/*- * BSD LICENSE * * Copyright 2017 6WIND S.A. * Copyright 2017 Mellanox. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of 6WIND S.A. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include "failsafe_private.h" static struct rte_eth_dev_info default_infos = { /* Max possible number of elements */ .max_rx_pktlen = UINT32_MAX, .max_rx_queues = RTE_MAX_QUEUES_PER_PORT, .max_tx_queues = RTE_MAX_QUEUES_PER_PORT, .max_mac_addrs = FAILSAFE_MAX_ETHADDR, .max_hash_mac_addrs = UINT32_MAX, .max_vfs = UINT16_MAX, .max_vmdq_pools = UINT16_MAX, .rx_desc_lim = { .nb_max = UINT16_MAX, .nb_min = 0, .nb_align = 1, .nb_seg_max = UINT16_MAX, .nb_mtu_seg_max = UINT16_MAX, }, .tx_desc_lim = { .nb_max = UINT16_MAX, .nb_min = 0, .nb_align = 1, .nb_seg_max = UINT16_MAX, .nb_mtu_seg_max = UINT16_MAX, }, /* * Set of capabilities that can be verified upon * configuring a sub-device. */ .rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP | DEV_RX_OFFLOAD_QINQ_STRIP | DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_TCP_LRO, .tx_offload_capa = 0x0, .flow_type_rss_offloads = 0x0, }; static int fs_dev_configure(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; int ret; FOREACH_SUBDEV(sdev, i, dev) { int rmv_interrupt = 0; int lsc_interrupt = 0; int lsc_enabled; if (sdev->state != DEV_PROBED) continue; rmv_interrupt = ETH(sdev)->data->dev_flags & RTE_ETH_DEV_INTR_RMV; if (rmv_interrupt) { DEBUG("Enabling RMV interrupts for sub_device %d", i); dev->data->dev_conf.intr_conf.rmv = 1; } else { DEBUG("sub_device %d does not support RMV event", i); } lsc_enabled = dev->data->dev_conf.intr_conf.lsc; lsc_interrupt = lsc_enabled && (ETH(sdev)->data->dev_flags & RTE_ETH_DEV_INTR_LSC); if (lsc_interrupt) { DEBUG("Enabling LSC interrupts for sub_device %d", i); dev->data->dev_conf.intr_conf.lsc = 1; } else if (lsc_enabled && !lsc_interrupt) { DEBUG("Disabling LSC interrupts for sub_device %d", i); dev->data->dev_conf.intr_conf.lsc = 0; } DEBUG("Configuring sub-device %d", i); sdev->remove = 0; ret = rte_eth_dev_configure(PORT_ID(sdev), dev->data->nb_rx_queues, dev->data->nb_tx_queues, &dev->data->dev_conf); if (ret) { ERROR("Could not configure sub_device %d", i); return ret; } if (rmv_interrupt && sdev->rmv_callback == 0) { ret = rte_eth_dev_callback_register(PORT_ID(sdev), RTE_ETH_EVENT_INTR_RMV, failsafe_eth_rmv_event_callback, sdev); if (ret) WARN("Failed to register RMV callback for sub_device %d", SUB_ID(sdev)); else sdev->rmv_callback = 1; } dev->data->dev_conf.intr_conf.rmv = 0; if (lsc_interrupt && sdev->lsc_callback == 0) { ret = rte_eth_dev_callback_register(PORT_ID(sdev), RTE_ETH_EVENT_INTR_LSC, failsafe_eth_lsc_event_callback, dev); if (ret) WARN("Failed to register LSC callback for sub_device %d", SUB_ID(sdev)); else sdev->lsc_callback = 1; } dev->data->dev_conf.intr_conf.lsc = lsc_enabled; sdev->state = DEV_ACTIVE; } if (PRIV(dev)->state < DEV_ACTIVE) PRIV(dev)->state = DEV_ACTIVE; return 0; } static int fs_dev_start(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; int ret; FOREACH_SUBDEV(sdev, i, dev) { if (sdev->state != DEV_ACTIVE) continue; DEBUG("Starting sub_device %d", i); ret = rte_eth_dev_start(PORT_ID(sdev)); if (ret) return ret; sdev->state = DEV_STARTED; } if (PRIV(dev)->state < DEV_STARTED) PRIV(dev)->state = DEV_STARTED; fs_switch_dev(dev, NULL); return 0; } static void fs_dev_stop(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; PRIV(dev)->state = DEV_STARTED - 1; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_STARTED) { rte_eth_dev_stop(PORT_ID(sdev)); sdev->state = DEV_STARTED - 1; } } static int fs_dev_set_link_up(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; int ret; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { DEBUG("Calling rte_eth_dev_set_link_up on sub_device %d", i); ret = rte_eth_dev_set_link_up(PORT_ID(sdev)); if (ret) { ERROR("Operation rte_eth_dev_set_link_up failed for sub_device %d" " with error %d", i, ret); return ret; } } return 0; } static int fs_dev_set_link_down(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; int ret; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { DEBUG("Calling rte_eth_dev_set_link_down on sub_device %d", i); ret = rte_eth_dev_set_link_down(PORT_ID(sdev)); if (ret) { ERROR("Operation rte_eth_dev_set_link_down failed for sub_device %d" " with error %d", i, ret); return ret; } } return 0; } static void fs_dev_free_queues(struct rte_eth_dev *dev); static void fs_dev_close(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; failsafe_hotplug_alarm_cancel(dev); if (PRIV(dev)->state == DEV_STARTED) dev->dev_ops->dev_stop(dev); PRIV(dev)->state = DEV_ACTIVE - 1; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { DEBUG("Closing sub_device %d", i); failsafe_eth_dev_unregister_callbacks(sdev); rte_eth_dev_close(PORT_ID(sdev)); sdev->state = DEV_ACTIVE - 1; } fs_dev_free_queues(dev); } static void fs_rx_queue_release(void *queue) { struct rte_eth_dev *dev; struct sub_device *sdev; uint8_t i; struct rxq *rxq; if (queue == NULL) return; rxq = queue; dev = rxq->priv->dev; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { if (ETH(sdev)->data->rx_queues != NULL && ETH(sdev)->data->rx_queues[rxq->qid] != NULL) { SUBOPS(sdev, rx_queue_release) (ETH(sdev)->data->rx_queues[rxq->qid]); } } dev->data->rx_queues[rxq->qid] = NULL; rte_free(rxq); } static int fs_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, uint16_t nb_rx_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mb_pool) { struct sub_device *sdev; struct rxq *rxq; uint8_t i; int ret; if (rx_conf->rx_deferred_start) { ERROR("Rx queue deferred start is not supported"); return -EINVAL; } rxq = dev->data->rx_queues[rx_queue_id]; if (rxq != NULL) { fs_rx_queue_release(rxq); dev->data->rx_queues[rx_queue_id] = NULL; } rxq = rte_zmalloc(NULL, sizeof(*rxq) + sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail, RTE_CACHE_LINE_SIZE); if (rxq == NULL) return -ENOMEM; FOREACH_SUBDEV(sdev, i, dev) rte_atomic64_init(&rxq->refcnt[i]); rxq->qid = rx_queue_id; rxq->socket_id = socket_id; rxq->info.mp = mb_pool; rxq->info.conf = *rx_conf; rxq->info.nb_desc = nb_rx_desc; rxq->priv = PRIV(dev); dev->data->rx_queues[rx_queue_id] = rxq; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_rx_queue_setup(PORT_ID(sdev), rx_queue_id, nb_rx_desc, socket_id, rx_conf, mb_pool); if (ret) { ERROR("RX queue setup failed for sub_device %d", i); goto free_rxq; } } return 0; free_rxq: fs_rx_queue_release(rxq); return ret; } static void fs_tx_queue_release(void *queue) { struct rte_eth_dev *dev; struct sub_device *sdev; uint8_t i; struct txq *txq; if (queue == NULL) return; txq = queue; dev = txq->priv->dev; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { if (ETH(sdev)->data->tx_queues != NULL && ETH(sdev)->data->tx_queues[txq->qid] != NULL) { SUBOPS(sdev, tx_queue_release) (ETH(sdev)->data->tx_queues[txq->qid]); } } dev->data->tx_queues[txq->qid] = NULL; rte_free(txq); } static int fs_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, uint16_t