 0; uint16_t port = 0; int rc = 0; switch (udp_tunnel->prot_type) { case RTE_TUNNEL_TYPE_VXLAN: if (!bp->vxlan_port_cnt) { PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n"); return -EINVAL; } if (bp->vxlan_port != udp_tunnel->udp_port) { PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n", udp_tunnel->udp_port, bp->vxlan_port); return -EINVAL; } if (--bp->vxlan_port_cnt) return 0; tunnel_type = HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN; port = bp->vxlan_fw_dst_port_id; break; case RTE_TUNNEL_TYPE_GENEVE: if (!bp->geneve_port_cnt) { PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n"); return -EINVAL; } if (bp->geneve_port != udp_tunnel->udp_port) { PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n", udp_tunnel->udp_port, bp->geneve_port); return -EINVAL; } if (--bp->geneve_port_cnt) return 0; tunnel_type = HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE; port = bp->geneve_fw_dst_port_id; break; default: PMD_DRV_LOG(ERR, "Tunnel type is not supported\n"); return -ENOTSUP; } rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type); if (!rc) { if (tunnel_type == HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN) bp->vxlan_port = 0; if (tunnel_type == HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE) bp->geneve_port = 0; } return rc; } static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id) { struct bnxt_filter_info *filter, *temp_filter, *new_filter; struct bnxt_vnic_info *vnic; unsigned int i; int rc = 0; uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN; /* Cycle through all VNICs */ for (i = 0; i < bp->nr_vnics; i++) { /* * For each VNIC and each associated filter(s) * if VLAN exists && VLAN matches vlan_id * remove the MAC+VLAN filter * add a new MAC only filter * else * VLAN filter doesn't exist, just skip and continue */ vnic = &bp->vnic_info[i]; filter = STAILQ_FIRST(&vnic->filter); while (filter) { temp_filter = STAILQ_NEXT(filter, next); if (filter->enables & chk && filter->l2_ovlan == vlan_id) { /* Must delete the filter */ STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next); bnxt_hwrm_clear_l2_filter(bp, filter); STAILQ_INSERT_TAIL(&bp->free_filter_list, filter, next); /* * Need to examine to see if the MAC * filter already existed or not before * allocating a new one */ new_filter = bnxt_alloc_filter(bp); if (!new_filter) { PMD_DRV_LOG(ERR, "MAC/VLAN filter alloc failed\n"); rc = -ENOMEM; goto exit; } STAILQ_INSERT_TAIL(&vnic->filter, new_filter, next); /* Inherit MAC from previous filter */ new_filter->mac_index = filter->mac_index; memcpy(new_filter->l2_addr, filter->l2_addr, ETHER_ADDR_LEN); /* MAC only filter */ rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, new_filter); if (rc) goto exit; PMD_DRV_LOG(INFO, "Del Vlan filter for %d\n", vlan_id); } filter = temp_filter; } } exit: return rc; } static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id) { struct bnxt_filter_info *filter, *temp_filter, *new_filter; struct bnxt_vnic_info *vnic; unsigned int i; int rc = 0; uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN | HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK; uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN; /* Cycle through all VNICs */ for (i = 0; i < bp->nr_vnics; i++) { /* * For each VNIC and each associated filter(s) * if VLAN exists: * if VLAN matches vlan_id * VLAN filter already exists, just skip and continue * else * add a new MAC+VLAN filter * else * Remove the old MAC only filter * Add a new MAC+VLAN filter */ vnic = &bp->vnic_info[i]; filter = STAILQ_FIRST(&vnic->filter); while (filter) { temp_filter = STAILQ_NEXT(filter, next); if (filter->enables & chk) { if (filter->l2_ivlan == vlan_id) goto cont; } else { /* Must delete the MAC filter */ STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next); bnxt_hwrm_clear_l2_filter(bp, filter); filter->l2_ovlan = 0; STAILQ_INSERT_TAIL(&bp->free_filter_list, filter, next); } new_filter = bnxt_alloc_filter(bp); if (!new_filter) { PMD_DRV_LOG(ERR, "MAC/VLAN filter alloc failed\n"); rc = -ENOMEM; goto exit; } STAILQ_INSERT_TAIL(&vnic->filter, new_filter, next); /* Inherit MAC from the previous filter */ new_filter->mac_index = filter->mac_index; memcpy(new_filter->l2_addr, filter->l2_addr, ETHER_ADDR_LEN); /* MAC + VLAN ID filter */ new_filter->l2_ivlan = vlan_id; new_filter->l2_ivlan_mask = 0xF000; new_filter->enables |= en; rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, new_filter); if (rc) goto exit; PMD_DRV_LOG(INFO, "Added Vlan filter for %d\n", vlan_id); cont: filter = temp_filter; } } exit: return rc; } static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev, uint16_t vlan_id, int on) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; /* These operations apply to ALL existing MAC/VLAN filters */ if (on) return bnxt_add_vlan_filter(bp, vlan_id); else return bnxt_del_vlan_filter(bp, vlan_id); } static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads; unsigned int i; if (mask & ETH_VLAN_FILTER_MASK) { if (!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)) { /* Remove any VLAN filters programmed */ for (i = 0; i < 4095; i++) bnxt_del_vlan_filter(bp, i); } PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n", !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)); } if (mask & ETH_VLAN_STRIP_MASK) { /* Enable or disable VLAN stripping */ for (i = 0; i < bp->nr_vnics; i++) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP) vnic->vlan_strip = true; else vnic->vlan_strip = false; bnxt_hwrm_vnic_cfg(bp, vnic); } PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n", !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)); } if (mask & ETH_VLAN_EXTEND_MASK) PMD_DRV_LOG(ERR, "Extend VLAN Not supported\n"); return 0; } static int bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev, struct ether_addr *addr) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; /* Default Filter is tied to VNIC 0 */ struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; struct bnxt_filter_info *filter; int rc; if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp)) return -EPERM; memcpy(bp->mac_addr, addr, sizeof(bp->mac_addr)); STAILQ_FOREACH(filter, &vnic->filter, next) { /* Default Filter is at Index 0 */ if (filter->mac_index != 0) continue; rc = bnxt_hwrm_clear_l2_filter(bp, filter); if (rc) return rc; memcpy(filter->l2_addr, bp->mac_addr, ETHER_ADDR_LEN); memset(filter->l2_addr_mask, 0xff, ETHER_ADDR_LEN); filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX; filter->enables |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR | HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK; rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter); if (rc) return rc; filter->mac_index = 0; PMD_DRV_LOG(DEBUG, "Set MAC addr\n"); } return 0; } static int bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev, struct ether_addr *mc_addr_set, uint32_t nb_mc_addr) { struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private; char *mc_addr_list = (char *)mc_addr_set; struct bnxt_vnic_info *vnic; uint32_t off = 0, i = 0; vnic = &bp->vnic_info[0]; if (nb_mc_addr > BNXT_MAX_MC_ADDRS) { vnic->flags |= BNXT_VNIC_INFO_ALLMULTI; goto allmulti; } /* TODO Check for Duplicate mcast addresses */ vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI; for (i = 0; i < nb_mc_addr; i++) { memcpy(vnic->mc_list + off, &mc_addr_list[i], ETHER_ADDR_LEN); off += ETHER_ADDR_LEN; } vnic->mc_addr_cnt = i; allmulti: return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL); } static int bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; uint8_t fw_major = (bp->fw_ver >> 24) & 0xff; uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff; uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff; int ret; ret = snprintf(fw_version, fw_size, "%d.