/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2001-2018 */ #ifndef _I40E_OSDEP_H_ #define _I40E_OSDEP_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include "../i40e_logs.h" #define INLINE inline #define STATIC static typedef uint8_t u8; typedef int8_t s8; typedef uint16_t u16; typedef uint32_t u32; typedef int32_t s32; typedef uint64_t u64; typedef enum i40e_status_code i40e_status; #define __iomem #define hw_dbg(hw, S, A...) do {} while (0) #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) #define lower_32_bits(n) ((u32)(n)) #define low_16_bits(x) ((x) & 0xFFFF) #define high_16_bits(x) (((x) & 0xFFFF0000) >> 16) #ifndef ETH_ADDR_LEN #define ETH_ADDR_LEN 6 #endif #ifndef __le16 #define __le16 uint16_t #endif #ifndef __le32 #define __le32 uint32_t #endif #ifndef __le64 #define __le64 uint64_t #endif #ifndef __be16 #define __be16 uint16_t #endif #ifndef __be32 #define __be32 uint32_t #endif #ifndef __be64 #define __be64 uint64_t #endif #define FALSE 0 #define TRUE 1 #define false 0 #define true 1 #define min(a,b) RTE_MIN(a,b) #define max(a,b) RTE_MAX(a,b) #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) #define DEBUGOUT(S) PMD_DRV_LOG_RAW(DEBUG, S) #define DEBUGOUT1(S, A...) PMD_DRV_LOG_RAW(DEBUG, S, ##A) #define DEBUGFUNC(F) DEBUGOUT(F "\n") #define DEBUGOUT2 DEBUGOUT1 #define DEBUGOUT3 DEBUGOUT2 #define DEBUGOUT6 DEBUGOUT3 #define DEBUGOUT7 DEBUGOUT6 #define i40e_debug(h, m, s, ...) \ do { \ if (((m) & (h)->debug_mask)) \ PMD_DRV_LOG_RAW(DEBUG, "i40e %02x.%x " s, \ (h)->bus.device, (h)->bus.func, \ ##__VA_ARGS__); \ } while (0) /* AQ commands based interfaces of i40e_read_rx_ctl() and i40e_write_rx_ctl() * are required for reading/writing below registers, as reading/writing it * directly may not function correctly if the device is under heavy small * packet traffic. Note that those interfaces are available from FVL5 and not * suitable before the AdminQ is ready during initialization. * * I40E_PFQF_CTL_0 * I40E_PFQF_HENA * I40E_PFQF_FDALLOC * I40E_PFQF_HREGION * I40E_PFLAN_QALLOC * I40E_VPQF_CTL * I40E_VFQF_HENA * I40E_VFQF_HREGION * I40E_VSIQF_CTL * I40E_VSILAN_QBASE * I40E_VSILAN_QTABLE * I40E_VSIQF_TCREGION * I40E_PFQF_HKEY * I40E_VFQF_HKEY * I40E_PRTQF_CTL_0 * I40E_GLFCOE_RCTL * I40E_GLFCOE_RSOF * I40E_GLQF_CTL * I40E_GLQF_SWAP * I40E_GLQF_HASH_MSK * I40E_GLQF_HASH_INSET * I40E_GLQF_HSYM * I40E_GLQF_FC_MSK * I40E_GLQF_FC_INSET * I40E_GLQF_FD_MSK * I40E_PRTQF_FD_INSET * I40E_PRTQF_FD_FLXINSET * I40E_PRTQF_FD_MSK */ #define I40E_PCI_REG(reg) rte_read32(reg) #define I40E_PCI_REG_ADDR(a, reg) \ ((volatile uint32_t *)((char *)(a)->hw_addr + (reg))) static inline uint32_t i40e_read_addr(volatile void *addr) { return