nb_tx_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { struct sub_device *sdev; struct txq *txq; uint8_t i; int ret; if (tx_conf->tx_deferred_start) { ERROR("Tx queue deferred start is not supported"); return -EINVAL; } txq = dev->data->tx_queues[tx_queue_id]; if (txq != NULL) { fs_tx_queue_release(txq); dev->data->tx_queues[tx_queue_id] = NULL; } txq = rte_zmalloc("ethdev TX queue", sizeof(*txq) + sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail, RTE_CACHE_LINE_SIZE); if (txq == NULL) return -ENOMEM; FOREACH_SUBDEV(sdev, i, dev) rte_atomic64_init(&txq->refcnt[i]); txq->qid = tx_queue_id; txq->socket_id = socket_id; txq->info.conf = *tx_conf; txq->info.nb_desc = nb_tx_desc; txq->priv = PRIV(dev); dev->data->tx_queues[tx_queue_id] = txq; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_tx_queue_setup(PORT_ID(sdev), tx_queue_id, nb_tx_desc, socket_id, tx_conf); if (ret) { ERROR("TX queue setup failed for sub_device %d", i); goto free_txq; } } return 0; free_txq: fs_tx_queue_release(txq); return ret; } static void fs_dev_free_queues(struct rte_eth_dev *dev) { uint16_t i; for (i = 0; i < dev->data->nb_rx_queues; i++) { fs_rx_queue_release(dev->data->rx_queues[i]); dev->data->rx_queues[i] = NULL; } dev->data->nb_rx_queues = 0; for (i = 0; i < dev->data->nb_tx_queues; i++) { fs_tx_queue_release(dev->data->tx_queues[i]); dev->data->tx_queues[i] = NULL; } dev->data->nb_tx_queues = 0; } static void fs_promiscuous_enable(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) rte_eth_promiscuous_enable(PORT_ID(sdev)); } static void fs_promiscuous_disable(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) rte_eth_promiscuous_disable(PORT_ID(sdev)); } static void fs_allmulticast_enable(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) rte_eth_allmulticast_enable(PORT_ID(sdev)); } static void fs_allmulticast_disable(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) rte_eth_allmulticast_disable(PORT_ID(sdev)); } static int fs_link_update(struct rte_eth_dev *dev, int wait_to_complete) { struct sub_device *sdev; uint8_t i; int ret; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { DEBUG("Calling link_update on sub_device %d", i); ret = (SUBOPS(sdev, link_update))(ETH(sdev), wait_to_complete); if (ret && ret != -1) { ERROR("Link update failed for sub_device %d with error %d", i, ret); return ret; } } if (TX_SUBDEV(dev)) { struct rte_eth_link *l1; struct rte_eth_link *l2; l1 = &dev->data->dev_link; l2 = Ð(TX_SUBDEV(dev))->data->dev_link; if (memcmp(l1, l2, sizeof(*l1))) { *l1 = *l2; return 0; } } return -1; } static int fs_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) { struct sub_device *sdev; uint8_t i; int ret; rte_memcpy(stats, &PRIV(dev)->stats_accumulator, sizeof(*stats)); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { struct rte_eth_stats *snapshot = &sdev->stats_snapshot.stats; uint64_t *timestamp = &sdev->stats_snapshot.timestamp; ret = rte_eth_stats_get(PORT_ID(sdev), snapshot); if (ret) { ERROR("Operation rte_eth_stats_get failed for sub_device %d with error %d", i, ret); *timestamp = 0; return ret; } *timestamp = rte_rdtsc(); failsafe_stats_increment(stats, snapshot); } return 0; } static void fs_stats_reset(struct rte_eth_dev *dev) { struct sub_device *sdev; uint8_t i; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { rte_eth_stats_reset(PORT_ID(sdev)); memset(&sdev->stats_snapshot, 0, sizeof(struct rte_eth_stats)); } memset(&PRIV(dev)->stats_accumulator, 0, sizeof(struct