%d.%d", fw_major, fw_minor, fw_updt); ret += 1; /* add the size of '\0' */ if (fw_size < (uint32_t)ret) return ret; else return 0; } static void bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id, struct rte_eth_rxq_info *qinfo) { struct bnxt_rx_queue *rxq; rxq = dev->data->rx_queues[queue_id]; qinfo->mp = rxq->mb_pool; qinfo->scattered_rx = dev->data->scattered_rx; qinfo->nb_desc = rxq->nb_rx_desc; qinfo->conf.rx_free_thresh = rxq->rx_free_thresh; qinfo->conf.rx_drop_en = 0; qinfo->conf.rx_deferred_start = 0; } static void bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id, struct rte_eth_txq_info *qinfo) { struct bnxt_tx_queue *txq; txq = dev->data->tx_queues[queue_id]; qinfo->nb_desc = txq->nb_tx_desc; qinfo->conf.tx_thresh.pthresh = txq->pthresh; qinfo->conf.tx_thresh.hthresh = txq->hthresh; qinfo->conf.tx_thresh.wthresh = txq->wthresh; qinfo->conf.tx_free_thresh = txq->tx_free_thresh; qinfo->conf.tx_rs_thresh = 0; qinfo->conf.tx_deferred_start = txq->tx_deferred_start; } static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu) { struct bnxt *bp = eth_dev->data->dev_private; struct rte_eth_dev_info dev_info; uint32_t rc = 0; uint32_t i; bnxt_dev_info_get_op(eth_dev, &dev_info); if (new_mtu < ETHER_MIN_MTU || new_mtu > BNXT_MAX_MTU) { PMD_DRV_LOG(ERR, "MTU requested must be within (%d, %d)\n", ETHER_MIN_MTU, BNXT_MAX_MTU); return -EINVAL; } if (new_mtu > ETHER_MTU) { bp->flags |= BNXT_FLAG_JUMBO; bp->eth_dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; } else { bp->eth_dev->data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; bp->flags &= ~BNXT_FLAG_JUMBO; } eth_dev->data->dev_conf.rxmode.max_rx_pkt_len = new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE * 2; eth_dev->data->mtu = new_mtu; PMD_DRV_LOG(INFO, "New MTU is %d\n", eth_dev->data->mtu); for (i = 0; i < bp->nr_vnics; i++) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; uint16_t size = 0; vnic->mru = bp->eth_dev->data->mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE * 2; rc = bnxt_hwrm_vnic_cfg(bp, vnic); if (rc) break; size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool); size -= RTE_PKTMBUF_HEADROOM; if (size < new_mtu) { rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic); if (rc) return rc; } } return rc; } static int bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; uint16_t vlan = bp->vlan; int rc; if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) { PMD_DRV_LOG(ERR, "PVID cannot be modified for this function\n"); return -ENOTSUP; } bp->vlan = on ? pvid : 0; rc = bnxt_hwrm_set_default_vlan(bp, 0, 0); if (rc) bp->vlan = vlan; return rc; } static int bnxt_dev_led_on_op(struct rte_eth_dev *dev) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; return bnxt_hwrm_port_led_cfg(bp, true); } static int bnxt_dev_led_off_op(struct rte_eth_dev *dev) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; return bnxt_hwrm_port_led_cfg(bp, false); } static uint32_t bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id) { uint32_t desc = 0, raw_cons = 0, cons; struct bnxt_cp_ring_info *cpr; struct bnxt_rx_queue *rxq; struct rx_pkt_cmpl *rxcmp; uint16_t cmp_type; uint8_t cmp = 1; bool valid; rxq = dev->data->rx_queues[rx_queue_id]; cpr = rxq->cp_ring; valid = cpr->valid; while (raw_cons < rxq->nb_rx_desc) { cons = RING_CMP(cpr->cp_ring_struct, raw_cons); rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons]; if (!CMPL_VALID(rxcmp, valid)) goto nothing_to_do; valid = FLIP_VALID(cons, cpr->cp_ring_struct->ring_mask, valid); cmp_type = CMP_TYPE(rxcmp); if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) { cmp = (rte_le_to_cpu_32( ((struct rx_tpa_end_cmpl *) (rxcmp))->agg_bufs_v1) & RX_TPA_END_CMPL_AGG_BUFS_MASK) >> RX_TPA_END_CMPL_AGG_BUFS_SFT; desc++; } else if (cmp_type == 0x11) { desc++; cmp = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK) >> RX_PKT_CMPL_AGG_BUFS_SFT; } else { cmp = 1; } nothing_to_do: raw_cons += cmp ? cmp : 2; } return desc; } static int bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset) { struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue; struct bnxt_rx_ring_info *rxr; struct bnxt_cp_ring_info *cpr; struct bnxt_sw_rx_bd *rx_buf; struct rx_pkt_cmpl *rxcmp; uint32_t cons, cp_cons; if (!rxq) return -EINVAL; cpr = rxq->cp_ring; rxr = rxq->rx_ring; if (offset >= rxq->nb_rx_desc) return -EINVAL; cons = RING_CMP(cpr->cp_ring_struct, offset); cp_cons = cpr->cp_raw_cons; rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons]; if (cons > cp_cons) { if (CMPL_VALID(rxcmp, cpr->valid)) return RTE_ETH_RX_DESC_DONE; } else { if (CMPL_VALID(rxcmp, !cpr->valid)) return RTE_ETH_RX_DESC_DONE; } rx_buf = &rxr->rx_buf_ring[cons]; if (rx_buf->mbuf == NULL) return RTE_ETH_RX_DESC_UNAVAIL; return RTE_ETH_RX_DESC_AVAIL; } static int bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset) { struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue; struct bnxt_tx_ring_info *txr; struct bnxt_cp_ring_info *cpr; struct bnxt_sw_tx_bd *tx_buf; struct tx_pkt_cmpl *txcmp; uint32_t cons, cp_cons; if (!txq) return -EINVAL; cpr = txq->cp_ring; txr = txq->tx_ring; if (offset >= txq->nb_tx_desc) return -EINVAL; cons = RING_CMP(cpr->cp_ring_struct, offset); txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons]; cp_cons = cpr->cp_raw_cons; if (cons > cp_cons) { if (CMPL_VALID(txcmp, cpr->valid)) return RTE_ETH_TX_DESC_UNAVAIL; } else { if (CMPL_VALID(txcmp, !cpr->valid)) return RTE_ETH_TX_DESC_UNAVAIL; } tx_buf = &txr->tx_buf_ring[cons]; if (tx_buf->mbuf == NULL) return RTE_ETH_TX_DESC_DONE; return RTE_ETH_TX_DESC_FULL; } static struct bnxt_filter_info * bnxt_match_and_validate_ether_filter(struct bnxt *bp, struct rte_eth_ethertype_filter *efilter, struct bnxt_vnic_info *vnic0, struct bnxt_vnic_info *vnic, int *ret) { struct bnxt_filter_info *mfilter = NULL; int match = 0; *ret = 0; if (efilter->ether_type == ETHER_TYPE_IPv4 || efilter->ether_type == ETHER_TYPE_IPv6) { PMD_DRV_LOG(ERR, "invalid ether_type(0x%04x) in" " ethertype filter.", efilter->ether_type); *ret = -EINVAL; goto exit; } if (efilter->queue >= bp->rx_nr_rings) { PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue); *ret = -EINVAL; goto exit; } vnic0 = &bp->vnic_info[0]; vnic = &bp->vnic_info[efilter->queue]; if (vnic == NULL) { PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue); *ret = -EINVAL; goto exit; } if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) { STAILQ_FOREACH(mfilter, &vnic0->filter, next) { if ((!memcmp(efilter->mac_addr.addr_bytes, mfilter->l2_addr, ETHER_ADDR_LEN) && mfilter->flags == HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP && mfilter->ethertype == efilter->ether_type)) { match = 1; break; } } } else { STAILQ_FOREACH(mfilter, &vnic->filter, next) if ((!memcmp(efilter->mac_addr.addr_bytes, mfilter->l2_addr, ETHER_ADDR_LEN) && mfilter->ethertype == efilter->ether_type && mfilter->flags == HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) { match = 1; break; } } if (match) *ret = -EEXIST; exit: return mfilter; } static int bnxt_ethertype_filter(struct rte_eth_dev *dev, enum rte_filter_op filter_op, void *arg) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; struct rte_eth_ethertype_filter *efilter = (struct rte_eth_ethertype_filter *)arg; struct bnxt_filter_info *bfilter, *filter1; struct bnxt_vnic_info *vnic, *vnic0; int ret; if (filter_op == RTE_ETH_FILTER_NOP) return 0; if (arg == NULL) { PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.", filter_op); return -EINVAL; } vnic0 = &bp->vnic_info[0]; vnic = &bp->vnic_info[efilter->queue]; switch (filter_op) { case RTE_ETH_FILTER_ADD: bnxt_match_and_validate_ether_filter(bp, efilter, vnic0, vnic, &ret); if (ret < 0) return ret; bfilter = bnxt_get_unused_filter(bp); if (bfilter == NULL) { PMD_DRV_LOG(ERR, "Not enough resources for a new filter.