/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2016 6WIND S.A. * Copyright 2016 Mellanox Technologies, Ltd */ #include #include #include #include /* Verbs header. */ /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */ #ifdef PEDANTIC #pragma GCC diagnostic ignored "-Wpedantic" #endif #include #ifdef PEDANTIC #pragma GCC diagnostic error "-Wpedantic" #endif #include #include #include #include #include #include #include #include #include "mlx5.h" #include "mlx5_defs.h" #include "mlx5_prm.h" #include "mlx5_glue.h" /* Dev ops structure defined in mlx5.c */ extern const struct eth_dev_ops mlx5_dev_ops; extern const struct eth_dev_ops mlx5_dev_ops_isolate; /* Pattern outer Layer bits. */ #define MLX5_FLOW_LAYER_OUTER_L2 (1u << 0) #define MLX5_FLOW_LAYER_OUTER_L3_IPV4 (1u << 1) #define MLX5_FLOW_LAYER_OUTER_L3_IPV6 (1u << 2) #define MLX5_FLOW_LAYER_OUTER_L4_UDP (1u << 3) #define MLX5_FLOW_LAYER_OUTER_L4_TCP (1u << 4) #define MLX5_FLOW_LAYER_OUTER_VLAN (1u << 5) /* Pattern inner Layer bits. */ #define MLX5_FLOW_LAYER_INNER_L2 (1u << 6) #define MLX5_FLOW_LAYER_INNER_L3_IPV4 (1u << 7) #define MLX5_FLOW_LAYER_INNER_L3_IPV6 (1u << 8) #define MLX5_FLOW_LAYER_INNER_L4_UDP (1u << 9) #define MLX5_FLOW_LAYER_INNER_L4_TCP (1u << 10) #define MLX5_FLOW_LAYER_INNER_VLAN (1u << 11) /* Pattern tunnel Layer bits. */ #define MLX5_FLOW_LAYER_VXLAN (1u << 12) #define MLX5_FLOW_LAYER_VXLAN_GPE (1u << 13) #define MLX5_FLOW_LAYER_GRE (1u << 14) #define MLX5_FLOW_LAYER_MPLS (1u << 15) /* Outer Masks. */ #define MLX5_FLOW_LAYER_OUTER_L3 \ (MLX5_FLOW_LAYER_OUTER_L3_IPV4 | MLX5_FLOW_LAYER_OUTER_L3_IPV6) #define MLX5_FLOW_LAYER_OUTER_L4 \ (MLX5_FLOW_LAYER_OUTER_L4_UDP | MLX5_FLOW_LAYER_OUTER_L4_TCP) #define MLX5_FLOW_LAYER_OUTER \ (MLX5_FLOW_LAYER_OUTER_L2 | MLX5_FLOW_LAYER_OUTER_L3 | \ MLX5_FLOW_LAYER_OUTER_L4) /* Tunnel Masks. */ #define MLX5_FLOW_LAYER_TUNNEL \ (MLX5_FLOW_LAYER_VXLAN | MLX5_FLOW_LAYER_VXLAN_GPE | \ MLX5_FLOW_LAYER_GRE | MLX5_FLOW_LAYER_MPLS) /* Inner Masks. */ #define MLX5_FLOW_LAYER_INNER_L3 \ (MLX5_FLOW_LAYER_INNER_L3_IPV4 | MLX5_FLOW_LAYER_INNER_L3_IPV6) #define MLX5_FLOW_LAYER_INNER_L4 \ (MLX5_FLOW_LAYER_INNER_L4_UDP | MLX5_FLOW_LAYER_INNER_L4_TCP) #define MLX5_FLOW_LAYER_INNER \ (MLX5_FLOW_LAYER_INNER_L2 | MLX5_FLOW_LAYER_INNER_L3 | \ MLX5_FLOW_LAYER_INNER_L4) /* Actions that modify the fate of matching traffic. */ #define MLX5_FLOW_FATE_DROP (1u << 0) #define MLX5_FLOW_FATE_QUEUE (1u << 1) #define MLX5_FLOW_FATE_RSS (1u << 2) /* Modify a packet. */ #define MLX5_FLOW_MOD_FLAG (1u << 0) #define MLX5_FLOW_MOD_MARK (1u << 1) #define MLX5_FLOW_MOD_COUNT (1u << 2) /* possible L3 layers protocols filtering. */ #define MLX5_IP_PROTOCOL_TCP 6 #define MLX5_IP_PROTOCOL_UDP 17 #define MLX5_IP_PROTOCOL_GRE 47 #define MLX5_IP_PROTOCOL_MPLS 147 /* Priority reserved for default flows. */ #define MLX5_FLOW_PRIO_RSVD ((uint32_t)-1) enum mlx5_expansion { MLX5_EXPANSION_ROOT, MLX5_EXPANSION_ROOT_OUTER, MLX5_EXPANSION_ROOT_ETH_VLAN, MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN, MLX5_EXPANSION_OUTER_ETH, MLX5_EXPANSION_OUTER_ETH_VLAN, MLX5_EXPANSION_OUTER_VLAN, MLX5_EXPANSION_OUTER_IPV4, MLX5_EXPANSION_OUTER_IPV4_UDP, MLX5_EXPANSION_OUTER_IPV4_TCP, MLX5_EXPANSION_OUTER_IPV6, MLX5_EXPANSION_OUTER_IPV6_UDP, MLX5_EXPANSION_OUTER_IPV6_TCP, MLX5_EXPANSION_VXLAN, MLX5_EXPANSION_VXLAN_GPE, MLX5_EXPANSION_GRE, MLX5_EXPANSION_MPLS, MLX5_EXPANSION_ETH, MLX5_EXPANSION_ETH_VLAN, MLX5_EXPANSION_VLAN, MLX5_EXPANSION_IPV4, MLX5_EXPANSION_IPV4_UDP, MLX5_EXPANSION_IPV4_TCP, MLX5_EXPANSION_IPV6, MLX5_EXPANSION_IPV6_UDP, MLX5_EXPANSION_IPV6_TCP, }; /** Supported expansion of items. */ static const struct rte_flow_expand_node mlx5_support_expansion[] = { [MLX5_EXPANSION_ROOT] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, MLX5_EXPANSION_IPV4, MLX5_EXPANSION_IPV6), .type = RTE_FLOW_ITEM_TYPE_END, }, [MLX5_EXPANSION_ROOT_OUTER] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH, MLX5_EXPANSION_OUTER_IPV4, MLX5_EXPANSION_OUTER_IPV6), .type = RTE_FLOW_ITEM_TYPE_END, }, [MLX5_EXPANSION_ROOT_ETH_VLAN] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN), .type = RTE_FLOW_ITEM_TYPE_END, }, [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN), .type = RTE_FLOW_ITEM_TYPE_END, }, [MLX5_EXPANSION_OUTER_ETH] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, MLX5_EXPANSION_OUTER_IPV6, MLX5_EXPANSION_MPLS), .type = RTE_FLOW_ITEM_TYPE_ETH, .rss_types = 0, }, [MLX5_EXPANSION_OUTER_ETH_VLAN] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN), .type = RTE_FLOW_ITEM_TYPE_ETH, .rss_types = 0, }, [MLX5_EXPANSION_OUTER_VLAN] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, MLX5_EXPANSION_OUTER_IPV6), .type = RTE_FLOW_ITEM_TYPE_VLAN, }, [MLX5_EXPANSION_OUTER_IPV4] = { .next = RTE_FLOW_EXPAND_RSS_NEXT (MLX5_EXPANSION_OUTER_IPV4_UDP, MLX5_EXPANSION_OUTER_IPV4_TCP, MLX5_EXPANSION_GRE), .type = RTE_FLOW_ITEM_TYPE_IPV4, .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER, }, [MLX5_EXPANSION_OUTER_IPV4_UDP] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, MLX5_EXPANSION_VXLAN_GPE), .type = RTE_FLOW_ITEM_TYPE_UDP, .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, }, [MLX5_EXPANSION_OUTER_IPV4_TCP] = { .type = RTE_FLOW_ITEM_TYPE_TCP, .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, }, [MLX5_EXPANSION_OUTER_IPV6] = { .next = RTE_FLOW_EXPAND_RSS_NEXT (MLX5_EXPANSION_OUTER_IPV6_UDP, MLX5_EXPANSION_OUTER_IPV6_TCP), .type = RTE_FLOW_ITEM_TYPE_IPV6, .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER, }, [MLX5_EXPANSION_OUTER_IPV6_UDP] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, MLX5_EXPANSION_VXLAN_GPE), .type = RTE_FLOW_ITEM_TYPE_UDP, .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, }, [MLX5_EXPANSION_OUTER_IPV6_TCP] = { .type = RTE_FLOW_ITEM_TYPE_TCP, .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, }, [MLX5_EXPANSION_VXLAN] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH), .type = RTE_FLOW_ITEM_TYPE_VXLAN, }, [MLX5_EXPANSION_VXLAN_GPE] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, MLX5_EXPANSION_IPV4, MLX5_EXPANSION_IPV6), .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE, }, [MLX5_EXPANSION_GRE] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4), .type = RTE_FLOW_ITEM_TYPE_GRE, }, [MLX5_EXPANSION_MPLS] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, MLX5_EXPANSION_IPV6), .type = RTE_FLOW_ITEM_TYPE_MPLS, }, [MLX5_EXPANSION_ETH] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, MLX5_EXPANSION_IPV6), .type = RTE_FLOW_ITEM_TYPE_ETH, }, [MLX5_EXPANSION_ETH_VLAN] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN), .type = RTE_FLOW_ITEM_TYPE_ETH, }, [MLX5_EXPANSION_VLAN] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, MLX5_EXPANSION_IPV6), .type = RTE_FLOW_ITEM_TYPE_VLAN, }, [MLX5_EXPANSION_IPV4] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP, MLX5_EXPANSION_IPV4_TCP), .type = RTE_FLOW_ITEM_TYPE_IPV4, .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER, }, [MLX5_EXPANSION_IPV4_UDP] = { .type = RTE_FLOW_ITEM_TYPE_UDP, .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, }, [MLX5_EXPANSION_IPV4_TCP] = { .type = RTE_FLOW_ITEM_TYPE_TCP, .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, }, [MLX5_EXPANSION_IPV6] = { .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP, MLX5_EXPANSION_IPV6_TCP), .type = RTE_FLOW_ITEM_TYPE_IPV6, .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER, }, [MLX5_EXPANSION_IPV6_UDP] = { .type = RTE_FLOW_ITEM_TYPE_UDP, .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, }, [MLX5_EXPANSION_IPV6_TCP] = { .type = RTE_FLOW_ITEM_TYPE_TCP, .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, }, }; /** Handles information leading to a drop fate. */ struct mlx5_flow_verbs { LIST_ENTRY(mlx5_flow_verbs) next; unsigned int size; /**< Size of the attribute. */ struct { struct ibv_flow_attr *attr; /**< Pointer to the Specification buffer. */ uint8_t *specs; /**< Pointer to the specifications. */ }; struct ibv_flow *flow; /**< Verbs flow pointer. */ struct mlx5_hrxq *hrxq; /**< Hash Rx queue object. */ uint64_t hash_fields; /**< Verbs hash Rx queue hash fields. */ }; /* Counters information. */ struct mlx5_flow_counter { LIST_ENTRY(mlx5_flow_counter) next; /**< Pointer to the next counter. */ uint32_t shared:1; /**< Share counter ID with other flow rules. */ uint32_t ref_cnt:31; /**< Reference counter. */ uint32_t id; /**< Counter ID. */ struct ibv_counter_set *cs; /**< Holds the counters for the rule. */ uint64_t hits; /**< Number of packets matched by the rule. */ uint64_t bytes; /**< Number of bytes matched by the rule. */ }; /* Flow structure. */ struct rte_flow { TAILQ_ENTRY(rte_flow) next; /**< Pointer to the next flow structure. */ struct rte_flow_attr attributes; /**< User flow attribute. */ uint32_t l3_protocol_en:1; /**< Protocol filtering requested. */ uint32_t layers; /**< Bit-fields of present layers see MLX5_FLOW_LAYER_*. */ uint32_t modifier; /**< Bit-fields of present modifier see MLX5_FLOW_MOD_*. */ uint32_t fate; /**< Bit-fields of present fate see MLX5_FLOW_FATE_*. */ uint8_t l3_protocol; /**< valid when l3_protocol_en is set. */ LIST_HEAD(verbs, mlx5_flow_verbs) verbs; /**< Verbs flows list. */ struct mlx5_flow_verbs *cur_verbs; /**< Current Verbs flow structure being filled. */ struct mlx5_flow_counter *counter; /**< Holds Verbs flow counter. */ struct rte_flow_action_rss rss;/**< RSS context. */ uint8_t key[MLX5_RSS_HASH_KEY_LEN]; /**< RSS hash key. */ uint16_t (*queue)[]; /**< Destination queues to redirect traffic to. */ void *nl_flow; /**< Netlink flow buffer if relevant. */ }; static const struct rte_flow_ops mlx5_flow_ops = { .validate = mlx5_flow_validate, .create = mlx5_flow_create, .destroy = mlx5_flow_destroy, .flush = mlx5_flow_flush, .isolate = mlx5_flow_isolate, .query = mlx5_flow_query, }; /* Convert FDIR request to Generic flow. */ struct mlx5_fdir { struct rte_flow_attr attr; struct rte_flow_action actions[2]; struct rte_flow_item items[4]; struct rte_flow_item_eth l2; struct rte_flow_item_eth l2_mask; union { struct rte_flow_item_ipv4 ipv4; struct rte_flow_item_ipv6 ipv6; } l3; union { struct rte_flow_item_ipv4 ipv4; struct rte_flow_item_ipv6 ipv6; } l3_mask; union { struct rte_flow_item_udp udp; struct rte_flow_item_tcp tcp; } l4; union { struct rte_flow_item_udp udp; struct rte_flow_item_tcp tcp; } l4_mask; struct rte_flow_action_queue queue; }; /* Verbs specification header. */ struct ibv_spec_header { enum ibv_flow_spec_type type; uint16_t size; }; /* * Number of sub priorities. * For each kind of pattern matching i.e. L2, L3, L4 to have a correct * matching on the NIC (firmware dependent) L4 most have the higher priority * followed by L3 and ending with L2. */ #define MLX5_PRIORITY_MAP_L2 2 #define MLX5_PRIORITY_MAP_L3 1 #define MLX5_PRIORITY_MAP_L4 0 #define MLX5_PRIORITY_MAP_MAX 3 /* Map of Verbs to Flow priority with 8 Verbs priorities. */ static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = { { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 }, }; /* Map of Verbs to Flow priority with 16 Verbs priorities. */ static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = { { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 }, { 9, 10, 11 }, { 12, 13, 14 }, }; /* Tunnel information. */ struct mlx5_flow_tunnel_info { uint32_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */ uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */ }; static struct mlx5_flow_tunnel_info tunnels_info[] = { { .tunnel = MLX5_FLOW_LAYER_VXLAN, .