/*- * BSD LICENSE * * Copyright(c) Broadcom Limited. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Broadcom Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include "bnxt.h" #include "bnxt_filter.h" #include "bnxt_hwrm.h" #include "bnxt_vnic.h" #include "hsi_struct_def_dpdk.h" /* * Filter Functions */ struct bnxt_filter_info *bnxt_alloc_filter(struct bnxt *bp) { struct bnxt_filter_info *filter; /* Find the 1st unused filter from the free_filter_list pool*/ filter = STAILQ_FIRST(&bp->free_filter_list); if (!filter) { RTE_LOG(ERR, PMD, "No more free filter resources\n"); return NULL; } STAILQ_REMOVE_HEAD(&bp->free_filter_list, next); /* Default to L2 MAC Addr filter */ filter->flags = HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX; filter->enables = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR | HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK; memcpy(filter->l2_addr, bp->eth_dev->data->mac_addrs->addr_bytes, ETHER_ADDR_LEN); memset(filter->l2_addr_mask, 0xff, ETHER_ADDR_LEN); return filter; } struct bnxt_filter_info *bnxt_alloc_vf_filter(struct bnxt *bp, uint16_t vf) { struct bnxt_filter_info *filter; filter = rte_zmalloc("bnxt_vf_filter_info", sizeof(*filter), 0); if (!filter) { RTE_LOG(ERR, PMD, "Failed to alloc memory for VF %hu filters\n", vf); return NULL; } filter->fw_l2_filter_id = UINT64_MAX; STAILQ_INSERT_TAIL(&bp->pf.vf_info[vf].filter, filter, next); return filter; } void bnxt_init_filters(struct bnxt *bp) { struct bnxt_filter_info *filter; int i, max_filters; max_filters = bp->max_l2_ctx; STAILQ_INIT(&bp->free_filter_list); for (i = 0; i < max_filters; i++) { filter = &bp->filter_info[i]; filter->fw_l2_filter_id = -1; filter->fw_em_filter_id = -1; filter->fw_ntuple_filter_id = -1; STAILQ_INSERT_TAIL(&bp->free_filter_list, filter, next); } } void bnxt_free_all_filters(struct bnxt *bp) { struct bnxt_vnic_info *vnic; struct bnxt_filter_info *filter, *temp_filter; int i; for (i = 0; i < MAX_FF_POOLS; i++) { STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) { filter = STAILQ_FIRST(&vnic->filter); while (filter) { temp_filter = STAILQ_NEXT(filter, next); STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next); STAILQ_INSERT_TAIL(&bp->free_filter_list, filter, next); filter = temp_filter; } STAILQ_INIT(&vnic->filter); } } for (i = 0; i < bp->pf.max_vfs; i++) { STAILQ_FOREACH(filter, &bp->pf.vf_info[i].filter, next) { bnxt_hwrm_clear_l2_filter(bp, filter); } } } void bnxt_free_filter_mem(struct bnxt *bp) { struct bnxt_filter_info *filter; uint16_t max_filters, i; int rc = 0; if (bp->filter_info == NULL) return; /* Ensure that all filters are freed */ max_filters = bp->max_l2_ctx; for (i = 0; i < max_filters; i++) { filter = &bp->filter_info[i]; if (filter->fw_l2_filter_id != ((uint64_t)-1)) { RTE_LOG(ERR, PMD, "HWRM filter is not freed??\n"); /* Call HWRM to try to free filter again */ rc = bnxt_hwrm_clear_l2_filter(bp, filter); if (rc) RTE_LOG(ERR, PMD, "HWRM filter cannot be freed rc = %d\n", rc); } filter->fw_l2_filter_id = UINT64_MAX; } STAILQ_INIT(&bp->free_filter_list); rte_free(bp->filter_info); bp->filter_info = NULL; for (i = 0; i < bp->pf.max_vfs; i++) { STAILQ_FOREACH(filter, &bp->pf.vf_info[i].filter, next) { rte_free(filter); STAILQ_REMOVE(&bp->pf.vf_info[i].filter, filter, bnxt_filter_info, next); } } } int bnxt_alloc_filter_mem(struct bnxt *bp) { struct bnxt_filter_info *filter_mem; uint16_t max_filters; max_filters = bp->max_l2_ctx; /* Allocate memory for VNIC pool and filter pool */ filter_mem = rte_zmalloc("bnxt_filter_info", max_filters * sizeof(struct bnxt_filter_info), 0); if (filter_mem == NULL) { RTE_LOG(ERR, PMD, "Failed to alloc memory for %d filters", max_filters); return -ENOMEM; } bp->filter_info = filter_mem; return 0; } struct bnxt_filter_info *bnxt_get_unused_filter(struct bnxt *bp) { struct bnxt_filter_info *filter; /* Find the 1st unused filter from the free_filter_list pool*/ filter = STAILQ_FIRST(&bp->free_filter_list); if (!filter) { RTE_LOG(ERR, PMD, "No more free filter resources\n"); return NULL; } STAILQ_REMOVE_HEAD(&bp->free_filter_list, next); return filter; } void bnxt_free_filter(struct bnxt *bp, struct bnxt_filter_info *filter) { STAILQ_INSERT_TAIL(&bp->free_filter_list, filter, next); } static int bnxt_flow_agrs_validate(const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { if (!pattern) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, "NULL pattern."); return -rte_errno; } if (!actions) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL, "NULL action."); return -rte_errno; } if (!attr) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR, NULL, "NULL attribute."); return -rte_errno; } return 0; } static const struct rte_flow_item * nxt_non_void_pattern(const struct rte_flow_item *cur) { while (1) { if (cur->type != RTE_FLOW_ITEM_TYPE_VOID) return cur; cur++; } } static const struct rte_flow_action * nxt_non_void_action(const struct rte_flow_action *cur) { while (1) { if (cur->type != RTE_FLOW_ACTION_TYPE_VOID) return cur; cur++; } } static inline int check_zero_bytes(const uint8_t *bytes, int len) { int i; for (i = 0; i < len; i++) if (bytes[i] != 0x00) return 0; return 1; } static int bnxt_filter_type_check(const struct rte_flow_item pattern[], struct rte_flow_error *error __rte_unused) { const struct rte_flow_item *item = nxt_non_void_pattern(pattern); int use_ntuple = 1; while (item->type != RTE_FLOW_ITEM_TYPE_END) { switch (item->type) { case RTE_FLOW_ITEM_TYPE_ETH: use_ntuple = 1; break; case RTE_FLOW_ITEM_TYPE_VLAN: use_ntuple = 0; break; case RTE_FLOW_ITEM_TYPE_IPV4: case RTE_FLOW_ITEM_TYPE_IPV6: case RTE_FLOW_ITEM_TYPE_TCP: case RTE_FLOW_ITEM_TYPE_UDP: /* FALLTHROUGH */ /* need ntuple match, reset exact match */ if (!use_ntuple) { RTE_LOG(ERR, PMD, "VLAN flow cannot use NTUPLE filter\n"); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Cannot use VLAN with NTUPLE"); return -rte_errno; } use_ntuple |= 1; break; default: RTE_LOG(ERR, PMD, "Unknown Flow type"); use_ntuple |= 1; } item++; } return use_ntuple; } static int bnxt_validate_and_parse_flow_type(struct bnxt *bp, const struct rte_flow_item pattern[], struct rte_flow_error *error, struct bnxt_filter_info *filter) { const struct rte_flow_item *item = nxt_non_void_pattern(pattern); const struct rte_flow_item_vlan *vlan_spec, *vlan_mask; const struct rte_flow_item_ipv4 *ipv4_spec, *ipv4_mask; const struct rte_flow_item_ipv6 *ipv6_spec, *ipv6_mask; const struct rte_flow_item_tcp *tcp_spec, *tcp_mask; const struct rte_flow_item_udp *udp_spec, *udp_mask; const struct rte_flow_item_eth *eth_spec, *eth_mask; const struct rte_flow_item_nvgre *nvgre_spec; const struct rte_flow_item_nvgre *nvgre_mask; const struct rte_flow_item_vxlan *vxlan_spec; const struct rte_flow_item_vxlan *vxlan_mask; uint8_t vni_mask[] = {0xFF, 0xFF, 0xFF}; uint8_t tni_mask[] = {0xFF, 0xFF, 0xFF}; const struct rte_flow_item_vf *vf_spec; uint32_t tenant_id_be = 0; bool vni_masked = 0; bool tni_masked = 0; uint32_t vf = 0; int use_ntuple; uint32_t en = 0; int dflt_vnic; use_ntuple = bnxt_filter_type_check(pattern, error); RTE_LOG(DEBUG, PMD, "Use NTUPLE %d\n", use_ntuple); if (use_ntuple < 0) return use_ntuple; filter->filter_type = use_ntuple ? HWRM_CFA_NTUPLE_FILTER : HWRM_CFA_EM_FILTER; while (item->type != RTE_FLOW_ITEM_TYPE_END) { if (item->last) { /* last or range is NOT supported