rte_le_to_cpu_32(I40E_PCI_REG(addr)); } #define I40E_PCI_REG_WRITE(reg, value) \ rte_write32((rte_cpu_to_le_32(value)), reg) #define I40E_PCI_REG_WRITE_RELAXED(reg, value) \ rte_write32_relaxed((rte_cpu_to_le_32(value)), reg) #define I40E_WRITE_FLUSH(a) I40E_READ_REG(a, I40E_GLGEN_STAT) #define I40EVF_WRITE_FLUSH(a) I40E_READ_REG(a, I40E_VFGEN_RSTAT) #define I40E_READ_REG(hw, reg) i40e_read_addr(I40E_PCI_REG_ADDR((hw), (reg))) #define I40E_WRITE_REG(hw, reg, value) \ I40E_PCI_REG_WRITE(I40E_PCI_REG_ADDR((hw), (reg)), (value)) #define rd32(a, reg) i40e_read_addr(I40E_PCI_REG_ADDR((a), (reg))) #define wr32(a, reg, value) \ I40E_PCI_REG_WRITE(I40E_PCI_REG_ADDR((a), (reg)), (value)) #define flush(a) i40e_read_addr(I40E_PCI_REG_ADDR((a), (I40E_GLGEN_STAT))) #define ARRAY_SIZE(arr) (sizeof(arr)/sizeof(arr[0])) /* memory allocation tracking */ struct i40e_dma_mem { void *va; u64 pa; u32 size; const void *zone; } __attribute__((packed)); #define i40e_allocate_dma_mem(h, m, unused, s, a) \ i40e_allocate_dma_mem_d(h, m, s, a) #define i40e_free_dma_mem(h, m) i40e_free_dma_mem_d(h, m) struct i40e_virt_mem { void *va; u32 size; } __attribute__((packed)); #define i40e_allocate_virt_mem(h, m, s) i40e_allocate_virt_mem_d(h, m, s) #define i40e_free_virt_mem(h, m) i40e_free_virt_mem_d(h, m) #define CPU_TO_LE16(o) rte_cpu_to_le_16(o) #define CPU_TO_LE32(s) rte_cpu_to_le_32(s) #define CPU_TO_LE64(h) rte_cpu_to_le_64(h) #define LE16_TO_CPU(a) rte_le_to_cpu_16(a) #define LE32_TO_CPU(c) rte_le_to_cpu_32(c) #define LE64_TO_CPU(k) rte_le_to_cpu_64(k) #define cpu_to_le16(o) rte_cpu_to_le_16(o) #define cpu_to_le32(s) rte_cpu_to_le_32(s) #define cpu_to_le64(h) rte_cpu_to_le_64(h) #define le16_to_cpu(a) rte_le_to_cpu_16(a) #define le32_to_cpu(c) rte_le_to_cpu_32(c) #define le64_to_cpu(k) rte_le_to_cpu_64(k) /* SW spinlock */ struct i40e_spinlock { rte_spinlock_t spinlock; }; #define i40e_init_spinlock(_sp) i40e_init_spinlock_d(_sp) #define i40e_acquire_spinlock(_sp) i40e_acquire_spinlock_d(_sp) #define i40e_release_spinlock(_sp) i40e_release_spinlock_d(_sp) #define i40e_destroy_spinlock(_sp) i40e_destroy_spinlock_d(_sp) #define I40E_NTOHS(a) rte_be_to_cpu_16(a) #define I40E_NTOHL(a) rte_be_to_cpu_32(a) #define I40E_HTONS(a) rte_cpu_to_be_16(a) #define I40E_HTONL(a) rte_cpu_to_be_32(a) #define i40e_memset(a, b, c, d) memset((a), (b), (c)) #define i40e_memcpy(a, b, c, d) rte_memcpy((a), (b), (c)) #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) #define DELAY(x) rte_delay_us_sleep(x) #define i40e_usec_delay(x) DELAY(x) #define i40e_msec_delay(x) DELAY(1000 * (x)) #define udelay(x) DELAY(x) #define msleep(x) DELAY(1000*(x)) #define usleep_range(min, max) msleep(DIV_ROUND_UP(min, 1000)) #endif /* _I40E_OSDEP_H_ */