\n"); return -ENOMEM; } bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER; memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes, ETHER_ADDR_LEN); memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes, ETHER_ADDR_LEN); bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR; bfilter->ethertype = efilter->ether_type; bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0); if (filter1 == NULL) { ret = -1; goto cleanup; } bfilter->enables |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID; bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id; bfilter->dst_id = vnic->fw_vnic_id; if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) { bfilter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP; } ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter); if (ret) goto cleanup; STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next); break; case RTE_ETH_FILTER_DELETE: filter1 = bnxt_match_and_validate_ether_filter(bp, efilter, vnic0, vnic, &ret); if (ret == -EEXIST) { ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1); STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info, next); bnxt_free_filter(bp, filter1); } else if (ret == 0) { PMD_DRV_LOG(ERR, "No matching filter found\n"); } break; default: PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op); ret = -EINVAL; goto error; } return ret; cleanup: bnxt_free_filter(bp, bfilter); error: return ret; } static inline int parse_ntuple_filter(struct bnxt *bp, struct rte_eth_ntuple_filter *nfilter, struct bnxt_filter_info *bfilter) { uint32_t en = 0; if (nfilter->queue >= bp->rx_nr_rings) { PMD_DRV_LOG(ERR, "Invalid queue %d\n", nfilter->queue); return -EINVAL; } switch (nfilter->dst_port_mask) { case UINT16_MAX: bfilter->dst_port_mask = -1; bfilter->dst_port = nfilter->dst_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT | NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK; break; default: PMD_DRV_LOG(ERR, "invalid dst_port mask."); return -EINVAL; } bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; switch (nfilter->proto_mask) { case UINT8_MAX: if (nfilter->proto == 17) /* IPPROTO_UDP */ bfilter->ip_protocol = 17; else if (nfilter->proto == 6) /* IPPROTO_TCP */ bfilter->ip_protocol = 6; else return -EINVAL; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; break; default: PMD_DRV_LOG(ERR, "invalid protocol mask."); return -EINVAL; } switch (nfilter->dst_ip_mask) { case UINT32_MAX: bfilter->dst_ipaddr_mask[0] = -1; bfilter->dst_ipaddr[0] = nfilter->dst_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR | NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; break; default: PMD_DRV_LOG(ERR, "invalid dst_ip mask."); return -EINVAL; } switch (nfilter->src_ip_mask) { case UINT32_MAX: bfilter->src_ipaddr_mask[0] = -1; bfilter->src_ipaddr[0] = nfilter->src_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR | NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; break; default: PMD_DRV_LOG(ERR, "invalid src_ip mask."); return -EINVAL; } switch (nfilter->src_port_mask) { case UINT16_MAX: bfilter->src_port_mask = -1; bfilter->src_port = nfilter->src_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT | NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK; break; default: PMD_DRV_LOG(ERR, "invalid src_port mask."); return -EINVAL; } //TODO Priority //nfilter->priority = (uint8_t)filter->priority; bfilter->enables = en; return 0; } static struct bnxt_filter_info* bnxt_match_ntuple_filter(struct bnxt *bp, struct bnxt_filter_info *bfilter, struct bnxt_vnic_info **mvnic) { struct bnxt_filter_info *mfilter = NULL; int i; for (i = bp->nr_vnics - 1; i >= 0; i--) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; STAILQ_FOREACH(mfilter, &vnic->filter, next) { if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] && bfilter->src_ipaddr_mask[0] == mfilter->src_ipaddr_mask[0] && bfilter->src_port == mfilter->src_port && bfilter->src_port_mask == mfilter->src_port_mask && bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] && bfilter->dst_ipaddr_mask[0] == mfilter->dst_ipaddr_mask[0] && bfilter->dst_port == mfilter->dst_port && bfilter->dst_port_mask == mfilter->dst_port_mask && bfilter->flags == mfilter->flags && bfilter->enables == mfilter->enables) { if (mvnic) *mvnic = vnic; return mfilter; } } } return NULL; } static int bnxt_cfg_ntuple_filter(struct bnxt *bp, struct rte_eth_ntuple_filter *nfilter, enum rte_filter_op filter_op) { struct bnxt_filter_info *bfilter, *mfilter, *filter1; struct bnxt_vnic_info *vnic, *vnic0, *mvnic; int ret; if (nfilter->flags != RTE_5TUPLE_FLAGS) { PMD_DRV_LOG(ERR, "only 5tuple is supported."); return -EINVAL; } if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) { PMD_DRV_LOG(ERR, "Ntuple filter: TCP flags not supported\n"); return -EINVAL; } bfilter = bnxt_get_unused_filter(bp); if (bfilter == NULL) { PMD_DRV_LOG(ERR, "Not enough resources for a new filter.\n"); return -ENOMEM; } ret = parse_ntuple_filter(bp, nfilter, bfilter); if (ret < 0) goto free_filter; vnic = &bp->vnic_info[nfilter->queue]; vnic0 = &bp->vnic_info[0]; filter1 = STAILQ_FIRST(&vnic0->filter); if (filter1 == NULL) { ret = -1; goto free_filter; } bfilter->dst_id = vnic->fw_vnic_id; bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id; bfilter->enables |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID; bfilter->ethertype = 0x800; bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; mfilter = bnxt_match_ntuple_filter(bp, bfilter, &mvnic); if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD && bfilter->dst_id == mfilter->dst_id) { PMD_DRV_LOG(ERR, "filter exists.\n"); ret = -EEXIST; goto free_filter; } else if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD && bfilter->dst_id != mfilter->dst_id) { mfilter->dst_id = vnic->fw_vnic_id; ret = bnxt_hwrm_set_ntuple_filter(bp, mfilter->dst_id, mfilter); STAILQ_REMOVE(&mvnic->filter, mfilter, bnxt_filter_info, next); STAILQ_INSERT_TAIL(&vnic->filter, mfilter, next); PMD_DRV_LOG(ERR, "filter with matching pattern exists.