as match criteria */ rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "No support for range"); return -rte_errno; } if (!item->spec || !item->mask) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "spec/mask is NULL"); return -rte_errno; } switch (item->type) { case RTE_FLOW_ITEM_TYPE_ETH: eth_spec = (const struct rte_flow_item_eth *)item->spec; eth_mask = (const struct rte_flow_item_eth *)item->mask; /* Source MAC address mask cannot be partially set. * Should be All 0's or all 1's. * Destination MAC address mask must not be partially * set. Should be all 1's or all 0's. */ if ((!is_zero_ether_addr(ð_mask->src) && !is_broadcast_ether_addr(ð_mask->src)) || (!is_zero_ether_addr(ð_mask->dst) && !is_broadcast_ether_addr(ð_mask->dst))) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "MAC_addr mask not valid"); return -rte_errno; } /* Mask is not allowed. Only exact matches are */ if ((eth_mask->type & UINT16_MAX) != UINT16_MAX) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "ethertype mask not valid"); return -rte_errno; } if (is_broadcast_ether_addr(ð_mask->dst)) { rte_memcpy(filter->dst_macaddr, ð_spec->dst, 6); en |= use_ntuple ? NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR : EM_FLOW_ALLOC_INPUT_EN_DST_MACADDR; } if (is_broadcast_ether_addr(ð_mask->src)) { rte_memcpy(filter->src_macaddr, ð_spec->src, 6); en |= use_ntuple ? NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_MACADDR : EM_FLOW_ALLOC_INPUT_EN_SRC_MACADDR; } /* * else { * RTE_LOG(ERR, PMD, "Handle this condition\n"); * } */ if (eth_spec->type) { filter->ethertype = rte_be_to_cpu_16(eth_spec->type); en |= use_ntuple ? NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE : EM_FLOW_ALLOC_INPUT_EN_ETHERTYPE; } break; case RTE_FLOW_ITEM_TYPE_VLAN: vlan_spec = (const struct rte_flow_item_vlan *)item->spec; vlan_mask = (const struct rte_flow_item_vlan *)item->mask; if (vlan_mask->tci & 0xFFFF && !vlan_mask->tpid) { /* Only the VLAN ID can be matched. */ filter->l2_ovlan = rte_be_to_cpu_16(vlan_spec->tci & 0xFFF); en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID; } else { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "VLAN mask is invalid"); return -rte_errno; } break; case RTE_FLOW_ITEM_TYPE_IPV4: /* If mask is not involved, we could use EM filters. */ ipv4_spec = (const struct rte_flow_item_ipv4 *)item->spec; ipv4_mask = (const struct rte_flow_item_ipv4 *)item->mask; /* Only IP DST and SRC fields are maskable. */ if (ipv4_mask->hdr.version_ihl || ipv4_mask->hdr.type_of_service || ipv4_mask->hdr.total_length || ipv4_mask->hdr.packet_id || ipv4_mask->hdr.fragment_offset || ipv4_mask->hdr.time_to_live || ipv4_mask->hdr.next_proto_id || ipv4_mask->hdr.hdr_checksum) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid IPv4 mask."); return -rte_errno; } filter->dst_ipaddr[0] = ipv4_spec->hdr.dst_addr; filter->src_ipaddr[0] = ipv4_spec->hdr.src_addr; if (use_ntuple) en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR | NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; else en |= EM_FLOW_ALLOC_INPUT_EN_SRC_IPADDR | EM_FLOW_ALLOC_INPUT_EN_DST_IPADDR; if (ipv4_mask->hdr.src_addr) { filter->src_ipaddr_mask[0] = ipv4_mask->hdr.src_addr; en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; } if (ipv4_mask->hdr.dst_addr) { filter->dst_ipaddr_mask[0] = ipv4_mask->hdr.dst_addr; en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; } filter->ip_addr_type = use_ntuple ? HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_IP_ADDR_TYPE_IPV4 : HWRM_CFA_EM_FLOW_ALLOC_INPUT_IP_ADDR_TYPE_IPV4; if (ipv4_spec->hdr.next_proto_id) { filter->ip_protocol = ipv4_spec->hdr.next_proto_id; if (use_ntuple) en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO; else en |= EM_FLOW_ALLOC_INPUT_EN_IP_PROTO; } break; case RTE_FLOW_ITEM_TYPE_IPV6: ipv6_spec = (const struct rte_flow_item_ipv6 *)item->spec; ipv6_mask = (const struct rte_flow_item_ipv6 *)item->mask; /* Only IP DST and SRC fields are maskable. */ if (ipv6_mask->hdr.vtc_flow || ipv6_mask->hdr.payload_len || ipv6_mask->hdr.proto || ipv6_mask->hdr.hop_limits) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid IPv6 mask."); return -rte_errno; } if (use_ntuple) en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR | NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR; else en |= EM_FLOW_ALLOC_INPUT_EN_SRC_IPADDR | EM_FLOW_ALLOC_INPUT_EN_DST_IPADDR; rte_memcpy(filter->src_ipaddr, ipv6_spec->hdr.src_addr, 16); rte_memcpy(filter->dst_ipaddr, ipv6_spec->hdr.dst_addr, 16); if (!check_zero_bytes(ipv6_mask->hdr.src_addr, 16)) { rte_memcpy(filter->src_ipaddr_mask, ipv6_mask->hdr.src_addr, 16); en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK; } if (!check_zero_bytes(ipv6_mask->hdr.dst_addr, 16)) { rte_memcpy(filter->dst_ipaddr_mask, ipv6_mask->hdr.dst_addr, 16); en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK; } filter->ip_addr_type = use_ntuple ? NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6 : EM_FLOW_ALLOC_INPUT_IP_ADDR_TYPE_IPV6; break; case RTE_FLOW_ITEM_TYPE_TCP: tcp_spec = (const struct rte_flow_item_tcp *)item->spec; tcp_mask = (const struct rte_flow_item_tcp *)item->mask; /* Check TCP mask. Only DST & SRC ports are maskable */ if (tcp_mask->hdr.sent_seq || tcp_mask->hdr.recv_ack || tcp_mask->hdr.data_off || tcp_mask->hdr.tcp_flags || tcp_mask->hdr.rx_win || tcp_mask->hdr.cksum || tcp_mask->hdr.tcp_urp) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid TCP mask"); return -rte_errno; } filter->src_port = tcp_spec->hdr.src_port; filter->dst_port = tcp_spec->hdr.dst_port; if (use_ntuple) en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT | NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT; else en |= EM_FLOW_ALLOC_INPUT_EN_SRC_PORT | EM_FLOW_ALLOC_INPUT_EN_DST_PORT; if (tcp_mask->hdr.dst_port) { filter->dst_port_mask = tcp_mask->hdr.dst_port; en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK; } if (tcp_mask->hdr.src_port) { filter->src_port_mask = tcp_mask->hdr.src_port; en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK; } break; case RTE_FLOW_ITEM_TYPE_UDP: udp_spec = (const struct rte_flow_item_udp *)item->spec; udp_mask = (const struct rte_flow_item_udp *)item->mask; if (udp_mask->hdr.dgram_len || udp_mask->hdr.dgram_cksum) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid UDP mask"); return -rte_errno; } filter->src_port = udp_spec->hdr.src_port; filter->dst_port = udp_spec->hdr.dst_port; if (use_ntuple) en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT | NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT; else en |= EM_FLOW_ALLOC_INPUT_EN_SRC_PORT | EM_FLOW_ALLOC_INPUT_EN_DST_PORT; if (udp_mask->hdr.dst_port) { filter->dst_port_mask = udp_mask->hdr.dst_port; en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK; } if (udp_mask->hdr.src_port) { filter->src_port_mask = udp_mask->hdr.src_port; en |= !use_ntuple ? 