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP, }, { .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE, .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP, }, { .tunnel = MLX5_FLOW_LAYER_GRE, .ptype = RTE_PTYPE_TUNNEL_GRE, }, { .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP, .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE | RTE_PTYPE_L4_UDP, }, { .tunnel = MLX5_FLOW_LAYER_MPLS, .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE, }, }; /** * Discover the maximum number of priority available. * * @param[in] dev * Pointer to Ethernet device. * * @return * number of supported flow priority on success, a negative errno * value otherwise and rte_errno is set. */ int mlx5_flow_discover_priorities(struct rte_eth_dev *dev) { struct { struct ibv_flow_attr attr; struct ibv_flow_spec_eth eth; struct ibv_flow_spec_action_drop drop; } flow_attr = { .attr = { .num_of_specs = 2, }, .eth = { .type = IBV_FLOW_SPEC_ETH, .size = sizeof(struct ibv_flow_spec_eth), }, .drop = { .size = sizeof(struct ibv_flow_spec_action_drop), .type = IBV_FLOW_SPEC_ACTION_DROP, }, }; struct ibv_flow *flow; struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev); uint16_t vprio[] = { 8, 16 }; int i; int priority = 0; if (!drop) { rte_errno = ENOTSUP; return -rte_errno; } for (i = 0; i != RTE_DIM(vprio); i++) { flow_attr.attr.priority = vprio[i] - 1; flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr); if (!flow) break; claim_zero(mlx5_glue->destroy_flow(flow)); priority = vprio[i]; } switch (priority) { case 8: priority = RTE_DIM(priority_map_3); break; case 16: priority = RTE_DIM(priority_map_5); break; default: rte_errno = ENOTSUP; DRV_LOG(ERR, "port %u verbs maximum priority: %d expected 8/16", dev->data->port_id, vprio[i]); return -rte_errno; } mlx5_hrxq_drop_release(dev); DRV_LOG(INFO, "port %u flow maximum priority: %d", dev->data->port_id, priority); return priority; } /** * Adjust flow priority. * * @param dev * Pointer to Ethernet device. * @param flow * Pointer to an rte flow. */ static void mlx5_flow_adjust_priority(struct rte_eth_dev *dev, struct rte_flow *flow) { struct priv *priv = dev->data->dev_private; uint32_t priority = flow->attributes.priority; uint32_t subpriority = flow->cur_verbs->attr->priority; switch (priv->config.flow_prio) { case RTE_DIM(priority_map_3): priority = priority_map_3[priority][subpriority]; break; case RTE_DIM(priority_map_5): priority = priority_map_5[priority][subpriority]; break; } flow->cur_verbs->attr->priority = priority; } /** * Get a flow counter. * * @param[in] dev * Pointer to Ethernet device. * @param[in] shared * Indicate if this counter is shared with other flows. * @param[in] id * Counter identifier. * * @return * A pointer to the counter, NULL otherwise and rte_errno is set. */ static struct mlx5_flow_counter * mlx5_flow_counter_new(struct rte_eth_dev *dev, uint32_t shared, uint32_t id) { struct priv *priv = dev->data->dev_private; struct mlx5_flow_counter *cnt; LIST_FOREACH(cnt, &priv->flow_counters, next) { if (!cnt->shared || cnt->shared != shared) continue; if (cnt->id != id) continue; cnt->ref_cnt++; return cnt; } #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT struct mlx5_flow_counter tmpl = { .shared = shared, .id = id, .cs = mlx5_glue->create_counter_set (priv->ctx, &(struct ibv_counter_set_init_attr){ .counter_set_id = id, }), .hits = 0, .bytes = 0, }; if (!tmpl.cs) { rte_errno = errno; return NULL; } cnt = rte_calloc(__func__, 1, sizeof(*cnt), 0); if (!cnt) { rte_errno = ENOMEM; return NULL; } *cnt = tmpl; LIST_INSERT_HEAD(&priv->flow_counters, cnt, next); return cnt; #endif rte_errno = ENOTSUP; return NULL; } /** * Release a flow counter. * * @param[in] counter * Pointer to the counter handler. */ static void mlx5_flow_counter_release(struct mlx5_flow_counter *counter) { if (--counter->ref_cnt == 0) { claim_zero(mlx5_glue->destroy_counter_set(counter->cs)); LIST_REMOVE(counter, next); rte_free(counter); } } /** * Verify the @p attributes will be correctly understood by the NIC and store * them in the @p flow if everything is correct. * * @param[in] dev * Pointer to Ethernet device. * @param[in] attributes * Pointer to flow attributes * @param[in, out] flow * Pointer to the rte_flow structure. * @param[out] error * Pointer to error structure. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_flow_attributes(struct rte_eth_dev *dev, const struct rte_flow_attr *attributes, struct rte_flow *flow, struct rte_flow_error *error) { uint32_t priority_max = ((struct priv *)dev->data->dev_private)->config.flow_prio - 1; if (attributes->group) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL, "groups is not supported"); if (attributes->priority != MLX5_FLOW_PRIO_RSVD && attributes->priority >= priority_max) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, NULL, "priority out of range"); if (attributes->egress) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, "egress is not supported"); if (attributes->transfer) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, NULL, "transfer is not supported"); if (!attributes->ingress) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, NULL, "ingress attribute is mandatory"); flow->attributes = *attributes; if (attributes->priority == MLX5_FLOW_PRIO_RSVD) flow->attributes.priority = priority_max; return 0; } /** * Verify the @p item specifications (spec, last, mask) are compatible with the * NIC capabilities. * * @param[in] item * Item specification. * @param[in] mask * @p item->mask or flow default bit-masks. * @param[in] nic_mask * Bit-masks covering supported fields by the NIC to compare with user mask. * @param[in] size * Bit-masks size in bytes. * @param[out] error * Pointer to error structure. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_flow_item_acceptable(const struct rte_flow_item *item, const uint8_t *mask, const uint8_t *nic_mask, unsigned int size, struct rte_flow_error *error) { unsigned int i; assert(nic_mask); for (i = 0; i < size; ++i) if ((nic_mask[i] | mask[i]) != nic_mask[i]) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "mask enables non supported" " bits"); if (!item->spec && (item->mask || item->last)) return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "mask/last without a spec is not" " supported"); if (item->spec && item->last) { uint8_t spec[size]; uint8_t last[size]; unsigned int i; int ret; for (i = 0; i < size; ++i) { spec[i] = ((const uint8_t *)item->spec)[i] & mask[i]; last[i] = ((const uint8_t *)item->last)[i] & mask[i]; } ret = memcmp(spec, last, size); if (ret != 0) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "range is not supported"); } return 0; } /** * Add a verbs item specification into @p flow. * * @param[in, out] flow * Pointer to flow structure. * @param[in] src * Create specification. * @param[in] size * Size in bytes of the specification to copy. */ static void mlx5_flow_spec_verbs_add(struct rte_flow *flow, void *src, unsigned int size) { struct mlx5_flow_verbs *verbs = flow->cur_verbs; if (verbs->specs) { void *dst; dst = (void *)(verbs->specs + verbs->size); memcpy(dst, src, size); ++verbs->attr->num_of_specs; } verbs->size += size; } /** * Adjust verbs hash fields according to the @p flow information. * * @param[in, out] flow. * Pointer to flow structure. * @param[in] tunnel * 1 when the hash field is for a tunnel item. * @param[in] layer_types * ETH_RSS_* types. * @param[in] hash_fields * Item hash fields. */ static void mlx5_flow_verbs_hashfields_adjust(struct rte_flow *flow, int tunnel __rte_unused, uint32_t layer_types, uint64_t hash_fields) { #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT hash_fields |= (tunnel ? IBV_RX_HASH_INNER : 0); if (flow->rss.level == 2 && !tunnel) hash_fields = 0; else if (flow->rss.level < 2 && tunnel) hash_fields = 0; #endif if (!(flow->rss.types & layer_types)) hash_fields = 0; flow->cur_verbs->hash_fields |= hash_fields; } /** * Convert the @p item into a Verbs specification after ensuring the NIC * will understand and process it correctly. * If the necessary size for the conversion is greater than the @p flow_size, * nothing is written in @p flow, the validation is still performed. * * @param[in] item * Item specification. * @param[in, out] flow * Pointer to flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small, nothing is * written. * @param[out] error * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @p item has fully been converted, * otherwise another call with this returned memory size should be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_item_eth(const struct rte_flow_item *item, struct rte_flow *flow, const size_t flow_size, struct rte_flow_error *error) { const struct rte_flow_item_eth *spec = item->spec; const struct rte_flow_item_eth *mask = item->mask; const struct rte_flow_item_eth nic_mask = { .