\n"); PMD_DRV_LOG(ERR, " Updated it to the new destination queue\n"); goto free_filter; } if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) { PMD_DRV_LOG(ERR, "filter doesn't exist."); ret = -ENOENT; goto free_filter; } if (filter_op == RTE_ETH_FILTER_ADD) { bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER; ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter); if (ret) goto free_filter; STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next); } else { if (mfilter == NULL) { /* This should not happen. But for Coverity! */ ret = -ENOENT; goto free_filter; } ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter); STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info, next); bnxt_free_filter(bp, mfilter); mfilter->fw_l2_filter_id = -1; bnxt_free_filter(bp, bfilter); bfilter->fw_l2_filter_id = -1; } return 0; free_filter: bfilter->fw_l2_filter_id = -1; bnxt_free_filter(bp, bfilter); return ret; } static int bnxt_ntuple_filter(struct rte_eth_dev *dev, enum rte_filter_op filter_op, void *arg) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; int ret; if (filter_op == RTE_ETH_FILTER_NOP) return 0; if (arg == NULL) { PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.", filter_op); return -EINVAL; } switch (filter_op) { case RTE_ETH_FILTER_ADD: ret = bnxt_cfg_ntuple_filter(bp, (struct rte_eth_ntuple_filter *)arg, filter_op); break; case RTE_ETH_FILTER_DELETE: ret = bnxt_cfg_ntuple_filter(bp, (struct rte_eth_ntuple_filter *)arg, filter_op); break; default: PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op); ret = -EINVAL; break; } return ret; } static int bnxt_parse_fdir_filter(struct bnxt *bp, struct rte_eth_fdir_filter *fdir, struct bnxt_filter_info *filter) { enum rte_fdir_mode fdir_mode = bp->eth_dev->data->dev_conf.fdir_conf.mode; struct bnxt_vnic_info *vnic0, *vnic; struct bnxt_filter_info *filter1; uint32_t en = 0; int i; if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL) return -EINVAL; filter->l2_ovlan = fdir->input.flow_ext.vlan_tci; en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID; switch (fdir->input.flow_type) { case RTE_ETH_FLOW_IPV4: case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: /* FALLTHROUGH */ filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR; filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; filter->ip_protocol = fdir->input.flow.ip4_flow.proto; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; filter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4; filter->src_ipaddr_mask[0] = 0xffffffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; filter->dst_ipaddr_mask[0] = 0xffffffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; filter->ethertype = 0x800; filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; break; case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: filter->src_port = fdir->input.flow.tcp4_flow.src_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT; filter->dst_port = fdir->input.flow.tcp4_flow.dst_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT; filter->dst_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK; filter->src_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK; filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR; filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; filter->ip_protocol = 6; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; filter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4; filter->src_ipaddr_mask[0] = 0xffffffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; filter->dst_ipaddr_mask[0] = 0xffffffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; filter->ethertype = 0x800; filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; break; case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: filter->src_port = fdir->input.flow.udp4_flow.src_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT; filter->dst_port = fdir->input.flow.udp4_flow.dst_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT; filter->dst_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK; filter->src_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK; filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR; filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; filter->ip_protocol = 17; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; filter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4; filter->src_ipaddr_mask[0] = 0xffffffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; filter->dst_ipaddr_mask[0] = 0xffffffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; filter->ethertype = 0x800; filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; break; case RTE_ETH_FLOW_IPV6: case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: /* FALLTHROUGH */ filter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6; filter->ip_protocol = fdir->input.flow.ipv6_flow.proto; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; rte_memcpy(filter->src_ipaddr, fdir->input.flow.ipv6_flow.src_ip, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR; rte_memcpy(filter->dst_ipaddr, fdir->input.flow.ipv6_flow.dst_ip, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; memset(filter->dst_ipaddr_mask, 0xff, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; memset(filter->src_ipaddr_mask, 0xff, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; filter->ethertype = 0x86dd; filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; break; case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: filter->src_port = fdir->input.flow.tcp6_flow.src_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT; filter->dst_port = fdir->input.flow.tcp6_flow.dst_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT; filter->dst_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK; filter->src_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK; filter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6; filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; rte_memcpy(filter->src_ipaddr, fdir->input.flow.tcp6_flow.ip.src_ip, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR; rte_memcpy(filter->dst_ipaddr, fdir->input.flow.tcp6_flow.ip.dst_ip, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; memset(filter->dst_ipaddr_mask, 0xff, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; memset(filter->src_ipaddr_mask, 0xff, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; filter->ethertype = 0x86dd; filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; break; case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: filter->src_port = fdir->input.flow.udp6_flow.src_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT; filter->dst_port = fdir->input.flow.udp6_flow.dst_port; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT; filter->dst_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK; filter->src_port_mask = 0xffff; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK; filter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6; filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto; en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; rte_memcpy(filter->src_ipaddr, fdir->input.flow.udp6_flow.ip.src_ip, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR; rte_memcpy(filter->dst_ipaddr, fdir->input.flow.udp6_flow.ip.dst_ip, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; memset(filter->dst_ipaddr_mask, 0xff, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; memset(filter->src_ipaddr_mask, 0xff, 16); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; filter->ethertype = 0x86dd; filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; break; case RTE_ETH_FLOW_L2_PAYLOAD: filter->ethertype = fdir->input.flow.l2_flow.ether_type; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE; break; case RTE_ETH_FLOW_VXLAN: if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) return -EINVAL; filter->vni = fdir->input.flow.tunnel_flow.tunnel_id; filter->tunnel_type = CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN; en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE; break; case