0 : NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK; } break; case RTE_FLOW_ITEM_TYPE_VXLAN: vxlan_spec = (const struct rte_flow_item_vxlan *)item->spec; vxlan_mask = (const struct rte_flow_item_vxlan *)item->mask; /* Check if VXLAN item is used to describe protocol. * If yes, both spec and mask should be NULL. * If no, both spec and mask shouldn't be NULL. */ if ((!vxlan_spec && vxlan_mask) || (vxlan_spec && !vxlan_mask)) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid VXLAN item"); return -rte_errno; } if (vxlan_spec->rsvd1 || vxlan_spec->rsvd0[0] || vxlan_spec->rsvd0[1] || vxlan_spec->rsvd0[2] || vxlan_spec->flags != 0x8) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid VXLAN item"); return -rte_errno; } /* Check if VNI is masked. */ if (vxlan_spec && vxlan_mask) { vni_masked = !!memcmp(vxlan_mask->vni, vni_mask, RTE_DIM(vni_mask)); if (vni_masked) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid VNI mask"); return -rte_errno; } rte_memcpy(((uint8_t *)&tenant_id_be + 1), vxlan_spec->vni, 3); filter->vni = rte_be_to_cpu_32(tenant_id_be); filter->tunnel_type = CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN; } break; case RTE_FLOW_ITEM_TYPE_NVGRE: nvgre_spec = (const struct rte_flow_item_nvgre *)item->spec; nvgre_mask = (const struct rte_flow_item_nvgre *)item->mask; /* Check if NVGRE item is used to describe protocol. * If yes, both spec and mask should be NULL. * If no, both spec and mask shouldn't be NULL. */ if ((!nvgre_spec && nvgre_mask) || (nvgre_spec && !nvgre_mask)) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid NVGRE item"); return -rte_errno; } if (nvgre_spec->c_k_s_rsvd0_ver != 0x2000 || nvgre_spec->protocol != 0x6558) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid NVGRE item"); return -rte_errno; } if (nvgre_spec && nvgre_mask) { tni_masked = !!memcmp(nvgre_mask->tni, tni_mask, RTE_DIM(tni_mask)); if (tni_masked) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Invalid TNI mask"); return -rte_errno; } rte_memcpy(((uint8_t *)&tenant_id_be + 1), nvgre_spec->tni, 3); filter->vni = rte_be_to_cpu_32(tenant_id_be); filter->tunnel_type = CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE; } break; case RTE_FLOW_ITEM_TYPE_VF: vf_spec = (const struct rte_flow_item_vf *)item->spec; vf = vf_spec->id; if (!BNXT_PF(bp)) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Configuring on a VF!"); return -rte_errno; } if (vf >= bp->pdev->max_vfs) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Incorrect VF id!"); return -rte_errno; } filter->mirror_vnic_id = dflt_vnic = bnxt_hwrm_func_qcfg_vf_dflt_vnic_id(bp, vf); if (dflt_vnic < 0) { /* This simply indicates there's no driver * loaded. This is not an error. */ rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "Unable to get default VNIC for VF"); return -rte_errno; } filter->mirror_vnic_id = dflt_vnic; en |= NTUPLE_FLTR_ALLOC_INPUT_EN_MIRROR_VNIC_ID; break; default: break; } item++; } filter->enables = en; return 0; } /* Parse attributes */ static int bnxt_flow_parse_attr(const struct rte_flow_attr *attr, struct rte_flow_error *error) { /* Must be input direction */ if (!attr->ingress) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, "Only support ingress."); return -rte_errno; } /* Not supported */ if (attr->egress) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, "No support for egress."); return -rte_errno; } /* Not supported */ if (attr->priority) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, attr, "No support for priority."); return -rte_errno; } /* Not supported */ if (attr->group) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr, "No support for group."); return -rte_errno; } return 0; } struct bnxt_filter_info * bnxt_get_l2_filter(struct bnxt *bp, struct bnxt_filter_info *nf, struct bnxt_vnic_info *vnic) { struct bnxt_filter_info *filter1, *f0; struct bnxt_vnic_info *vnic0; int rc; vnic0 = STAILQ_FIRST(&bp->ff_pool[0]); f0 = STAILQ_FIRST(&vnic0->filter); //This flow has same DST MAC as the port/l2 filter. if (memcmp(f0->l2_addr, nf->dst_macaddr, ETHER_ADDR_LEN) == 0) return f0; //This flow needs DST MAC which is not same as port/l2 