rte_eth_stats)); } /** * Fail-safe dev_infos_get rules: * * No sub_device: * Numerables: * Use the maximum possible values for any field, so as not * to impede any further configuration effort. * Capabilities: * Limits capabilities to those that are understood by the * fail-safe PMD. This understanding stems from the fail-safe * being capable of verifying that the related capability is * expressed within the device configuration (struct rte_eth_conf). * * At least one probed sub_device: * Numerables: * Uses values from the active probed sub_device * The rationale here is that if any sub_device is less capable * (for example concerning the number of queues) than the active * sub_device, then its subsequent configuration will fail. * It is impossible to foresee this failure when the failing sub_device * is supposed to be plugged-in later on, so the configuration process * is the single point of failure and error reporting. * Capabilities: * Uses a logical AND of RX capabilities among * all sub_devices and the default capabilities. * Uses a logical AND of TX capabilities among * the active probed sub_device and the default capabilities. * */ static void fs_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *infos) { struct sub_device *sdev; uint8_t i; sdev = TX_SUBDEV(dev); if (sdev == NULL) { DEBUG("No probed device, using default infos"); rte_memcpy(&PRIV(dev)->infos, &default_infos, sizeof(default_infos)); } else { uint32_t rx_offload_capa; rx_offload_capa = default_infos.rx_offload_capa; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) { rte_eth_dev_info_get(PORT_ID(sdev), &PRIV(dev)->infos); rx_offload_capa &= PRIV(dev)->infos.rx_offload_capa; } sdev = TX_SUBDEV(dev); rte_eth_dev_info_get(PORT_ID(sdev), &PRIV(dev)->infos); PRIV(dev)->infos.rx_offload_capa = rx_offload_capa; PRIV(dev)->infos.tx_offload_capa &= default_infos.tx_offload_capa; PRIV(dev)->infos.flow_type_rss_offloads &= default_infos.flow_type_rss_offloads; } rte_memcpy(infos, &PRIV(dev)->infos, sizeof(*infos)); } static const uint32_t * fs_dev_supported_ptypes_get(struct rte_eth_dev *dev) { struct sub_device *sdev; struct rte_eth_dev *edev; sdev = TX_SUBDEV(dev); if (sdev == NULL) return NULL; edev = ETH(sdev); /* ENOTSUP: counts as no supported ptypes */ if (SUBOPS(sdev, dev_supported_ptypes_get) == NULL) return NULL; /* * The API does not permit to do a clean AND of all ptypes, * It is also incomplete by design and we do not really care * to have a best possible value in this context. * We just return the ptypes of the device of highest * priority, usually the PREFERRED device. */ return SUBOPS(sdev, dev_supported_ptypes_get)(edev); } static int fs_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { struct sub_device *sdev; uint8_t i; int ret; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { DEBUG("Calling rte_eth_dev_set_mtu on sub_device %d", i); ret = rte_eth_dev_set_mtu(PORT_ID(sdev), mtu); if (ret) { ERROR("Operation rte_eth_dev_set_mtu failed for sub_device %d with error %d", i, ret); return ret; } } return 0; } static int fs_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) { struct sub_device *sdev; uint8_t i; int ret; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { DEBUG("Calling rte_eth_dev_vlan_filter on sub_device %d", i); ret = rte_eth_dev_vlan_filter(PORT_ID(sdev), vlan_id, on); if (ret) { ERROR("Operation rte_eth_dev_vlan_filter failed for sub_device %d" " with error %d", i, ret); return ret; } } return 0; } static int