RTE_ETH_FLOW_NVGRE: if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) return -EINVAL; filter->vni = fdir->input.flow.tunnel_flow.tunnel_id; filter->tunnel_type = CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE; en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE; break; case RTE_ETH_FLOW_UNKNOWN: case RTE_ETH_FLOW_RAW: case RTE_ETH_FLOW_FRAG_IPV4: case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP: case RTE_ETH_FLOW_FRAG_IPV6: case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP: case RTE_ETH_FLOW_IPV6_EX: case RTE_ETH_FLOW_IPV6_TCP_EX: case RTE_ETH_FLOW_IPV6_UDP_EX: case RTE_ETH_FLOW_GENEVE: /* FALLTHROUGH */ default: return -EINVAL; } vnic0 = &bp->vnic_info[0]; vnic = &bp->vnic_info[fdir->action.rx_queue]; if (vnic == NULL) { PMD_DRV_LOG(ERR, "Invalid queue %d\n", fdir->action.rx_queue); return -EINVAL; } if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) { rte_memcpy(filter->dst_macaddr, fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6); en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR; } if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) { filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP; filter1 = STAILQ_FIRST(&vnic0->filter); //filter1 = bnxt_get_l2_filter(bp, filter, vnic0); } else { filter->dst_id = vnic->fw_vnic_id; for (i = 0; i < ETHER_ADDR_LEN; i++) if (filter->dst_macaddr[i] == 0x00) filter1 = STAILQ_FIRST(&vnic0->filter); else filter1 = bnxt_get_l2_filter(bp, filter, vnic); } if (filter1 == NULL) return -EINVAL; en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID; filter->fw_l2_filter_id = filter1->fw_l2_filter_id; filter->enables = en; return 0; } static struct bnxt_filter_info * bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf, struct bnxt_vnic_info **mvnic) { struct bnxt_filter_info *mf = NULL; int i; for (i = bp->nr_vnics - 1; i >= 0; i--) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; STAILQ_FOREACH(mf, &vnic->filter, next) { if (mf->filter_type == nf->filter_type && mf->flags == nf->flags && mf->src_port == nf->src_port && mf->src_port_mask == nf->src_port_mask && mf->dst_port == nf->dst_port && mf->dst_port_mask == nf->dst_port_mask && mf->ip_protocol == nf->ip_protocol && mf->ip_addr_type == nf->ip_addr_type && mf->ethertype == nf->ethertype && mf->vni == nf->vni && mf->tunnel_type == nf->tunnel_type && mf->l2_ovlan == nf->l2_ovlan && mf->l2_ovlan_mask == nf->l2_ovlan_mask && mf->l2_ivlan == nf->l2_ivlan && mf->l2_ivlan_mask == nf->l2_ivlan_mask && !memcmp(mf->l2_addr, nf->l2_addr, ETHER_ADDR_LEN) && !memcmp(mf->l2_addr_mask, nf->l2_addr_mask, ETHER_ADDR_LEN) && !memcmp(mf->src_macaddr, nf->src_macaddr, ETHER_ADDR_LEN) && !memcmp(mf->dst_macaddr, nf->dst_macaddr, ETHER_ADDR_LEN) && !memcmp(mf->src_ipaddr, nf->src_ipaddr, sizeof(nf->src_ipaddr)) && !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask, sizeof(nf->src_ipaddr_mask)) && !memcmp(mf->dst_ipaddr, nf->dst_ipaddr, sizeof(nf->dst_ipaddr)) && !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask, sizeof(nf->dst_ipaddr_mask))) { if (mvnic) *mvnic = vnic; return mf; } } } return NULL; } static int bnxt_fdir_filter(struct rte_eth_dev *dev, enum rte_filter_op filter_op, void *arg) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; struct rte_eth_fdir_filter *fdir = (struct rte_eth_fdir_filter *)arg; struct bnxt_filter_info *filter, *match; struct bnxt_vnic_info *vnic, *mvnic; int ret = 0, i; if (filter_op == RTE_ETH_FILTER_NOP) return 0; if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH) return -EINVAL; switch (filter_op) { case RTE_ETH_FILTER_ADD: case RTE_ETH_FILTER_DELETE: /* FALLTHROUGH */ filter = bnxt_get_unused_filter(bp); if (filter == NULL) { PMD_DRV_LOG(ERR, "Not enough resources for a new flow.\n"); return -ENOMEM; } ret = bnxt_parse_fdir_filter(bp, fdir, filter); if (ret != 0) goto free_filter; filter->filter_type = HWRM_CFA_NTUPLE_FILTER; if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) vnic = &bp->vnic_info[0]; else vnic = &bp->vnic_info[fdir->action.rx_queue]; match = bnxt_match_fdir(bp, filter, &mvnic); if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) { if (match->dst_id == vnic->fw_vnic_id) { PMD_DRV_LOG(ERR, "Flow already exists.\n"); ret = -EEXIST; goto free_filter; } else { match->dst_id = vnic->fw_vnic_id; ret = bnxt_hwrm_set_ntuple_filter(bp, match->dst_id, match); STAILQ_REMOVE(&mvnic->filter, match, bnxt_filter_info, next); STAILQ_INSERT_TAIL(&vnic->filter, match, next); PMD_DRV_LOG(ERR, "Filter with matching pattern exist\n"); PMD_DRV_LOG(ERR, "Updated it to new destination q\n"); goto free_filter; } } if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) { PMD_DRV_LOG(ERR, "Flow does not exist.\n"); ret = -ENOENT; goto free_filter; } if (filter_op == RTE_ETH_FILTER_ADD) { ret = bnxt_hwrm_set_ntuple_filter(bp, filter->dst_id, filter); if (ret) goto free_filter; STAILQ_INSERT_TAIL(&vnic->filter, filter, next); } else { ret = bnxt_hwrm_clear_ntuple_filter(bp, match); STAILQ_REMOVE(&vnic->filter, match, bnxt_filter_info, next); bnxt_free_filter(bp, match); filter->fw_l2_filter_id = -1; bnxt_free_filter(bp, filter); } break; case RTE_ETH_FILTER_FLUSH: for (i = bp->nr_vnics - 1; i >= 0; i--) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; STAILQ_FOREACH(filter, &vnic->filter, next) { if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER) { ret = bnxt_hwrm_clear_ntuple_filter(bp, filter); STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next); } } } return ret; case RTE_ETH_FILTER_UPDATE: case RTE_ETH_FILTER_STATS: case RTE_ETH_FILTER_INFO: PMD_DRV_LOG(ERR, "operation %u not implemented", filter_op); break; default: PMD_DRV_LOG(ERR, "unknown operation %u", filter_op); ret = -EINVAL; break; } return ret; free_filter: filter->fw_l2_filter_id = -1; bnxt_free_filter(bp, filter); return ret; } static int bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused, enum rte_filter_type filter_type, enum rte_filter_op filter_op, void *arg) { int ret = 0; switch (filter_type) { case RTE_ETH_FILTER_TUNNEL: PMD_DRV_LOG(ERR, "filter type: %d: To be implemented\n", filter_type); break; case RTE_ETH_FILTER_FDIR: ret = bnxt_fdir_filter(dev, filter_op, arg); break; case RTE_ETH_FILTER_NTUPLE: ret = bnxt_ntuple_filter(dev, filter_op, arg); break; case RTE_ETH_FILTER_ETHERTYPE: ret = bnxt_ethertype_filter(dev, filter_op, arg); break; case RTE_ETH_FILTER_GENERIC: if (filter_op != RTE_ETH_FILTER_GET) return -EINVAL; *(const void **)arg = &bnxt_flow_ops; break; default: PMD_DRV_LOG(ERR, "Filter type (%d) not supported", filter_type); ret = -EINVAL; break; } return ret; } static const uint32_t * bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev) { static const uint32_t ptypes[] = { RTE_PTYPE_L2_ETHER_VLAN, RTE_PTYPE_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_L3_IPV6_EXT_UNKNOWN, RTE_PTYPE_L4_ICMP, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN, RTE_PTYPE_INNER_L4_ICMP, RTE_PTYPE_INNER_L4_TCP, RTE_PTYPE_INNER_L4_UDP, RTE_PTYPE_UNKNOWN }; if (dev->rx_pkt_burst == bnxt_recv_pkts) return ptypes; return NULL; } static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count, int reg_win) { uint32_t reg_base = *reg_arr & 0xfffff000; uint32_t win_off; int i; for (i = 0; i < count; i++) { if ((reg_arr[i] & 0xfffff000) != reg_base) return -ERANGE; } win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4; rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off); return 