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", .type = RTE_BE16(0xffff), }; const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL); const unsigned int size = sizeof(struct ibv_flow_spec_eth); struct ibv_flow_spec_eth eth = { .type = IBV_FLOW_SPEC_ETH | (tunnel ? IBV_FLOW_SPEC_INNER : 0), .size = size, }; int ret; if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L2 : MLX5_FLOW_LAYER_OUTER_L2)) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "L2 layers already configured"); if (!mask) mask = &rte_flow_item_eth_mask; ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, (const uint8_t *)&nic_mask, sizeof(struct rte_flow_item_eth), error); if (ret) return ret; flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L2 : MLX5_FLOW_LAYER_OUTER_L2; if (size > flow_size) return size; if (spec) { unsigned int i; memcpy(ð.val.dst_mac, spec->dst.addr_bytes, ETHER_ADDR_LEN); memcpy(ð.val.src_mac, spec->src.addr_bytes, ETHER_ADDR_LEN); eth.val.ether_type = spec->type; memcpy(ð.mask.dst_mac, mask->dst.addr_bytes, ETHER_ADDR_LEN); memcpy(ð.mask.src_mac, mask->src.addr_bytes, ETHER_ADDR_LEN); eth.mask.ether_type = mask->type; /* Remove unwanted bits from values. */ for (i = 0; i < ETHER_ADDR_LEN; ++i) { eth.val.dst_mac[i] &= eth.mask.dst_mac[i]; eth.val.src_mac[i] &= eth.mask.src_mac[i]; } eth.val.ether_type &= eth.mask.ether_type; } flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2; mlx5_flow_spec_verbs_add(flow, ð, size); return size; } /** * Update the VLAN tag in the Verbs Ethernet specification. * * @param[in, out] attr * Pointer to Verbs attributes structure. * @param[in] eth * Verbs structure containing the VLAN information to copy. */ static void mlx5_flow_item_vlan_update(struct ibv_flow_attr *attr, struct ibv_flow_spec_eth *eth) { unsigned int i; const enum ibv_flow_spec_type search = eth->type; struct ibv_spec_header *hdr = (struct ibv_spec_header *) ((uint8_t *)attr + sizeof(struct ibv_flow_attr)); for (i = 0; i != attr->num_of_specs; ++i) { if (hdr->type == search) { struct ibv_flow_spec_eth *e = (struct ibv_flow_spec_eth *)hdr; e->val.vlan_tag = eth->val.vlan_tag; e->mask.vlan_tag = eth->mask.vlan_tag; e->val.ether_type = eth->val.ether_type; e->mask.ether_type = eth->mask.ether_type; break; } hdr = (struct ibv_spec_header *)((uint8_t *)hdr + hdr->size); } } /** * Convert the @p item into @p flow (or by updating the already present * Ethernet Verbs) specification after ensuring the NIC will understand and * process it correctly. * If the necessary size for the conversion is greater than the @p flow_size, * nothing is written in @p flow, the validation is still performed. * * @param[in] item * Item specification. * @param[in, out] flow * Pointer to flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small, nothing is * written. * @param[out] error * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @p item has fully been converted, * otherwise another call with this returned memory size should be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_item_vlan(const struct rte_flow_item *item, struct rte_flow *flow, const size_t flow_size, struct rte_flow_error *error) { const struct rte_flow_item_vlan *spec = item->spec; const struct rte_flow_item_vlan *mask = item->mask; const struct rte_flow_item_vlan nic_mask = { .tci = RTE_BE16(0x0fff), .inner_type = RTE_BE16(0xffff), }; unsigned int size = sizeof(struct ibv_flow_spec_eth); const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL); struct ibv_flow_spec_eth eth = { .type = IBV_FLOW_SPEC_ETH | (tunnel ? IBV_FLOW_SPEC_INNER : 0), .size = size, }; int ret; const uint32_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 | MLX5_FLOW_LAYER_INNER_L4) : (MLX5_FLOW_LAYER_OUTER_L3 | MLX5_FLOW_LAYER_OUTER_L4); const uint32_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN : MLX5_FLOW_LAYER_OUTER_VLAN; const uint32_t l2m = tunnel ? MLX5_FLOW_LAYER_INNER_L2 : MLX5_FLOW_LAYER_OUTER_L2; if (flow->layers & vlanm) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "VLAN layer already configured"); else if ((flow->layers & l34m) != 0) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "L2 layer cannot follow L3/L4 layer"); if (!mask) mask = &rte_flow_item_vlan_mask; ret = mlx5_flow_item_acceptable (item, (const uint8_t *)mask, (const uint8_t *)&nic_mask, sizeof(struct rte_flow_item_vlan), error); if (ret) return ret; if (spec) { eth.val.vlan_tag = spec->tci; eth.mask.vlan_tag = mask->tci; eth.val.vlan_tag &= eth.mask.vlan_tag; eth.val.ether_type = spec->inner_type; eth.mask.ether_type = mask->inner_type; eth.val.ether_type &= eth.mask.ether_type; } /* * From verbs perspective an empty VLAN is equivalent * to a packet without VLAN layer. */ if (!eth.mask.vlan_tag) return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_SPEC, item->spec, "VLAN cannot be empty"); if (!(flow->layers & l2m)) { if (size <= flow_size) { flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2; mlx5_flow_spec_verbs_add(flow, ð, size); } } else { if (flow->cur_verbs) mlx5_flow_item_vlan_update(flow->cur_verbs->attr, ð); size = 0; /* Only an update is done in eth specification. */ } flow->layers |= tunnel ? (MLX5_FLOW_LAYER_INNER_L2 | MLX5_FLOW_LAYER_INNER_VLAN) : (MLX5_FLOW_LAYER_OUTER_L2 | MLX5_FLOW_LAYER_OUTER_VLAN); return size; } /** * Convert the @p item into a Verbs specification after ensuring the NIC * will understand and process it correctly. * If the necessary size for the conversion is greater than the @p flow_size, * nothing is written in @p flow, the validation is still performed. * * @param[in] item * Item specification. * @param[in, out] flow * Pointer to flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small, nothing is * written. * @param[out] error * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @p item has fully been converted, * otherwise another call with this returned memory size should be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_item_ipv4(const struct rte_flow_item *item, struct rte_flow *flow, const size_t flow_size, struct rte_flow_error *error) { const struct rte_flow_item_ipv4 *spec = item->spec; const struct rte_flow_item_ipv4 *mask = item->mask; const struct rte_flow_item_ipv4 nic_mask = { .hdr = { .src_addr = RTE_BE32(0xffffffff), .dst_addr = RTE_BE32(0xffffffff), .type_of_service = 0xff, .next_proto_id = 0xff, }, }; const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL); unsigned int size = sizeof(struct ibv_flow_spec_ipv4_ext); struct ibv_flow_spec_ipv4_ext ipv4 = { .type = IBV_FLOW_SPEC_IPV4_EXT | (tunnel ? IBV_FLOW_SPEC_INNER : 0), .size = size, }; int ret; if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 : MLX5_FLOW_LAYER_OUTER_L3)) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "multiple L3 layers not supported"); else if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 : MLX5_FLOW_LAYER_OUTER_L4)) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "L3 cannot follow an L4 layer."); if (!mask) mask = &rte_flow_item_ipv4_mask; ret = mlx5_flow_item_acceptable (item, (const uint8_t *)mask, (const uint8_t *)&nic_mask, sizeof(struct rte_flow_item_ipv4), error); if (ret < 0) return ret; flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 : MLX5_FLOW_LAYER_OUTER_L3_IPV4; if (spec) { ipv4.val = (struct ibv_flow_ipv4_ext_filter){ .src_ip = spec->hdr.src_addr, .dst_ip = spec->hdr.dst_addr, .proto = spec->hdr.next_proto_id, .tos = spec->hdr.type_of_service, }; ipv4.mask = (struct ibv_flow_ipv4_ext_filter){ .src_ip = mask->hdr.src_addr, .dst_ip = mask->hdr.dst_addr, .proto = mask->hdr.next_proto_id, .tos = mask->hdr.type_of_service, }; /* Remove unwanted bits from values. */ ipv4.val.src_ip &= ipv4.mask.src_ip; ipv4.val.dst_ip &= ipv4.mask.dst_ip; ipv4.val.proto &= ipv4.mask.proto; ipv4.val.tos &= ipv4.mask.tos; } flow->l3_protocol_en = !!ipv4.mask.proto; flow->l3_protocol = ipv4.val.proto; if (size <= flow_size) { mlx5_flow_verbs_hashfields_adjust (flow, tunnel, (ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER), (IBV_RX_HASH_SRC_IPV4 | IBV_RX_HASH_DST_IPV4)); flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L3; mlx5_flow_spec_verbs_add(flow, &ipv4, size); } return size; } /** * Convert the @p item into a Verbs specification after ensuring the NIC * will understand and process it correctly. * If the necessary size for the conversion is greater than the @p flow_size, * nothing is written in @p flow, the validation is still performed. * * @param[in] item * Item specification. * @param[in, out] flow * Pointer to flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small, nothing is * written. * @param[out] error * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @p item has fully been converted, * otherwise another call with this returned memory size should be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_item_ipv6(const struct rte_flow_item *item, struct rte_flow *flow, const size_t flow_size, struct rte_flow_error *error) { const struct rte_flow_item_ipv6 *spec = item->spec; const struct rte_flow_item_ipv6 *mask = item->mask; const struct rte_flow_item_ipv6 nic_mask = { .hdr = { .src_addr = "\xff\xff\xff\xff\xff\xff\xff\xff" "\xff\xff\xff\xff\xff\xff\xff\xff", .dst_addr = "\xff\xff\xff\xff\xff\xff\xff\xff" "\xff\xff\xff\xff\xff\xff\xff\xff", .vtc_flow = RTE_BE32(0xffffffff), .proto = 0xff, .hop_limits = 0xff, }, }; const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL); unsigned int size = sizeof(struct ibv_flow_spec_ipv6); struct ibv_flow_spec_ipv6 ipv6 = { .type = IBV_FLOW_SPEC_IPV6 | (tunnel ? IBV_FLOW_SPEC_INNER : 0), .size = size, }; int ret; if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 : MLX5_FLOW_LAYER_OUTER_L3)) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "multiple L3 layers not supported"); else if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 : MLX5_FLOW_LAYER_OUTER_L4)) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "L3 cannot follow an L4 layer."); /* * IPv6 is not recognised by the NIC inside a GRE tunnel. * Such support has to be disabled as the rule will be * accepted. Issue reproduced with Mellanox OFED 4.3-3.0.2.1 and * Mellanox OFED 4.4-1.0.0.0. */ if (tunnel && flow->layers & MLX5_FLOW_LAYER_GRE) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "IPv6 inside a GRE tunnel is" " not recognised."); if (!mask) mask = &rte_flow_item_ipv6_mask; ret = mlx5_flow_item_acceptable (item, (const uint8_t *)mask, (const uint8_t *)&nic_mask, sizeof(struct rte_flow_item_ipv6), error); if (ret < 0) return ret; flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 : MLX5_FLOW_LAYER_OUTER_L3_IPV6; if (spec) { unsigned int i; uint32_t vtc_flow_val; uint32_t vtc_flow_mask; memcpy(&ipv6.val.src_ip, spec->hdr.src_addr, RTE_DIM(ipv6.val.src_ip)); memcpy(&ipv6.val.dst_ip, spec->hdr.dst_addr, RTE_DIM(ipv6.val.dst_ip)); memcpy(&ipv6.mask.src_ip, mask->hdr.src_addr, RTE_DIM(ipv6.mask.src_ip)); memcpy(&ipv6.mask.dst_ip, mask->hdr.dst_addr, RTE_DIM(ipv6.mask.dst_ip)); vtc_flow_val = rte_be_to_cpu_32(spec->hdr.vtc_flow); vtc_flow_mask = rte_be_to_cpu_32(mask->hdr.vtc_flow); ipv6.val.flow_label = rte_cpu_to_be_32((vtc_flow_val & IPV6_HDR_FL_MASK) >> IPV6_HDR_FL_SHIFT); ipv6.val.traffic_class = (vtc_flow_val & IPV6_HDR_TC_MASK) >> IPV6_HDR_TC_SHIFT; ipv6.val.next_hdr = spec->hdr.proto; ipv6.val.hop_limit = spec->hdr.hop_limits; ipv6.mask.flow_label = rte_cpu_to_be_32((vtc_flow_mask & IPV6_HDR_FL_MASK) >> IPV6_HDR_FL_SHIFT); ipv6.mask.traffic_class = (vtc_flow_mask & IPV6_HDR_TC_MASK) >> IPV6_HDR_TC_SHIFT; ipv6.mask.next_hdr = mask->hdr.proto; ipv6.mask.hop_limit = mask->hdr.hop_limits; /* Remove unwanted bits from values. */ for (i = 0; i < RTE_DIM(ipv6.val.src_ip); ++i) { ipv6.val.src_ip[i] &= ipv6.mask.src_ip[i]; ipv6.val.dst_ip[i] &= ipv6.mask.dst_ip[i]; } ipv6.val.flow_label &= ipv6.mask.flow_label; ipv6.val.traffic_class &= ipv6.mask.traffic_class; ipv6.val.next_hdr &= ipv6.mask.next_hdr; ipv6.val.hop_limit &= ipv6.mask.hop_limit; } flow->l3_protocol_en = !!ipv6.mask.next_hdr; flow->l3_protocol = ipv6.val.next_hdr; if (size <= flow_size) { mlx5_flow_verbs_hashfields_adjust (flow, tunnel, (ETH_RSS_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER), (IBV_RX_HASH_SRC_IPV6 | IBV_RX_HASH_DST_IPV6)); flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L3; mlx5_flow_spec_verbs_add(flow, &ipv6, size); } return size; } /** * Convert the @p item into a Verbs specification after ensuring the NIC * will understand and process it correctly. * If the necessary size for the conversion is greater than the @p flow_size, * nothing is written in @p flow, the validation is still performed. * * @param[in] item * Item specification. * @param[in, out] flow * Pointer to flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small, nothing is * written. * @param[out] error * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @p item has fully been converted, * otherwise another call with this returned memory size should be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_item_udp(const struct rte_flow_item *item, struct rte_flow *flow, const size_t flow_size, struct rte_flow_error *error) { const struct rte_flow_item_udp *spec = item->spec; const struct rte_flow_item_udp *mask = item->mask; const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL); unsigned int size = sizeof(struct ibv_flow_spec_tcp_udp); struct ibv_flow_spec_tcp_udp udp = { .type = IBV_FLOW_SPEC_UDP | (tunnel ? IBV_FLOW_SPEC_INNER : 0), .size = size, }; int ret; if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_UDP) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "protocol filtering not compatible" " with UDP layer"); if (!(flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 : MLX5_FLOW_LAYER_OUTER_L3))) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "L3 is mandatory to filter" " on L4"); if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 : MLX5_FLOW_LAYER_OUTER_L4)) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "L4 layer is already" " present"); if (!mask) mask = &rte_flow_item_udp_mask; ret = mlx5_flow_item_acceptable (item, (const uint8_t *)mask, (const uint8_t *)&rte_flow_item_udp_mask, sizeof(struct rte_flow_item_udp), error); if (ret < 0) return ret; flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L4_UDP : MLX5_FLOW_LAYER_OUTER_L4_UDP; if (spec) { udp.val.dst_port = spec->hdr.dst_port; udp.val.src_port = spec->hdr.src_port; udp.mask.dst_port = mask->hdr.dst_port; udp.mask.src_port = mask->hdr.src_port; /* Remove unwanted bits from values. */ udp.val.src_port &= udp.mask.src_port; udp.val.dst_port &= udp.mask.dst_port; } if (size <= flow_size) { mlx5_flow_verbs_hashfields_adjust(flow, tunnel, ETH_RSS_UDP, (IBV_RX_HASH_SRC_PORT_UDP | IBV_RX_HASH_DST_PORT_UDP)); flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L4; mlx5_flow_spec_verbs_add(flow, &udp, size); } return size; } /** * Convert the @p item into a Verbs specification after ensuring the NIC * will understand and process it correctly. * If the necessary size for the conversion is greater than the @p flow_size, * nothing is written in @p flow, the validation is still performed. * * @param[in] item * Item specification. * @param[in, out] flow * Pointer to flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small, nothing is * written. * @param[out] error * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @p item has fully been converted, * otherwise another call with this returned memory size should be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_item_tcp(const struct rte_flow_item *item, struct rte_flow *flow, const size_t flow_size, struct rte_flow_error *error) { const struct rte_flow_item_tcp *spec = item->spec; const struct rte_flow_item_tcp *mask = item->mask; const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL); unsigned int size = sizeof(struct ibv_flow_spec_tcp_udp); struct ibv_flow_spec_tcp_udp tcp = { .type = IBV_FLOW_SPEC_TCP | (tunnel ? IBV_FLOW_SPEC_INNER : 0), .size = size, }; int ret; if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_TCP) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "protocol filtering not compatible" " with TCP layer"); if (!(flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 : MLX5_FLOW_LAYER_OUTER_L3))) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "L3 is mandatory to filter on L4"); if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 : MLX5_FLOW_LAYER_OUTER_L4)) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "L4 layer is already present"); if (!mask) mask = &rte_flow_item_tcp_mask; ret = mlx5_flow_item_acceptable (item, (const uint8_t *)mask, (const uint8_t *)&rte_flow_item_tcp_mask, sizeof(struct rte_flow_item_tcp), error); if (ret < 0) return ret; flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L4_TCP : MLX5_FLOW_LAYER_OUTER_L4_TCP; if (spec) { tcp.val.dst_port = spec->hdr.dst_port; tcp.val.src_port = spec->hdr.src_port; tcp.mask.dst_port = mask->hdr.dst_port; tcp.mask.src_port = mask->hdr.src_port; /* Remove unwanted bits from values. */ tcp.val.src_port &= tcp.mask.src_port; tcp.val.dst_port &= tcp.mask.dst_port; } if (size <= flow_size) { mlx5_flow_verbs_hashfields_adjust(flow, tunnel, ETH_RSS_TCP, (IBV_RX_HASH_SRC_PORT_TCP | IBV_RX_HASH_DST_PORT_TCP)); flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L4; mlx5_flow_spec_verbs_add(flow, &tcp, size); } return size; } /** * Convert the @p item into a Verbs specification after ensuring the NIC * will understand and process it correctly. * If the necessary size for the conversion is greater than the @p flow_size, * nothing is written in @p flow, the validation is still performed. * * @param[in] item * Item specification. * @param[in, out] flow * Pointer to flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small, nothing is * written. * @param[out] error * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @p item has fully been converted, * otherwise another call with this returned memory size should be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_item_vxlan(const struct rte_flow_item *item, struct rte_flow *flow, const size_t flow_size, struct rte_flow_error *error) { const struct rte_flow_item_vxlan *spec = item->spec; const struct rte_flow_item_vxlan *mask = item->mask; unsigned int size = sizeof(struct ibv_flow_spec_tunnel); struct ibv_flow_spec_tunnel vxlan = { .type = IBV_FLOW_SPEC_VXLAN_TUNNEL, .size = size, }; int ret; union vni { uint32_t vlan_id; uint8_t vni[4]; } id = { .vlan_id = 0, }; if (flow->layers & MLX5_FLOW_LAYER_TUNNEL) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "a tunnel is already present"); /* * Verify only UDPv4 is present as defined in * https://tools.ietf.org/html/rfc7348 */ if (!(flow->layers & MLX5_FLOW_LAYER_OUTER_L4_UDP)) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "no outer UDP layer found"); if (!mask) mask = &rte_flow_item_vxlan_mask; ret = mlx5_flow_item_acceptable (item, (const uint8_t *)mask, (const uint8_t *)&rte_flow_item_vxlan_mask, sizeof(struct rte_flow_item_vxlan), error); if (ret < 0) return ret; if (spec) { memcpy(&id.vni[1], spec->vni, 3); vxlan.val.tunnel_id = id.vlan_id; memcpy(&id.vni[1], mask->vni, 3); vxlan.mask.tunnel_id = id.vlan_id; /* Remove unwanted bits from values. */ vxlan.val.tunnel_id &= vxlan.mask.tunnel_id; } /* * Tunnel id 0 is equivalent as not adding a VXLAN layer, if * only this layer is defined in the Verbs specification it is * interpreted as wildcard and all packets will match this * rule, if it follows a full stack layer (ex: eth / ipv4 / * udp), all packets matching the layers before will also * match this rule. To avoid such situation, VNI 0 is * currently refused. */ if (!vxlan.val.tunnel_id) return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "VXLAN vni cannot be 0"); if (!(flow->layers & MLX5_FLOW_LAYER_OUTER)) return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "VXLAN tunnel must be fully defined"); if (size <= flow_size) { mlx5_flow_spec_verbs_add(flow, &vxlan, size); flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2; } flow->layers |= MLX5_FLOW_LAYER_VXLAN; return size; } /** * Convert the @p item into a Verbs specification after ensuring the NIC * will understand and process it correctly. * If the necessary size for the conversion is greater than the @p flow_size, * nothing is written in @p flow, the validation is still performed. * * @param dev * Pointer to Ethernet device. * @param[in] item * Item specification. * @param[in, out] flow * Pointer to flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small, nothing is * written. * @param[out] error * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @p item has fully been converted, * otherwise another call with this returned memory size should be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_item_vxlan_gpe(struct rte_eth_dev *dev, const struct rte_flow_item *item, struct rte_flow *flow, const size_t flow_size, struct rte_flow_error *error) { const struct rte_flow_item_vxlan_gpe *spec = item->spec; const struct rte_flow_item_vxlan_gpe *mask = item->mask; unsigned int size = sizeof(struct ibv_flow_spec_tunnel); struct ibv_flow_spec_tunnel vxlan_gpe = { .type = IBV_FLOW_SPEC_VXLAN_TUNNEL, .size = size, }; int ret; union vni { uint32_t vlan_id; uint8_t vni[4]; } id = { .vlan_id = 0, }; if (!