RTE_LOG(DEBUG, PMD, "Create L2 filter for DST MAC\n"); filter1 = bnxt_get_unused_filter(bp); if (filter1 == NULL) return NULL; filter1->flags = HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX; filter1->enables = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR | L2_FILTER_ALLOC_INPUT_EN_L2_ADDR_MASK; memcpy(filter1->l2_addr, nf->dst_macaddr, ETHER_ADDR_LEN); memset(filter1->l2_addr_mask, 0xff, ETHER_ADDR_LEN); rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter1); if (rc) { bnxt_free_filter(bp, filter1); return NULL; } STAILQ_INSERT_TAIL(&vnic->filter, filter1, next); return filter1; } static int bnxt_validate_and_parse_flow(struct rte_eth_dev *dev, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], const struct rte_flow_attr *attr, struct rte_flow_error *error, struct bnxt_filter_info *filter) { const struct rte_flow_action *act = nxt_non_void_action(actions); struct bnxt *bp = (struct bnxt *)dev->data->dev_private; const struct rte_flow_action_queue *act_q; const struct rte_flow_action_vf *act_vf; struct bnxt_vnic_info *vnic, *vnic0; struct bnxt_filter_info *filter1; uint32_t vf = 0; int dflt_vnic; int rc; if (bp->eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) { RTE_LOG(ERR, PMD, "Cannot create flow on RSS queues\n"); rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "Cannot create flow on RSS queues"); rc = -rte_errno; goto ret; } rc = bnxt_validate_and_parse_flow_type(bp, pattern, error, filter); if (rc != 0) goto ret; rc = bnxt_flow_parse_attr(attr, error); if (rc != 0) goto ret; //Since we support ingress attribute only - right now. filter->flags = HWRM_CFA_EM_FLOW_ALLOC_INPUT_FLAGS_PATH_RX; switch (act->type) { case RTE_FLOW_ACTION_TYPE_QUEUE: /* Allow this flow. Redirect to a VNIC. */ act_q = (const struct rte_flow_action_queue *)act->conf; if (act_q->index >= bp->rx_nr_rings) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Invalid queue ID."); rc = -rte_errno; goto ret; } RTE_LOG(DEBUG, PMD, "Queue index %d\n", act_q->index); vnic0 = STAILQ_FIRST(&bp->ff_pool[0]); vnic = STAILQ_FIRST(&bp->ff_pool[act_q->index]); if (vnic == NULL) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "No matching VNIC for queue ID."); rc = -rte_errno; goto ret; } filter->dst_id = vnic->fw_vnic_id; filter1 = bnxt_get_l2_filter(bp, filter, vnic); if (filter1 == NULL) { rc = -ENOSPC; goto ret; } filter->fw_l2_filter_id = filter1->fw_l2_filter_id; RTE_LOG(DEBUG, PMD, "VNIC found\n"); break; case RTE_FLOW_ACTION_TYPE_DROP: vnic0 = STAILQ_FIRST(&bp->ff_pool[0]); filter1 = bnxt_get_l2_filter(bp, filter, vnic0); if (filter1 == NULL) { rc = -ENOSPC; goto ret; } filter->fw_l2_filter_id = filter1->fw_l2_filter_id; if (filter->filter_type == HWRM_CFA_EM_FILTER) filter->flags = HWRM_CFA_EM_FLOW_ALLOC_INPUT_FLAGS_DROP; else filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP; break; case RTE_FLOW_ACTION_TYPE_COUNT: vnic0 = STAILQ_FIRST(&bp->ff_pool[0]); filter1 = bnxt_get_l2_filter(bp, filter, vnic0); if (filter1 == NULL) { rc = -ENOSPC; goto ret; } filter->fw_l2_filter_id = filter1->fw_l2_filter_id; filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_METER; break; case RTE_FLOW_ACTION_TYPE_VF: act_vf = (const struct rte_flow_action_vf *)act->conf; vf = act_vf->id; if (!BNXT_PF(bp)) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Configuring on a VF!"); rc = -rte_errno; goto ret; } if (vf >= bp->pdev->max_vfs) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Incorrect VF id!"); rc = -rte_errno; goto ret; } filter->mirror_vnic_id = dflt_vnic = bnxt_hwrm_func_qcfg_vf_dflt_vnic_id(bp, vf); if (dflt_vnic < 0) { /* This simply indicates there's no driver loaded. * This is not an error. */ rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Unable to get default VNIC for VF"); rc = -rte_errno; goto ret; } filter->mirror_vnic_id = dflt_vnic; filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_MIRROR_VNIC_ID; vnic0 = STAILQ_FIRST(&bp->ff_pool[0]); filter1 = bnxt_get_l2_filter(bp, filter, vnic0); if (filter1 == NULL) { rc = -ENOSPC; goto ret; } filter->fw_l2_filter_id = filter1->fw_l2_filter_id; break; default: rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Invalid action."); rc = -rte_errno; goto ret; } //done: act = nxt_non_void_action(++act); if (act->type != RTE_FLOW_ACTION_TYPE_END) { rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act, "Invalid action."); rc = -rte_errno; goto ret; } ret: return rc; } static int bnxt_flow_validate(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; struct bnxt_filter_info *filter; int ret = 0; ret = bnxt_flow_agrs_validate(attr, pattern, actions, error); if (ret != 0) return ret; filter = bnxt_get_unused_filter(bp); if (filter == NULL) { RTE_LOG(ERR, PMD, "Not enough resources for a new flow.\n"); return -ENOMEM; } ret = bnxt_validate_and_parse_flow(dev, pattern, actions, attr, error, filter); /* No need to hold on to this filter if we are just validating flow */ filter->fw_l2_filter_id = -1; bnxt_free_filter(bp, filter); return ret; } static int bnxt_match_filter(struct bnxt *bp, struct bnxt_filter_info *nf) { struct bnxt_filter_info *mf; struct rte_flow *flow; int i; for (i = bp->nr_vnics - 1; i >= 0; i--) { struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; STAILQ_FOREACH(flow, &vnic->flow_list, next) { mf = flow->filter; if (mf->filter_type == nf->filter_type && mf->flags == nf->flags && mf->src_port == nf->src_port && mf->src_port_mask == nf->src_port_mask && mf->dst_port == nf->dst_port && mf->dst_port_mask == nf->dst_port_mask && mf->ip_protocol == nf->ip_protocol && mf->ip_addr_type == nf->ip_addr_type && mf->ethertype == nf->ethertype && mf->vni == nf->vni && mf->tunnel_type == nf->tunnel_type && mf->l2_ovlan == nf->l2_ovlan && mf->l2_ovlan_mask == nf->l2_ovlan_mask && mf->l2_ivlan == nf->l2_ivlan && mf->l2_ivlan_mask == nf->l2_ivlan_mask && !memcmp(mf->l2_addr, nf->l2_addr, ETHER_ADDR_LEN) && !memcmp(mf->l2_addr_mask, nf->l2_addr_mask, ETHER_ADDR_LEN) && !memcmp(mf->src_macaddr, nf->src_macaddr, ETHER_ADDR_LEN) && !memcmp(mf->dst_macaddr, nf->dst_macaddr, ETHER_ADDR_LEN) && !memcmp(mf->src_ipaddr, nf->src_ipaddr, sizeof(nf->src_ipaddr)) && !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask, sizeof(nf->src_ipaddr_mask)) && !memcmp(mf->dst_ipaddr, nf->dst_ipaddr, sizeof(nf->dst_ipaddr)) && !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask, sizeof(nf->dst_ipaddr_mask))) { if (mf->dst_id == nf->dst_id) return -EEXIST; /* * Same Flow, Different queue * Clear the old ntuple filter * Reuse the matching L2 filter * ID for the new filter */ nf->fw_l2_filter_id = mf->fw_l2_filter_id; if (nf->filter_type == HWRM_CFA_EM_FILTER) bnxt_hwrm_clear_em_filter(bp, mf); if (nf->filter_type == HWRM_CFA_NTUPLE_FILTER) bnxt_hwrm_clear_ntuple_filter(bp, mf); /* Free the old filter, update flow * with new filter */ bnxt_free_filter(bp, mf); flow->filter = nf; return -EXDEV; } } } return 0; } static struct rte_flow * bnxt_flow_create(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; struct bnxt_filter_info *filter; struct bnxt_vnic_info *vnic = NULL; bool update_flow = false; struct rte_flow *flow; unsigned int i; int ret = 0; flow = rte_zmalloc("bnxt_flow", sizeof(struct rte_flow), 0); if (!flow) { rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to allocate memory"); return flow; } ret = bnxt_flow_agrs_validate(attr, pattern, actions, error); if (ret != 0) { RTE_LOG(ERR, PMD, "Not a validate flow.