0; } static int bnxt_map_ptp_regs(struct bnxt *bp) { struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint32_t *reg_arr; int rc, i; reg_arr = ptp->rx_regs; rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5); if (rc) return rc; reg_arr = ptp->tx_regs; rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6); if (rc) return rc; for (i = 0; i < BNXT_PTP_RX_REGS; i++) ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff); for (i = 0; i < BNXT_PTP_TX_REGS; i++) ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff); return 0; } static void bnxt_unmap_ptp_regs(struct bnxt *bp) { rte_write32(0, (uint8_t *)bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16); rte_write32(0, (uint8_t *)bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20); } static uint64_t bnxt_cc_read(struct bnxt *bp) { uint64_t ns; ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + BNXT_GRCPF_REG_SYNC_TIME)); ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32; return ns; } static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts) { struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint32_t fifo; fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO])); if (fifo & BNXT_PTP_TX_FIFO_EMPTY) return -EAGAIN; fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO])); *ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L])); *ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32; return 0; } static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts) { struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; struct bnxt_pf_info *pf = &bp->pf; uint16_t port_id; uint32_t fifo; if (!ptp) return -ENODEV; fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO])); if (!(fifo & BNXT_PTP_RX_FIFO_PENDING)) return -EAGAIN; port_id = pf->port_id; rte_write32(1 << port_id, (uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]); fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO])); if (fifo & BNXT_PTP_RX_FIFO_PENDING) { /* bnxt_clr_rx_ts(bp); TBD */ return -EBUSY; } *ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L])); *ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 + ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32; return 0; } static int bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts) { uint64_t ns; struct bnxt *bp = (struct bnxt *)dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; if (!ptp) return 0; ns = rte_timespec_to_ns(ts); /* Set the timecounters to a new value. */ ptp->tc.nsec = ns; return 0; } static int bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts) { uint64_t ns, systime_cycles; struct bnxt *bp = (struct bnxt *)dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; if (!ptp) return 0; systime_cycles = bnxt_cc_read(bp); ns = rte_timecounter_update(&ptp->tc, systime_cycles); *ts = rte_ns_to_timespec(ns); return 0; } static int bnxt_timesync_enable(struct rte_eth_dev *dev) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint32_t shift = 0; if (!ptp) return 0; ptp->rx_filter = 1; ptp->tx_tstamp_en = 1; ptp->rxctl = BNXT_PTP_MSG_EVENTS; if (!bnxt_hwrm_ptp_cfg(bp)) bnxt_map_ptp_regs(bp); memset(&ptp->tc, 0, sizeof(struct rte_timecounter)); memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter)); memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter)); ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK; ptp->tc.cc_shift = shift; ptp->tc.nsec_mask = (1ULL << shift) - 1; ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK; ptp->rx_tstamp_tc.cc_shift = shift; ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1; ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK; ptp->tx_tstamp_tc.cc_shift = shift; ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1; return 0; } static int bnxt_timesync_disable(struct rte_eth_dev *dev) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; if (!ptp) return 0; ptp->rx_filter = 0; ptp->tx_tstamp_en = 0; ptp->rxctl = 0; bnxt_hwrm_ptp_cfg(bp); bnxt_unmap_ptp_regs(bp); return 0; } static int bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev, struct timespec *timestamp, uint32_t flags __rte_unused) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint64_t rx_tstamp_cycles = 0; uint64_t ns; if (!ptp) return 0; bnxt_get_rx_ts(bp, &rx_tstamp_cycles); ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles); *timestamp = rte_ns_to_timespec(ns); return 0; } static int bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev, struct timespec *timestamp) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; uint64_t tx_tstamp_cycles = 0; uint64_t ns; if (!ptp) return 0; bnxt_get_tx_ts(bp, &tx_tstamp_cycles); ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles); *timestamp = rte_ns_to_timespec(ns); return 0; } static int bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; if (!ptp) return 0; ptp->tc.nsec += delta; return 0; } static int bnxt_get_eeprom_length_op(struct rte_eth_dev *dev) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; int rc; uint32_t dir_entries; uint32_t entry_length; PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x\n", bp->pdev->addr.domain, bp->pdev->addr.bus, bp->pdev->addr.devid, bp->pdev->addr.function); rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length); if (rc != 0) return rc; return dir_entries * entry_length; } static int bnxt_get_eeprom_op(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *in_eeprom) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; uint32_t index; uint32_t offset; PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d " "len = %d\n", bp->pdev->addr.domain, bp->pdev->addr.bus, bp->pdev->addr.devid, bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length); if (in_eeprom->offset == 0) /* special offset value to get directory */ return bnxt_get_nvram_directory(bp, in_eeprom->length, in_eeprom->data); index = in_eeprom->offset >> 24; offset = in_eeprom->offset & 0xffffff; if (index != 0) return bnxt_hwrm_get_nvram_item(bp, index - 1, offset, in_eeprom->length, in_eeprom->data); return 0; } static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type) { switch (dir_type) { case BNX_DIR_TYPE_CHIMP_PATCH: case BNX_DIR_TYPE_BOOTCODE: case BNX_DIR_TYPE_BOOTCODE_2: case BNX_DIR_TYPE_APE_FW: case BNX_DIR_TYPE_APE_PATCH: case BNX_DIR_TYPE_KONG_FW: case BNX_DIR_TYPE_KONG_PATCH: case BNX_DIR_TYPE_BONO_FW: case BNX_DIR_TYPE_BONO_PATCH: /* FALLTHROUGH */ return true; } return false; } static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type) { switch (dir_type) { case BNX_DIR_TYPE_AVS: case BNX_DIR_TYPE_EXP_ROM_MBA: case BNX_DIR_TYPE_PCIE: case BNX_DIR_TYPE_TSCF_UCODE: case BNX_DIR_TYPE_EXT_PHY: case BNX_DIR_TYPE_CCM: case BNX_DIR_TYPE_ISCSI_BOOT: case BNX_DIR_TYPE_ISCSI_BOOT_IPV6: case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6: /* FALLTHROUGH */ return true; } return false; } static bool bnxt_dir_type_is_executable(uint16_t dir_type) { return bnxt_dir_type_is_ape_bin_format(dir_type) || bnxt_dir_type_is_other_exec_format(dir_type); } static int bnxt_set_eeprom_op(struct rte_eth_dev *dev, struct rte_dev_eeprom_info *in_eeprom) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; uint8_t index, dir_op; uint16_t type, ext, ordinal, attr; PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d " "len = %d\n", bp->pdev->addr.domain, bp->pdev->addr.bus, bp->pdev->addr.devid, bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length); if (!BNXT_PF(bp)) { PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n"); return -EINVAL; } type = in_eeprom->magic >> 16; if (type == 0xffff) { /* special value for directory operations */ index = in_eeprom->magic & 0xff; dir_op = in_eeprom->magic >> 8; if (index == 0) return -EINVAL; switch (dir_op) { case 0x0e: /* erase */ if (in_eeprom->offset != ~in_eeprom->magic) return -EINVAL; return bnxt_hwrm_erase_nvram_directory(bp, index - 1); default: return -EINVAL; } } /* Create or re-write an NVM item: */ if (bnxt_dir_type_is_executable(type) == true) return -EOPNOTSUPP; ext = in_eeprom->magic & 0xffff; ordinal = in_eeprom->offset >> 16; attr = in_eeprom->offset & 0xffff; return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr, in_eeprom->data, in_eeprom->length); return 0; } /* * Initialization */ static const struct eth_dev_ops bnxt_dev_ops = { .dev_infos_get = bnxt_dev_info_get_op, .dev_close = bnxt_dev_close_op, .dev_configure = bnxt_dev_configure_op, .dev_start = bnxt_dev_start_op, .dev_stop = bnxt_dev_stop_op, .dev_set_link_up = bnxt_dev_set_link_up_op, .dev_set_link_down = bnxt_dev_set_link_down_op, .stats_get = bnxt_stats_get_op, .stats_reset = bnxt_stats_reset_op, .rx_queue_setup = bnxt_rx_queue_setup_op, .rx_queue_release = bnxt_rx_queue_release_op, .tx_queue_setup = bnxt_tx_queue_setup_op, .tx_queue_release = bnxt_tx_queue_release_op, .rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op, .rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op, .reta_update = bnxt_reta_update_op, .reta_query = bnxt_reta_query_op, .rss_hash_update = bnxt_rss_hash_update_op, .rss_hash_conf_get = bnxt_rss_hash_conf_get_op, .link_update = bnxt_link_update_op, .promiscuous_enable = bnxt_promiscuous_enable_op, .promiscuous_disable = bnxt_promiscuous_disable_op, .allmulticast_enable = bnxt_allmulticast_enable_op, .allmulticast_disable = bnxt_allmulticast_disable_op, .mac_addr_add = bnxt_mac_addr_add_op, .mac_addr_remove = bnxt_mac_addr_remove_op, .flow_ctrl_get = bnxt_flow_ctrl_get_op, .flow_ctrl_set = bnxt_flow_ctrl_set_op, .udp_tunnel_port_add = bnxt_udp_tunnel_port_add_op, .udp_tunnel_port_del = bnxt_udp_tunnel_port_del_op, .vlan_filter_set = bnxt_vlan_filter_set_op, .vlan_offload_set = bnxt_vlan_offload_set_op, .vlan_pvid_set = bnxt_vlan_pvid_set_op, .mtu_set = bnxt_mtu_set_op, .mac_addr_set = bnxt_set_default_mac_addr_op, .xstats_get = bnxt_dev_xstats_get_op, .xstats_get_names = bnxt_dev_xstats_get_names_op, .xstats_reset = bnxt_dev_xstats_reset_op, .fw_version_get = bnxt_fw_version_get, .set_mc_addr_list = bnxt_dev_set_mc_addr_list_op, .rxq_info_get = bnxt_rxq_info_get_op, .txq_info_get = bnxt_txq_info_get_op, .dev_led_on = bnxt_dev_led_on_op, .dev_led_off = bnxt_dev_led_off_op, .xstats_get_by_id = bnxt_dev_xstats_get_by_id_op, .xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op, .rx_queue_count = bnxt_rx_queue_count_op, .rx_descriptor_status = bnxt_rx_descriptor_status_op, .tx_descriptor_status = bnxt_tx_descriptor_status_op, .rx_queue_start = bnxt_rx_queue_start, .rx_queue_stop = bnxt_rx_queue_stop, .tx_queue_start = bnxt_tx_queue_start, .tx_queue_stop = bnxt_tx_queue_stop, .filter_ctrl = bnxt_filter_ctrl_op, .dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op, .get_eeprom_length = bnxt_get_eeprom_length_op, .get_eeprom = bnxt_get_eeprom_op, .set_eeprom = bnxt_set_eeprom_op, .timesync_enable = bnxt_timesync_enable, .timesync_disable = bnxt_timesync_disable, .timesync_read_time = bnxt_timesync_read_time, .timesync_write_time = bnxt_timesync_write_time, .timesync_adjust_time = bnxt_timesync_adjust_time, .timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp, .timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp, }; static bool bnxt_vf_pciid(uint16_t id) { if (id == BROADCOM_DEV_ID_57304_VF || id == BROADCOM_DEV_ID_57406_VF || id == BROADCOM_DEV_ID_5731X_VF || id == BROADCOM_DEV_ID_5741X_VF || id == BROADCOM_DEV_ID_57414_VF || id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 || id == BROADCOM_DEV_ID_STRATUS_NIC_VF2 || id == BROADCOM_DEV_ID_58802_VF) return true; return false; } bool bnxt_stratus_device(struct bnxt *bp) { uint16_t id = bp->pdev->id.device_id; if (id == BROADCOM_DEV_ID_STRATUS_NIC || id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 || id == BROADCOM_DEV_ID_STRATUS_NIC_VF2) return true; return false; } static int bnxt_init_board(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); int rc; /* enable device (incl. PCI PM wakeup), and bus-mastering */ if (!pci_dev->mem_resource[0].addr) { PMD_DRV_LOG(ERR, "Cannot find PCI device base address, aborting\n"); rc = -ENODEV; goto init_err_disable; } bp->eth_dev = eth_dev; bp->pdev = pci_dev; bp->bar0 = (void *)pci_dev->mem_resource[0].addr; if (!bp->bar0) { PMD_DRV_LOG(ERR, "Cannot map device registers, aborting\n"); rc = -ENOMEM; goto init_err_release; } if (!pci_dev->mem_resource[2].addr) { PMD_DRV_LOG(ERR, "Cannot find PCI device BAR 2 address, aborting\n"); rc = -ENODEV; goto init_err_release; } else { bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr; } return 0; init_err_release: if (bp->bar0) bp->bar0 = NULL; if (bp->doorbell_base) bp->doorbell_base = NULL; init_err_disable: return rc; } #define ALLOW_FUNC(x) \ { \ typeof(x) arg = (x); \ bp->pf.vf_req_fwd[((arg) >> 5)] &= \ ~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \ } static int bnxt_dev_init(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); char mz_name[RTE_MEMZONE_NAMESIZE]; const struct rte_memzone *mz = NULL; static int version_printed; uint32_t total_alloc_len; rte_iova_t mz_phys_addr; struct bnxt *bp; int rc; if (version_printed++ == 0) PMD_DRV_LOG(INFO, "%s\n", bnxt_version); rte_eth_copy_pci_info(eth_dev, pci_dev); bp = eth_dev->data->dev_private; bp->dev_stopped = 1; if (rte_eal_process_type() != RTE_PROC_PRIMARY) goto skip_init; if (bnxt_vf_pciid(pci_dev->id.device_id)) bp->flags |= BNXT_FLAG_VF; rc = bnxt_init_board(eth_dev); if (rc) { PMD_DRV_LOG(ERR, "Board initialization failed rc: %x\n", rc); goto error; } skip_init: eth_dev->dev_ops = &bnxt_dev_ops; eth_dev->rx_pkt_burst = &bnxt_recv_pkts; eth_dev->tx_pkt_burst = &bnxt_xmit_pkts; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; if (pci_dev->id.device_id != BROADCOM_DEV_ID_NS2) { snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain, pci_dev->addr.bus, pci_dev->addr.devid, pci_dev->addr.function, "rx_port_stats"); mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0; mz = rte_memzone_lookup(mz_name); total_alloc_len = RTE_CACHE_LINE_ROUNDUP( sizeof(struct rx_port_stats) + sizeof(struct rx_port_stats_ext) + 512); if (!mz) { mz = rte_memzone_reserve(mz_name, total_alloc_len, SOCKET_ID_ANY, RTE_MEMZONE_2MB | RTE_MEMZONE_SIZE_HINT_ONLY | RTE_MEMZONE_IOVA_CONTIG); if (mz == NULL) return -ENOMEM; } memset(mz->addr, 0, mz->len); mz_phys_addr = mz->iova; if ((unsigned long)mz->addr == mz_phys_addr) { PMD_DRV_LOG(INFO, "Memzone physical address same as virtual using rte_mem_virt2iova()\n"); mz_phys_addr = rte_mem_virt2iova(mz->addr); if (mz_phys_addr == 0) { PMD_DRV_LOG(ERR, "unable to map address to physical memory\n"); return -ENOMEM; } } bp->rx_mem_zone = (const void *)mz; bp->hw_rx_port_stats = mz->addr; bp->hw_rx_port_stats_map = mz_phys_addr; snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain, pci_dev->addr.bus, pci_dev->addr.devid, pci_dev->addr.function, "tx_port_stats"); mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0; mz = rte_memzone_lookup(mz_name); total_alloc_len = RTE_CACHE_LINE_ROUNDUP( sizeof(struct tx_port_stats) + sizeof(struct tx_port_stats_ext) + 512); if (!mz) { mz = rte_memzone_reserve(mz_name, total_alloc_len, SOCKET_ID_ANY, RTE_MEMZONE_2MB | RTE_MEMZONE_SIZE_HINT_ONLY | RTE_MEMZONE_IOVA_CONTIG); if (mz == NULL) return -ENOMEM; } memset(mz->addr, 0, mz->len); mz_phys_addr = mz->iova; if ((unsigned long)mz->addr == mz_phys_addr) { PMD_DRV_LOG(WARNING, "Memzone physical address same as virtual.