((struct priv *)dev->data->dev_private)->config.l3_vxlan_en) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "L3 VXLAN is not enabled by device" " parameter and/or not configured in" " firmware"); if (flow->layers & MLX5_FLOW_LAYER_TUNNEL) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "a tunnel is already present"); /* * Verify only UDPv4 is present as defined in * https://tools.ietf.org/html/rfc7348 */ if (!(flow->layers & MLX5_FLOW_LAYER_OUTER_L4_UDP)) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "no outer UDP layer found"); if (!mask) mask = &rte_flow_item_vxlan_gpe_mask; ret = mlx5_flow_item_acceptable (item, (const uint8_t *)mask, (const uint8_t *)&rte_flow_item_vxlan_gpe_mask, sizeof(struct rte_flow_item_vxlan_gpe), error); if (ret < 0) return ret; if (spec) { memcpy(&id.vni[1], spec->vni, 3); vxlan_gpe.val.tunnel_id = id.vlan_id; memcpy(&id.vni[1], mask->vni, 3); vxlan_gpe.mask.tunnel_id = id.vlan_id; if (spec->protocol) return rte_flow_error_set (error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "VxLAN-GPE protocol not supported"); /* Remove unwanted bits from values. */ vxlan_gpe.val.tunnel_id &= vxlan_gpe.mask.tunnel_id; } /* * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this * layer is defined in the Verbs specification it is interpreted as * wildcard and all packets will match this rule, if it follows a full * stack layer (ex: eth / ipv4 / udp), all packets matching the layers * before will also match this rule. To avoid such situation, VNI 0 * is currently refused. */ if (!vxlan_gpe.val.tunnel_id) return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "VXLAN-GPE vni cannot be 0"); if (!(flow->layers & MLX5_FLOW_LAYER_OUTER)) return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item, "VXLAN-GPE tunnel must be fully" " defined"); if (size <= flow_size) { mlx5_flow_spec_verbs_add(flow, &vxlan_gpe, size); flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2; } flow->layers |= MLX5_FLOW_LAYER_VXLAN_GPE; return size; } /** * Update the protocol in Verbs IPv4/IPv6 spec. * * @param[in, out] attr * Pointer to Verbs attributes structure. * @param[in] search * Specification type to search in order to update the IP protocol. * @param[in] protocol * Protocol value to set if none is present in the specification. */ static void mlx5_flow_item_gre_ip_protocol_update(struct ibv_flow_attr *attr, enum ibv_flow_spec_type search, uint8_t protocol) { unsigned int i; struct ibv_spec_header *hdr = (struct ibv_spec_header *) ((uint8_t *)attr + sizeof(struct ibv_flow_attr)); if (!attr) return; for (i = 0; i != attr->num_of_specs; ++i) { if (hdr->type == search) { union { struct ibv_flow_spec_ipv4_ext *ipv4; struct ibv_flow_spec_ipv6 *ipv6; } ip; switch (search) { case IBV_FLOW_SPEC_IPV4_EXT: ip.ipv4 = (struct ibv_flow_spec_ipv4_ext *)hdr; if (!ip.ipv4->val.proto) { ip.ipv4->val.proto = protocol; ip.ipv4->mask.proto = 0xff; } break; case IBV_FLOW_SPEC_IPV6: ip.ipv6 = (struct ibv_flow_spec_ipv6 *)hdr; if (!ip.ipv6->val.next_hdr) { ip.ipv6->val.next_hdr = protocol; ip.ipv6->mask.next_hdr = 0xff; } break; default: break; } break; } hdr = (struct ibv_spec_header *)((uint8_t *)hdr + hdr->size); } } /** * Convert the @p item into a Verbs specification after ensuring the NIC * will understand and process it correctly. * It will also update the previous L3 layer with the protocol value matching * the GRE. * If the necessary size for the conversion is greater than the @p flow_size, * nothing is written in @p flow, the validation is still performed. * * @param dev * Pointer to Ethernet device. * @param[in] item * Item specification. * @param[in, out] flow * Pointer to flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small, nothing is * written. * @param[out] error * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @p item has fully been converted, * otherwise another call with this returned memory size should be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_item_gre(const struct rte_flow_item *item, struct rte_flow *flow, const size_t flow_size, struct rte_flow_error *error) { struct mlx5_flow_verbs *verbs = flow->cur_verbs; const struct rte_flow_item_gre *spec = item->spec; const struct rte_flow_item_gre *mask = item->mask; #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT unsigned int size = sizeof(struct ibv_flow_spec_gre); struct ibv_flow_spec_gre tunnel = { .type = IBV_FLOW_SPEC_GRE, .size = size, }; #else unsigned int size = sizeof(struct ibv_flow_spec_tunnel); struct ibv_flow_spec_tunnel tunnel = { .type = IBV_FLOW_SPEC_VXLAN_TUNNEL, .size = size, }; #endif int ret; if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_GRE) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "protocol filtering not compatible" " with this GRE layer"); if (flow->layers & MLX5_FLOW_LAYER_TUNNEL) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "a tunnel is already present"); if (!(flow->layers & MLX5_FLOW_LAYER_OUTER_L3)) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "L3 Layer is missing"); if (!mask) mask = &rte_flow_item_gre_mask; ret = mlx5_flow_item_acceptable (item, (const uint8_t *)mask, (const uint8_t *)&rte_flow_item_gre_mask, sizeof(struct rte_flow_item_gre), error); if (ret < 0) return ret; #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT if (spec) { tunnel.val.c_ks_res0_ver = spec->c_rsvd0_ver; tunnel.val.protocol = spec->protocol; tunnel.mask.c_ks_res0_ver = mask->c_rsvd0_ver; tunnel.mask.protocol = mask->protocol; /* Remove unwanted bits from values. */ tunnel.val.c_ks_res0_ver &= tunnel.mask.c_ks_res0_ver; tunnel.val.protocol &= tunnel.mask.protocol; tunnel.val.key &= tunnel.mask.key; } #else if (spec && (spec->protocol & mask->protocol)) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "without MPLS support the" " specification cannot be used for" " filtering"); #endif /* !HAVE_IBV_DEVICE_MPLS_SUPPORT */ if (size <= flow_size) { if (flow->layers & MLX5_FLOW_LAYER_OUTER_L3_IPV4) mlx5_flow_item_gre_ip_protocol_update (verbs->attr, IBV_FLOW_SPEC_IPV4_EXT, MLX5_IP_PROTOCOL_GRE); else mlx5_flow_item_gre_ip_protocol_update (verbs->attr, IBV_FLOW_SPEC_IPV6, MLX5_IP_PROTOCOL_GRE); mlx5_flow_spec_verbs_add(flow, &tunnel, size); flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2; } flow->layers |= MLX5_FLOW_LAYER_GRE; return size; } /** * Convert the @p item into a Verbs specification after ensuring the NIC * will understand and process it correctly. * If the necessary size for the conversion is greater than the @p flow_size, * nothing is written in @p flow, the validation is still performed. * * @param[in] item * Item specification. * @param[in, out] flow * Pointer to flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small, nothing is * written. * @param[out] error * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @p item has fully been converted, * otherwise another call with this returned memory size should be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_item_mpls(const struct rte_flow_item *item __rte_unused, struct rte_flow *flow __rte_unused, const size_t flow_size __rte_unused, struct rte_flow_error *error) { #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT const struct rte_flow_item_mpls *spec = item->spec; const struct rte_flow_item_mpls *mask = item->mask; unsigned int size = sizeof(struct ibv_flow_spec_mpls); struct ibv_flow_spec_mpls mpls = { .type = IBV_FLOW_SPEC_MPLS, .size = size, }; int ret; if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_MPLS) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "protocol filtering not compatible" " with MPLS layer"); /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */ if (flow->layers & MLX5_FLOW_LAYER_TUNNEL && (flow->layers & MLX5_FLOW_LAYER_GRE) != MLX5_FLOW_LAYER_GRE) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "a tunnel is already" " present"); if (!mask) mask = &rte_flow_item_mpls_mask; ret = mlx5_flow_item_acceptable (item, (const uint8_t *)mask, (const uint8_t *)&rte_flow_item_mpls_mask, sizeof(struct rte_flow_item_mpls), error); if (ret < 0) return ret; if (spec) { memcpy(&mpls.val.label, spec, sizeof(mpls.val.label)); memcpy(&mpls.mask.label, mask, sizeof(mpls.mask.label)); /* Remove unwanted bits from values. */ mpls.val.label &= mpls.mask.label; } if (size <= flow_size) { mlx5_flow_spec_verbs_add(flow, &mpls, size); flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2; } flow->layers |= MLX5_FLOW_LAYER_MPLS; return size; #endif /* !HAVE_IBV_DEVICE_MPLS_SUPPORT */ return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, "MPLS is not supported by Verbs, please" " update."); } /** * Convert the @p pattern into a Verbs specifications after ensuring the NIC * will understand and process it correctly. * The conversion is performed item per item, each of them is written into * the @p flow if its size is lesser or equal to @p flow_size. * Validation and memory consumption computation are still performed until the * end of @p pattern, unless an error is encountered. * * @param[in] pattern * Flow pattern. * @param[in, out] flow * Pointer to the rte_flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small some * garbage may be present. * @param[out] error * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @pattern has fully been * converted, otherwise another call with this returned memory size should * be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_items(struct rte_eth_dev *dev, const struct rte_flow_item pattern[], struct rte_flow *flow, const size_t flow_size, struct rte_flow_error *error) { int remain = flow_size; size_t size = 0; for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) { int ret = 