fs_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct sub_device *sdev; sdev = TX_SUBDEV(dev); if (sdev == NULL) return 0; if (SUBOPS(sdev, flow_ctrl_get) == NULL) return -ENOTSUP; return SUBOPS(sdev, flow_ctrl_get)(ETH(sdev), fc_conf); } static int fs_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct sub_device *sdev; uint8_t i; int ret; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { DEBUG("Calling rte_eth_dev_flow_ctrl_set on sub_device %d", i); ret = rte_eth_dev_flow_ctrl_set(PORT_ID(sdev), fc_conf); if (ret) { ERROR("Operation rte_eth_dev_flow_ctrl_set failed for sub_device %d" " with error %d", i, ret); return ret; } } return 0; } static void fs_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index) { struct sub_device *sdev; uint8_t i; /* No check: already done within the rte_eth_dev_mac_addr_remove * call for the fail-safe device. */ FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) rte_eth_dev_mac_addr_remove(PORT_ID(sdev), &dev->data->mac_addrs[index]); PRIV(dev)->mac_addr_pool[index] = 0; } static int fs_mac_addr_add(struct rte_eth_dev *dev, struct ether_addr *mac_addr, uint32_t index, uint32_t vmdq) { struct sub_device *sdev; int ret; uint8_t i; RTE_ASSERT(index < FAILSAFE_MAX_ETHADDR); FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { ret = rte_eth_dev_mac_addr_add(PORT_ID(sdev), mac_addr, vmdq); if (ret) { ERROR("Operation rte_eth_dev_mac_addr_add failed for sub_device %" PRIu8 " with error %d", i, ret); return ret; } } if (index >= PRIV(dev)->nb_mac_addr) { DEBUG("Growing mac_addrs array"); PRIV(dev)->nb_mac_addr = index; } PRIV(dev)->mac_addr_pool[index] = vmdq; return 0; } static void fs_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) { struct sub_device *sdev; uint8_t i; FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) rte_eth_dev_default_mac_addr_set(PORT_ID(sdev), mac_addr); } static int fs_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type type, enum rte_filter_op op, void *arg) { struct sub_device *sdev; uint8_t i; int ret; if (type == RTE_ETH_FILTER_GENERIC && op == RTE_ETH_FILTER_GET) { *(const void **)arg = &fs_flow_ops; return 0; } FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) { DEBUG("Calling rte_eth_dev_filter_ctrl on sub_device %d", i); ret = rte_eth_dev_filter_ctrl(PORT_ID(sdev), type, op, arg); if (ret) { ERROR("Operation rte_eth_dev_filter_ctrl failed for sub_device %d" " with error %d", i, ret); return ret; } } return 0; } const struct eth_dev_ops failsafe_ops = { .dev_configure = fs_dev_configure, .dev_start = fs_dev_start, .dev_stop = fs_dev_stop, .dev_set_link_down = fs_dev_set_link_down, .dev_set_link_up = fs_dev_set_link_up, .dev_close = fs_dev_close, .promiscuous_enable = fs_promiscuous_enable, .promiscuous_disable = fs_promiscuous_disable, .allmulticast_enable = fs_allmulticast_enable, .allmulticast_disable = fs_allmulticast_disable, .link_update = fs_link_update, .stats_get = fs_stats_get, .stats_reset = fs_stats_reset, .dev_infos_get = fs_dev_infos_get, .dev_supported_ptypes_get = fs_dev_supported_ptypes_get, .mtu_set = fs_mtu_set, .vlan_filter_set = fs_vlan_filter_set, .rx_queue_setup = fs_rx_queue_setup, .tx_queue_setup = fs_tx_queue_setup, .rx_queue_release = fs_rx_queue_release, .tx_queue_release = fs_tx_queue_release, .flow_ctrl_get = fs_flow_ctrl_get, .flow_ctrl_set = fs_flow_ctrl_set, .mac_addr_remove = fs_mac_addr_remove, .mac_addr_add = fs_mac_addr_add, .mac_addr_set = fs_mac_addr_set, .filter_ctrl = fs_filter_ctrl, };