\n"); PMD_DRV_LOG(WARNING, "Using rte_mem_virt2iova()\n"); mz_phys_addr = rte_mem_virt2iova(mz->addr); if (mz_phys_addr == 0) { PMD_DRV_LOG(ERR, "unable to map address to physical memory\n"); return -ENOMEM; } } bp->tx_mem_zone = (const void *)mz; bp->hw_tx_port_stats = mz->addr; bp->hw_tx_port_stats_map = mz_phys_addr; bp->flags |= BNXT_FLAG_PORT_STATS; /* Display extended statistics if FW supports it */ if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 || bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0) goto skip_ext_stats; bp->hw_rx_port_stats_ext = (void *) (bp->hw_rx_port_stats + sizeof(struct rx_port_stats)); bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map + sizeof(struct rx_port_stats); bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS; if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2) { bp->hw_tx_port_stats_ext = (void *) (bp->hw_tx_port_stats + sizeof(struct tx_port_stats)); bp->hw_tx_port_stats_ext_map = bp->hw_tx_port_stats_map + sizeof(struct tx_port_stats); bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS; } } skip_ext_stats: rc = bnxt_alloc_hwrm_resources(bp); if (rc) { PMD_DRV_LOG(ERR, "hwrm resource allocation failure rc: %x\n", rc); goto error_free; } rc = bnxt_hwrm_ver_get(bp); if (rc) goto error_free; rc = bnxt_hwrm_queue_qportcfg(bp); if (rc) { PMD_DRV_LOG(ERR, "hwrm queue qportcfg failed\n"); goto error_free; } rc = bnxt_hwrm_func_qcfg(bp); if (rc) { PMD_DRV_LOG(ERR, "hwrm func qcfg failed\n"); goto error_free; } /* Get the MAX capabilities for this function */ rc = bnxt_hwrm_func_qcaps(bp); if (rc) { PMD_DRV_LOG(ERR, "hwrm query capability failure rc: %x\n", rc); goto error_free; } if (bp->max_tx_rings == 0) { PMD_DRV_LOG(ERR, "No TX rings available!\n"); rc = -EBUSY; goto error_free; } eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl", ETHER_ADDR_LEN * bp->max_l2_ctx, 0); if (eth_dev->data->mac_addrs == NULL) { PMD_DRV_LOG(ERR, "Failed to alloc %u bytes needed to store MAC addr tbl", ETHER_ADDR_LEN * bp->max_l2_ctx); rc = -ENOMEM; goto error_free; } if (bnxt_check_zero_bytes(bp->dflt_mac_addr, ETHER_ADDR_LEN)) { PMD_DRV_LOG(ERR, "Invalid MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n", bp->dflt_mac_addr[0], bp->dflt_mac_addr[1], bp->dflt_mac_addr[2], bp->dflt_mac_addr[3], bp->dflt_mac_addr[4], bp->dflt_mac_addr[5]); rc = -EINVAL; goto error_free; } /* Copy the permanent MAC from the qcap response address now. */ memcpy(bp->mac_addr, bp->dflt_mac_addr, sizeof(bp->mac_addr)); memcpy(ð_dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN); if (bp->max_ring_grps < bp->rx_cp_nr_rings) { /* 1 ring is for default completion ring */ PMD_DRV_LOG(ERR, "Insufficient resource: Ring Group\n"); rc = -ENOSPC; goto error_free; } bp->grp_info = rte_zmalloc("bnxt_grp_info", sizeof(*bp->grp_info) * bp->max_ring_grps, 0); if (!bp->grp_info) { PMD_DRV_LOG(ERR, "Failed to alloc %zu bytes to store group info table\n", sizeof(*bp->grp_info) * bp->max_ring_grps); rc = -ENOMEM; goto error_free; } /* Forward all requests if firmware is new enough */ if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) && (bp->fw_ver < ((20 << 24) | (7 << 16)))) || ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) { memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd)); } else { PMD_DRV_LOG(WARNING, "Firmware too old for VF mailbox functionality\n"); memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd)); } /* * The following are used for driver cleanup. If we disallow these, * VF drivers can't clean up cleanly. */ ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR); ALLOW_FUNC(HWRM_VNIC_FREE); ALLOW_FUNC(HWRM_RING_FREE); ALLOW_FUNC(HWRM_RING_GRP_FREE); ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE); ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE); ALLOW_FUNC(HWRM_STAT_CTX_FREE); ALLOW_FUNC(HWRM_PORT_PHY_QCFG); ALLOW_FUNC(HWRM_VNIC_TPA_CFG); rc = bnxt_hwrm_func_driver_register(bp); if (rc) { PMD_DRV_LOG(ERR, "Failed to register driver"); rc = -EBUSY; goto error_free; } PMD_DRV_LOG(INFO, DRV_MODULE_NAME " found at mem %" PRIx64 ", node addr %pM\n", pci_dev->mem_resource[0].phys_addr, pci_dev->mem_resource[0].addr); rc = bnxt_hwrm_func_reset(bp); if (rc) { PMD_DRV_LOG(ERR, "hwrm chip reset failure rc: %x\n", rc); rc = -EIO; goto error_free; } if (BNXT_PF(bp)) { //if (bp->pf.active_vfs) { // TODO: Deallocate VF resources? //} if (bp->pdev->max_vfs) { rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs); if (rc) { PMD_DRV_LOG(ERR, "Failed to allocate VFs\n"); goto error_free; } } else { rc = bnxt_hwrm_allocate_pf_only(bp); if (rc) { PMD_DRV_LOG(ERR, "Failed to allocate PF resources\n"); goto error_free; } } } bnxt_hwrm_port_led_qcaps(bp); rc = bnxt_setup_int(bp); if (rc) goto error_free; rc = bnxt_alloc_mem(bp); if (rc) goto error_free_int; rc = bnxt_request_int(bp); if (rc) goto error_free_int; bnxt_enable_int(bp); bnxt_init_nic(bp); return 0; error_free_int: bnxt_disable_int(bp); bnxt_hwrm_func_buf_unrgtr(bp); bnxt_free_int(bp); bnxt_free_mem(bp); error_free: bnxt_dev_uninit(eth_dev); error: return rc; } static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev) { struct bnxt *bp = eth_dev->data->dev_private; int rc; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -EPERM; PMD_DRV_LOG(DEBUG, "Calling Device uninit\n"); bnxt_disable_int(bp); bnxt_free_int(bp); bnxt_free_mem(bp); if (bp->grp_info != NULL) { rte_free(bp->grp_info); bp->grp_info = NULL; } rc = bnxt_hwrm_func_driver_unregister(bp, 0); bnxt_free_hwrm_resources(bp); if (bp->tx_mem_zone) { rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone); bp->tx_mem_zone = NULL; } if (bp->rx_mem_zone) { rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone); bp->rx_mem_zone = NULL; } if (bp->dev_stopped == 0) bnxt_dev_close_op(eth_dev); if (bp->pf.vf_info) rte_free(bp->pf.vf_info); eth_dev->dev_ops = NULL; eth_dev->rx_pkt_burst = NULL; eth_dev->tx_pkt_burst = NULL; return rc; } static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt), bnxt_dev_init); } static int bnxt_pci_remove(struct rte_pci_device *pci_dev) { if (rte_eal_process_type() == RTE_PROC_PRIMARY) return rte_eth_dev_pci_generic_remove(pci_dev, bnxt_dev_uninit); else return rte_eth_dev_pci_generic_remove(pci_dev, NULL); } static struct rte_pci_driver bnxt_rte_pmd = { .id_table = bnxt_pci_id_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC | RTE_PCI_DRV_IOVA_AS_VA, .probe = bnxt_pci_probe, .remove = bnxt_pci_remove, }; static bool is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv) { if (strcmp(dev->device->driver->name, drv->driver.name)) return false; return true; } bool is_bnxt_supported(struct rte_eth_dev *dev) { return is_device_supported(dev, &bnxt_rte_pmd); } RTE_INIT(bnxt_init_log) { bnxt_logtype_driver = rte_log_register("pmd.net.bnxt.driver"); if (bnxt_logtype_driver >= 0) rte_log_set_level(bnxt_logtype_driver, RTE_LOG_INFO); } RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map); RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");