0; switch (pattern->type) { case RTE_FLOW_ITEM_TYPE_VOID: break; case RTE_FLOW_ITEM_TYPE_ETH: ret = mlx5_flow_item_eth(pattern, flow, remain, error); break; case RTE_FLOW_ITEM_TYPE_VLAN: ret = mlx5_flow_item_vlan(pattern, flow, remain, error); break; case RTE_FLOW_ITEM_TYPE_IPV4: ret = mlx5_flow_item_ipv4(pattern, flow, remain, error); break; case RTE_FLOW_ITEM_TYPE_IPV6: ret = mlx5_flow_item_ipv6(pattern, flow, remain, error); break; case RTE_FLOW_ITEM_TYPE_UDP: ret = mlx5_flow_item_udp(pattern, flow, remain, error); break; case RTE_FLOW_ITEM_TYPE_TCP: ret = mlx5_flow_item_tcp(pattern, flow, remain, error); break; case RTE_FLOW_ITEM_TYPE_VXLAN: ret = mlx5_flow_item_vxlan(pattern, flow, remain, error); break; case RTE_FLOW_ITEM_TYPE_VXLAN_GPE: ret = mlx5_flow_item_vxlan_gpe(dev, pattern, flow, remain, error); break; case RTE_FLOW_ITEM_TYPE_GRE: ret = mlx5_flow_item_gre(pattern, flow, remain, error); break; case RTE_FLOW_ITEM_TYPE_MPLS: ret = mlx5_flow_item_mpls(pattern, flow, remain, error); break; default: return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, pattern, "item not supported"); } if (ret < 0) return ret; if (remain > ret) remain -= ret; else remain = 0; size += ret; } if (!flow->layers) { const struct rte_flow_item item = { .type = RTE_FLOW_ITEM_TYPE_ETH, }; return mlx5_flow_item_eth(&item, flow, flow_size, error); } return size; } /** * Convert the @p action into a Verbs specification after ensuring the NIC * will understand and process it correctly. * If the necessary size for the conversion is greater than the @p flow_size, * nothing is written in @p flow, the validation is still performed. * * @param[in] action * Action configuration. * @param[in, out] flow * Pointer to flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small, nothing is * written. * @param[out] error * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @p action has fully been * converted, otherwise another call with this returned memory size should * be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_action_drop(const struct rte_flow_action *action, struct rte_flow *flow, const size_t flow_size, struct rte_flow_error *error) { unsigned int size = sizeof(struct ibv_flow_spec_action_drop); struct ibv_flow_spec_action_drop drop = { .type = IBV_FLOW_SPEC_ACTION_DROP, .size = size, }; if (flow->fate) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, action, "multiple fate actions are not" " supported"); if (flow->modifier & (MLX5_FLOW_MOD_FLAG | MLX5_FLOW_MOD_MARK)) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, action, "drop is not compatible with" " flag/mark action"); if (size < flow_size) mlx5_flow_spec_verbs_add(flow, &drop, size); flow->fate |= MLX5_FLOW_FATE_DROP; return size; } /** * Convert the @p action into @p flow after ensuring the NIC will understand * and process it correctly. * * @param[in] dev * Pointer to Ethernet device structure. * @param[in] action * Action configuration. * @param[in, out] flow * Pointer to flow structure. * @param[out] error * Pointer to error structure. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_flow_action_queue(struct rte_eth_dev *dev, const struct rte_flow_action *action, struct rte_flow *flow, struct rte_flow_error *error) { struct priv *priv = dev->data->dev_private; const struct rte_flow_action_queue *queue = action->conf; if (flow->fate) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, action, "multiple fate actions are not" " supported"); if (queue->index >= priv->rxqs_n) return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, &queue->index, "queue index out of range"); if (!(*priv->rxqs)[queue->index]) return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, &queue->index, "queue is not configured"); if (flow->queue) (*flow->queue)[0] = queue->index; flow->rss.queue_num = 1; flow->fate |= MLX5_FLOW_FATE_QUEUE; return 0; } /** * Ensure the @p action will be understood and used correctly by the NIC. * * @param dev * Pointer to Ethernet device structure. * @param action[in] * Pointer to flow actions array. * @param flow[in, out] * Pointer to the rte_flow structure. * @param error[in, out] * Pointer to error structure. * * @return * On success @p flow->queue array and @p flow->rss are filled and valid. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_action_rss(struct rte_eth_dev *dev, const struct rte_flow_action *action, struct rte_flow *flow, struct rte_flow_error *error) { struct priv *priv = dev->data->dev_private; const struct rte_flow_action_rss *rss = action->conf; unsigned int i; if (flow->fate) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, action, "multiple fate actions are not" " supported"); if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT && rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF, &rss->func, "RSS hash function not supported"); #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT if (rss->level > 2) #else if (rss->level > 1) #endif return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF, &rss->level, "tunnel RSS is not supported"); if (rss->key_len < MLX5_RSS_HASH_KEY_LEN) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF, &rss->key_len, "RSS hash key too small"); if (rss->key_len > MLX5_RSS_HASH_KEY_LEN) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF, &rss->key_len, "RSS hash key too large"); if (!rss->queue_num) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF, rss, "no queues were provided for RSS"); if (rss->queue_num > priv->config.ind_table_max_size) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF, &rss->queue_num, "number of queues too large"); if (rss->types & MLX5_RSS_HF_MASK) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF, &rss->types, "some RSS protocols are not" " supported"); for (i = 0; i != rss->queue_num; ++i) { if (rss->queue[i] >= priv->rxqs_n) return rte_flow_error_set (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, rss, "queue index out of range"); if (!(*priv->rxqs)[rss->queue[i]]) return rte_flow_error_set (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, &rss->queue[i], "queue is not configured"); } if (flow->queue) memcpy((*flow->queue), rss->queue, rss->queue_num * sizeof(uint16_t)); flow->rss.queue_num = rss->queue_num; memcpy(flow->key, rss->key, MLX5_RSS_HASH_KEY_LEN); flow->rss.types = rss->types; flow->rss.level = rss->level; flow->fate |= MLX5_FLOW_FATE_RSS; return 0; } /** * Convert the @p action into a Verbs specification after ensuring the NIC * will understand and process it correctly. * If the necessary size for the conversion is greater than the @p flow_size, * nothing is written in @p flow, the validation is still performed. * * @param[in] action * Action configuration. * @param[in, out] flow * Pointer to flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small, nothing is * written. * @param[out] error * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @p action has fully been * converted, otherwise another call with this returned memory size should * be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_action_flag(const struct rte_flow_action *action, struct rte_flow *flow, const size_t flow_size, struct rte_flow_error *error) { unsigned int size = sizeof(struct ibv_flow_spec_action_tag); struct ibv_flow_spec_action_tag tag = { .type = IBV_FLOW_SPEC_ACTION_TAG, .size = size, .tag_id = mlx5_flow_mark_set(MLX5_FLOW_MARK_DEFAULT), }; struct mlx5_flow_verbs *verbs = flow->cur_verbs; if (flow->modifier & MLX5_FLOW_MOD_FLAG) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, action, "flag action already present"); if (flow->fate & MLX5_FLOW_FATE_DROP) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, action, "flag is not compatible with drop" " action"); if (flow->modifier & MLX5_FLOW_MOD_MARK) size = 0; else if (size <= flow_size && verbs) mlx5_flow_spec_verbs_add(flow, &tag, size); flow->modifier |= MLX5_FLOW_MOD_FLAG; return size; } /** * Update verbs specification to modify the flag to mark. * * @param[in, out] verbs * Pointer to the mlx5_flow_verbs structure. * @param[in] mark_id * Mark identifier to replace the flag. */ static void mlx5_flow_verbs_mark_update(struct mlx5_flow_verbs *verbs, uint32_t mark_id) { struct ibv_spec_header *hdr; int i; if (!verbs) return; /* Update Verbs specification. */ hdr = (struct ibv_spec_header *)verbs->specs; if (!hdr) return; for (i = 0; i != verbs->attr->num_of_specs; ++i) { if (hdr->type == IBV_FLOW_SPEC_ACTION_TAG) { struct ibv_flow_spec_action_tag *t = (struct ibv_flow_spec_action_tag *)hdr; t->tag_id = mlx5_flow_mark_set(mark_id); } hdr = (struct ibv_spec_header *)((uintptr_t)hdr + hdr->size); } } /** * Convert the @p action into @p flow (or by updating the already present * Flag Verbs specification) after ensuring the NIC will understand and * process it correctly. * If the necessary size for the conversion is greater than the @p flow_size, * nothing is written in @p flow, the validation is still performed. * * @param[in] action * Action configuration. * @param[in, out] flow * Pointer to flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small, nothing is * written. * @param[out] error * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @p action has fully been * converted, otherwise another call with this returned memory size should * be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_action_mark(const struct rte_flow_action *action, struct rte_flow *flow, const size_t flow_size, struct rte_flow_error *error) { const struct rte_flow_action_mark *mark = action->conf; unsigned int size = sizeof(struct ibv_flow_spec_action_tag); struct ibv_flow_spec_action_tag tag = { .type = IBV_FLOW_SPEC_ACTION_TAG, .size = size, }; struct mlx5_flow_verbs *verbs = flow->cur_verbs; if (!mark) return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, action, "configuration cannot be null"); if (mark->id >= MLX5_FLOW_MARK_MAX) return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, &mark->id, "mark id must in 0 <= id < " RTE_STR(MLX5_FLOW_MARK_MAX)); if (flow->modifier & MLX5_FLOW_MOD_MARK) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, action, "mark action already present"); if (flow->fate & MLX5_FLOW_FATE_DROP) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, action, "mark is not