\n"); goto free_flow; } filter = bnxt_get_unused_filter(bp); if (filter == NULL) { RTE_LOG(ERR, PMD, "Not enough resources for a new flow.\n"); goto free_flow; } ret = bnxt_validate_and_parse_flow(dev, pattern, actions, attr, error, filter); if (ret != 0) goto free_filter; ret = bnxt_match_filter(bp, filter); if (ret == -EEXIST) { RTE_LOG(DEBUG, PMD, "Flow already exists.\n"); /* Clear the filter that was created as part of * validate_and_parse_flow() above */ bnxt_hwrm_clear_l2_filter(bp, filter); goto free_filter; } else if (ret == -EXDEV) { RTE_LOG(DEBUG, PMD, "Flow with same pattern exists"); RTE_LOG(DEBUG, PMD, "Updating with different destination\n"); update_flow = true; } if (filter->filter_type == HWRM_CFA_EM_FILTER) { filter->enables |= HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_L2_FILTER_ID; ret = bnxt_hwrm_set_em_filter(bp, filter->dst_id, filter); } if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER) { filter->enables |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID; ret = bnxt_hwrm_set_ntuple_filter(bp, filter->dst_id, filter); } for (i = 0; i < bp->nr_vnics; i++) { vnic = &bp->vnic_info[i]; if (filter->dst_id == vnic->fw_vnic_id) break; } if (!ret) { flow->filter = filter; flow->vnic = vnic; if (update_flow) { ret = -EXDEV; goto free_flow; } RTE_LOG(ERR, PMD, "Successfully created flow.\n"); STAILQ_INSERT_TAIL(&vnic->flow_list, flow, next); return flow; } free_filter: bnxt_free_filter(bp, filter); free_flow: if (ret == -EEXIST) rte_flow_error_set(error, ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Matching Flow exists."); else if (ret == -EXDEV) rte_flow_error_set(error, ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Flow with pattern exists, updating destination queue"); else rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to create flow."); rte_free(flow); flow = NULL; return flow; } static int bnxt_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow, struct rte_flow_error *error) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; struct bnxt_filter_info *filter = flow->filter; struct bnxt_vnic_info *vnic = flow->vnic; int ret = 0; ret = bnxt_match_filter(bp, filter); if (ret == 0) RTE_LOG(ERR, PMD, "Could not find matching flow\n"); if (filter->filter_type == HWRM_CFA_EM_FILTER) ret = bnxt_hwrm_clear_em_filter(bp, filter); if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER) ret = bnxt_hwrm_clear_ntuple_filter(bp, filter); bnxt_hwrm_clear_l2_filter(bp, filter); if (!ret) { STAILQ_REMOVE(&vnic->flow_list, flow, rte_flow, next); rte_free(flow); } else { rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to destroy flow."); } return ret; } static int bnxt_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *error) { struct bnxt *bp = (struct bnxt *)dev->data->dev_private; struct bnxt_vnic_info *vnic; struct rte_flow *flow; unsigned int i; int ret = 0; for (i = 0; i < bp->nr_vnics; i++) { vnic = &bp->vnic_info[i]; STAILQ_FOREACH(flow, &vnic->flow_list, next) { struct bnxt_filter_info *filter = flow->filter; if (filter->filter_type == HWRM_CFA_EM_FILTER) ret = bnxt_hwrm_clear_em_filter(bp, filter); if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER) ret = bnxt_hwrm_clear_ntuple_filter(bp, filter); if (ret) { rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "Failed to flush flow in HW."); return -rte_errno; } STAILQ_REMOVE(&vnic->flow_list, flow, rte_flow, next); rte_free(flow); } } return ret; } const struct rte_flow_ops bnxt_flow_ops = { .validate = bnxt_flow_validate, .create = bnxt_flow_create, .destroy = bnxt_flow_destroy, .flush = bnxt_flow_flush, };