compatible with drop" " action"); if (flow->modifier & MLX5_FLOW_MOD_FLAG) { mlx5_flow_verbs_mark_update(verbs, mark->id); size = 0; } else if (size <= flow_size) { tag.tag_id = mlx5_flow_mark_set(mark->id); mlx5_flow_spec_verbs_add(flow, &tag, size); } flow->modifier |= MLX5_FLOW_MOD_MARK; return size; } /** * Convert the @p action into a Verbs specification after ensuring the NIC * will understand and process it correctly. * If the necessary size for the conversion is greater than the @p flow_size, * nothing is written in @p flow, the validation is still performed. * * @param action[in] * Action configuration. * @param flow[in, out] * Pointer to flow structure. * @param flow_size[in] * Size in bytes of the available space in @p flow, if too small, nothing is * written. * @param error[int, out] * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @p action has fully been * converted, otherwise another call with this returned memory size should * be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_action_count(struct rte_eth_dev *dev, const struct rte_flow_action *action, struct rte_flow *flow, const size_t flow_size __rte_unused, struct rte_flow_error *error) { const struct rte_flow_action_count *count = action->conf; #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT unsigned int size = sizeof(struct ibv_flow_spec_counter_action); struct ibv_flow_spec_counter_action counter = { .type = IBV_FLOW_SPEC_ACTION_COUNT, .size = size, }; #endif if (!flow->counter) { flow->counter = mlx5_flow_counter_new(dev, count->shared, count->id); if (!flow->counter) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, action, "cannot get counter" " context."); } if (!((struct priv *)dev->data->dev_private)->config.flow_counter_en) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, action, "flow counters are not supported."); flow->modifier |= MLX5_FLOW_MOD_COUNT; #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT counter.counter_set_handle = flow->counter->cs->handle; if (size <= flow_size) mlx5_flow_spec_verbs_add(flow, &counter, size); return size; #endif return 0; } /** * Convert the @p action into @p flow after ensuring the NIC will understand * and process it correctly. * The conversion is performed action per action, each of them is written into * the @p flow if its size is lesser or equal to @p flow_size. * Validation and memory consumption computation are still performed until the * end of @p action, unless an error is encountered. * * @param[in] dev * Pointer to Ethernet device structure. * @param[in] actions * Pointer to flow actions array. * @param[in, out] flow * Pointer to the rte_flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small some * garbage may be present. * @param[out] error * Pointer to error structure. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the @p actions has fully been * converted, otherwise another call with this returned memory size should * be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_actions(struct rte_eth_dev *dev, const struct rte_flow_action actions[], struct rte_flow *flow, const size_t flow_size, struct rte_flow_error *error) { size_t size = 0; int remain = flow_size; int ret = 0; for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { switch (actions->type) { case RTE_FLOW_ACTION_TYPE_VOID: break; case RTE_FLOW_ACTION_TYPE_FLAG: ret = mlx5_flow_action_flag(actions, flow, remain, error); break; case RTE_FLOW_ACTION_TYPE_MARK: ret = mlx5_flow_action_mark(actions, flow, remain, error); break; case RTE_FLOW_ACTION_TYPE_DROP: ret = mlx5_flow_action_drop(actions, flow, remain, error); break; case RTE_FLOW_ACTION_TYPE_QUEUE: ret = mlx5_flow_action_queue(dev, actions, flow, error); break; case RTE_FLOW_ACTION_TYPE_RSS: ret = mlx5_flow_action_rss(dev, actions, flow, error); break; case RTE_FLOW_ACTION_TYPE_COUNT: ret = mlx5_flow_action_count(dev, actions, flow, remain, error); break; default: return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions, "action not supported"); } if (ret < 0) return ret; if (remain > ret) remain -= ret; else remain = 0; size += ret; } if (!flow->fate) return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "no fate action found"); return size; } /** * Validate flow rule and fill flow structure accordingly. * * @param dev * Pointer to Ethernet device. * @param[out] flow * Pointer to flow structure. * @param flow_size * Size of allocated space for @p flow. * @param[in] attr * Flow rule attributes. * @param[in] pattern * Pattern specification (list terminated by the END pattern item). * @param[in] actions * Associated actions (list terminated by the END action). * @param[out] error * Perform verbose error reporting if not NULL. * * @return * A positive value representing the size of the flow object in bytes * regardless of @p flow_size on success, a negative errno value otherwise * and rte_errno is set. */ static int mlx5_flow_merge_switch(struct rte_eth_dev *dev, struct rte_flow *flow, size_t flow_size, const struct rte_flow_attr *attr, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { unsigned int n = mlx5_dev_to_port_id(dev->device, NULL, 0); uint16_t port_id[!n + n]; struct mlx5_nl_flow_ptoi ptoi[!n + n + 1]; size_t off = RTE_ALIGN_CEIL(sizeof(*flow), alignof(max_align_t)); unsigned int i; unsigned int own = 0; int ret; /* At least one port is needed when no switch domain is present. */ if (!n) { n = 1; port_id[0] = dev->data->port_id; } else { n = RTE_MIN(mlx5_dev_to_port_id(dev->device, port_id, n), n); } for (i = 0; i != n; ++i) { struct rte_eth_dev_info dev_info; rte_eth_dev_info_get(port_id[i], &dev_info); if (port_id[i] == dev->data->port_id) own = i; ptoi[i].port_id = port_id[i]; ptoi[i].ifindex = dev_info.if_index; } /* Ensure first entry of ptoi[] is the current device. */ if (own) { ptoi[n] = ptoi[0]; ptoi[0] = ptoi[own]; ptoi[own] = ptoi[n]; } /* An entry with zero ifindex terminates ptoi[]. */ ptoi[n].port_id = 0; ptoi[n].ifindex = 0; if (flow_size < off) flow_size = 0; ret = mlx5_nl_flow_transpose((uint8_t *)flow + off, flow_size ? flow_size - off : 0, ptoi, attr, pattern, actions, error); if (ret < 0) return ret; if (flow_size) { *flow = (struct rte_flow){ .attributes = *attr, .nl_flow = (uint8_t *)flow + off, }; /* * Generate a reasonably unique handle based on the address * of the target buffer. * * This is straightforward on 32-bit systems where the flow * pointer can be used directly. Otherwise, its least * significant part is taken after shifting it by the * previous power of two of the pointed buffer size. */ if (sizeof(flow) <= 4) mlx5_nl_flow_brand(flow->nl_flow, (uintptr_t)flow); else mlx5_nl_flow_brand (flow->nl_flow, (uintptr_t)flow >> rte_log2_u32(rte_align32prevpow2(flow_size))); } return off + ret; } static unsigned int mlx5_find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level) { const struct rte_flow_item *item; unsigned int has_vlan = 0; for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) { has_vlan = 1; break; } } if (has_vlan) return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN : MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN; return rss_level < 2 ? MLX5_EXPANSION_ROOT : MLX5_EXPANSION_ROOT_OUTER; } /** * Convert the @p attributes, @p pattern, @p action, into an flow for the NIC * after ensuring the NIC will understand and process it correctly. * The conversion is only performed item/action per item/action, each of * them is written into the @p flow if its size is lesser or equal to @p * flow_size. * Validation and memory consumption computation are still performed until the * end, unless an error is encountered. * * @param[in] dev * Pointer to Ethernet device. * @param[in, out] flow * Pointer to flow structure. * @param[in] flow_size * Size in bytes of the available space in @p flow, if too small some * garbage may be present. * @param[in] attributes * Flow rule attributes. * @param[in] pattern * Pattern specification (list terminated by the END pattern item). * @param[in] actions * Associated actions (list terminated by the END action). * @param[out] error * Perform verbose error reporting if not NULL. * * @return * On success the number of bytes consumed/necessary, if the returned value * is lesser or equal to @p flow_size, the flow has fully been converted and * can be applied, otherwise another call with this returned memory size * should be done. * On error, a negative errno value is returned and rte_errno is set. */ static int mlx5_flow_merge(struct rte_eth_dev *dev, struct rte_flow *flow, const size_t flow_size, const struct rte_flow_attr *attributes, const struct rte_flow_item pattern[], const struct rte_flow_action actions[], struct rte_flow_error *error) { struct rte_flow local_flow = { .layers = 0, }; size_t size = sizeof(*flow); union { struct rte_flow_expand_rss buf; uint8_t buffer[2048]; } expand_buffer; struct rte_flow_expand_rss *buf = &expand_buffer.buf; struct mlx5_flow_verbs *original_verbs = NULL; size_t original_verbs_size = 0; uint32_t original_layers = 0; int expanded_pattern_idx = 0; int ret; uint32_t i; if (attributes->transfer) return mlx5_flow_merge_switch(dev, flow, flow_size, attributes, pattern, actions, error); if (size > flow_size) flow = &local_flow; ret = mlx5_flow_attributes(dev, attributes, flow, error); if (ret < 0) return ret; ret = mlx5_flow_actions(dev, actions, &local_flow, 0, error); if (ret < 0) return ret; if (local_flow.rss.types) { unsigned int graph_root; graph_root = mlx5_find_graph_root(pattern, local_flow.rss.level); ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer), pattern, local_flow.rss.types, mlx5_support_expansion, graph_root); assert(ret > 0 && (unsigned int)ret < sizeof(expand_buffer.buffer)); } else { buf->entries = 1; buf->entry[0].pattern = (void *)(uintptr_t)pattern; } size += RTE_ALIGN_CEIL(local_flow.rss.queue_num * sizeof(uint16_t), sizeof(void *)); if (size <= flow_size) flow->queue = (void *)(flow + 1); LIST_INIT(&flow->verbs); flow->layers = 0; flow->modifier = 0; flow->fate = 0; for (i = 0; i != buf->entries; ++i) { size_t off = size; size_t off2; flow->layers = original_layers; size += sizeof(struct ibv_flow_attr) + sizeof(struct mlx5_flow_verbs); off2 = size; if (size < flow_size) { flow->cur_verbs = (void *)((uintptr_t)flow + off); flow->cur_verbs->attr = (void *)(flow->cur_verbs + 1); flow->cur_verbs->specs = (void *)(flow->cur_verbs->attr + 1); } /* First iteration convert the pattern into Verbs. */ if (i == 0) { /* Actions don't need to be converted several time. */ ret = mlx5_flow_actions(dev, actions, flow, (size < flow_size) ? flow_size - size : 0, error); if (ret < 0) return ret; size += ret; } else { /* * Next iteration means the pattern has already been * converted and an expansion is necessary to match * the user RSS request. For that only the expanded * items will be converted, the common part with the * user pattern are just copied into the next buffer * zone. */ size += original_verbs_size; if (size < flow_size) { rte_memcpy(flow->cur_verbs->attr, original_verbs->attr, original_verbs_size + sizeof(struct ibv_flow_attr)); flow->cur_verbs->size = original_verbs_size; } } ret = mlx5_flow_items (dev, (const struct rte_flow_item *) &buf->entry[i].pattern[expanded_pattern_idx], flow, (size < flow_size) ? flow_size - size : 0, error); if (ret < 0) return ret; size += ret; if (size <= flow_size) { mlx5_flow_adjust_priority(dev, flow); LIST_INSERT_HEAD(&flow->verbs, flow->cur_verbs, next); } /* * Keep a pointer of the first verbs conversion and the layers * it has encountered. */ if (i == 0) { original_verbs = flow->cur_verbs; original_verbs_size = size - off2; original_layers = flow->layers; /* * move the index of the expanded pattern to the * first item not addressed yet. */ if (pattern->type == RTE_FLOW_ITEM_TYPE_END) { expanded_pattern_idx++; } else { const struct rte_flow_item *item = pattern; for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; ++item) expanded_pattern_idx++; } } } /* Restore the origin layers in the flow. */ flow->layers = original_layers; return size; } /** * Lookup and set the ptype in the data Rx part. A single Ptype can be used, * if several tunnel rules are used on this queue, the tunnel ptype will be * cleared. * * @param rxq_ctrl * Rx queue to update. */ static void mlx5_flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl) { unsigned int i; uint32_t tunnel_ptype = 0; /* Look up for the ptype to use. */ for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) { if (!rxq_ctrl->flow_tunnels_n[i]) continue; if (!tunnel_ptype) { tunnel_ptype = tunnels_info[i].ptype; } else { tunnel_ptype = 0; break; } } rxq_ctrl->rxq.tunnel = tunnel_ptype; } /** * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the flow. * * @param[in] dev * Pointer to Ethernet device. * @param[in] flow * Pointer to flow structure. */ static void mlx5_flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow) { struct priv *priv = dev->data->dev_private; const int mark = !!(flow->modifier & (MLX5_FLOW_MOD_FLAG | MLX5_FLOW_MOD_MARK)); const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL); unsigned int i; for (i = 0; i != flow->rss.queue_num; ++i) { int idx = (*flow->queue)[i]; struct mlx5_rxq_ctrl *rxq_ctrl = container_of((*priv->rxqs)[idx], struct mlx5_rxq_ctrl, rxq); if (mark) { rxq_ctrl->rxq.mark = 1; rxq_ctrl->flow_mark_n++; } if (tunnel) { unsigned int j; /* Increase the counter matching the flow. */ for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { if ((tunnels_info[j].tunnel & flow->layers) == tunnels_info[j].tunnel) { rxq_ctrl->flow_tunnels_n[j]++; break; } } mlx5_flow_rxq_tunnel_ptype_update(rxq_ctrl); } } } /** * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the * @p flow if no other flow uses it with the same kind of request. * * @param dev * Pointer to Ethernet device. * @param[in] flow * Pointer to the flow. */ static void mlx5_flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow) { struct priv *priv = dev->data->dev_private; const int mark = !!(flow->modifier & (MLX5_FLOW_MOD_FLAG | MLX5_FLOW_MOD_MARK)); const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL); unsigned int i; assert(dev->data->dev_started); for (i = 0; i != flow->rss.queue_num; ++i) { int idx = (*flow->queue)[i]; struct mlx5_rxq_ctrl *rxq_ctrl = container_of((*priv->rxqs)[idx], struct mlx5_rxq_ctrl, rxq); if (mark) { rxq_ctrl->flow_mark_n--; rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n; } if (tunnel) { unsigned int j; /* Decrease the counter matching the flow. */ for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { if ((tunnels_info[j].tunnel & flow->layers) == tunnels_info[j].tunnel) { rxq_ctrl->flow_tunnels_n[j]--; break; } } mlx5_flow_rxq_tunnel_ptype_update(rxq_ctrl); } } } /** * Clear the Mark/Flag and Tunnel ptype information in all Rx queues. * * @param dev * Pointer to Ethernet device. */ static void mlx5_flow_rxq_flags_clear(struct rte_eth_dev *dev) { struct priv *priv = dev->data->dev_private; unsigned int i; for (i = 0; i != priv->rxqs_n; ++i) { struct mlx5_rxq_ctrl *rxq_ctrl; unsigned int j; if (!(*priv->rxqs)[i]) continue; rxq_ctrl = container_of((*priv->rxqs)[i], struct mlx5_rxq_ctrl, rxq); rxq_ctrl->flow_mark_n = 0; rxq_ctrl->rxq.mark = 0; for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) rxq_ctrl->flow_tunnels_n[j] = 0; rxq_ctrl->rxq.tunnel = 0; } } /** * Validate a flow supported by the NIC. * * @see rte_flow_validate() * @see rte_flow_ops */ int mlx5_flow_validate(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item items[], const struct rte_flow_action actions[], struct rte_flow_error *error) { int ret = mlx5_flow_merge(dev, NULL, 0, attr, items, actions, error); if (ret < 0) return ret; return 0; } /** * Remove the flow. * * @param[in] dev * Pointer to Ethernet device. * @param[in, out] flow * Pointer to flow structure. */ static void mlx5_flow_remove(struct rte_eth_dev *dev, struct rte_flow *flow) { struct priv *priv = dev->data->dev_private; struct mlx5_flow_verbs *verbs; if (flow->nl_flow && priv->mnl_socket) mlx5_nl_flow_destroy(priv->mnl_socket, flow->nl_flow, NULL); LIST_FOREACH(verbs, &flow->verbs, next) { if (verbs->flow) { claim_zero(mlx5_glue->destroy_flow(verbs->flow)); verbs->flow = NULL; } if (verbs->hrxq) { if (flow->fate & MLX5_FLOW_FATE_DROP) mlx5_hrxq_drop_release(dev); else mlx5_hrxq_release(dev, verbs->hrxq); verbs->hrxq = NULL; } } if (flow->counter) { mlx5_flow_counter_release(flow->counter); flow->counter = NULL; } } /** * Apply the flow. * * @param[in] dev * Pointer to Ethernet device structure. * @param[in, out] flow * Pointer to flow structure. * @param[out] error * Pointer to error structure. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_flow_apply(struct rte_eth_dev *dev, struct rte_flow *flow, struct rte_flow_error *error) { struct priv *priv = dev->data->dev_private; struct mlx5_flow_verbs *verbs; int err; LIST_FOREACH(verbs, &flow->verbs, next) { if (flow->fate & MLX5_FLOW_FATE_DROP) { verbs->hrxq = mlx5_hrxq_drop_new(dev); if (!verbs->hrxq) { rte_flow_error_set (error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "cannot get drop hash queue"); goto error; } } else { struct mlx5_hrxq *hrxq; hrxq = mlx5_hrxq_get(dev, flow->key, MLX5_RSS_HASH_KEY_LEN, verbs->hash_fields, (*flow->queue), flow->rss.queue_num); if (!hrxq) hrxq = mlx5_hrxq_new(dev, flow->key, MLX5_RSS_HASH_KEY_LEN, verbs->hash_fields, (*flow->queue), flow->rss.queue_num, !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL)); if (!hrxq) { rte_flow_error_set (error, rte_errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "cannot get hash queue"); goto error; } verbs->hrxq = hrxq; } verbs->flow = mlx5_glue->create_flow(verbs->hrxq->qp, verbs->attr); if (!verbs->flow) { rte_flow_error_set(error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "hardware refuses to create flow"); goto error; } } if (flow->nl_flow && priv->mnl_socket && mlx5_nl_flow_create(priv->mnl_socket, flow->nl_flow, error)) goto error; return 0; error: err = rte_errno; /* Save rte_errno before cleanup. */ LIST_FOREACH(verbs, &flow->verbs, next) { if (verbs->hrxq) { if (flow->fate & MLX5_FLOW_FATE_DROP) mlx5_hrxq_drop_release(dev); else mlx5_hrxq_release(dev, verbs->hrxq); verbs->hrxq = NULL; } } rte_errno = err; /* Restore rte_errno. */ return -rte_errno; } /** * Create a flow and add it to @p list. * * @param dev * Pointer to Ethernet device. * @param list * Pointer to a TAILQ flow list. * @param[in] attr * Flow rule attributes. * @param[in] items * Pattern specification (list terminated by the END pattern item). * @param[in] actions * Associated actions (list terminated by the END action). * @param[out] error * Perform verbose error reporting if not NULL. * * @return * A flow on success, NULL otherwise and rte_errno is set. */ static struct rte_flow * mlx5_flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list, const struct rte_flow_attr *attr, const struct rte_flow_item items[], const struct rte_flow_action actions[], struct rte_flow_error *error) { struct rte_flow *flow = NULL; size_t size = 0; int ret; ret = mlx5_flow_merge(dev, flow, size, attr, items, actions, error); if (ret < 0) return NULL; size = ret; flow = rte_calloc(__func__, 1, size, 0); if (!flow) { rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "not enough memory to create flow"); return NULL; } ret = mlx5_flow_merge(dev, flow, size, attr, items, actions, error); if (ret < 0) { rte_free(flow); return NULL; } assert((size_t)ret == size); if (dev->data->dev_started) { ret = mlx5_flow_apply(dev, flow, error); if (ret < 0) { ret = rte_errno; /* Save rte_errno before cleanup. */ if (flow) { mlx5_flow_remove(dev, flow); rte_free(flow); } rte_errno = ret; /* Restore rte_errno. */ return NULL; } } TAILQ_INSERT_TAIL(list, flow, next); mlx5_flow_rxq_flags_set(dev, flow); return flow; } /** * Create a flow. * * @see rte_flow_create() * @see rte_flow_ops */ struct rte_flow * mlx5_flow_create(struct rte_eth_dev *dev, const struct rte_flow_attr *attr, const struct rte_flow_item items[], const struct rte_flow_action actions[], struct rte_flow_error *error) { return mlx5_flow_list_create (dev, &((struct priv *)dev->data->dev_private)->flows, attr, items, actions, error); } /** * Destroy a flow in a list. * * @param dev * Pointer to Ethernet device. * @param list * Pointer to a TAILQ flow list. * @param[in] flow * Flow to destroy. */ static void mlx5_flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list, struct rte_flow *flow) { mlx5_flow_remove(dev, flow); TAILQ_REMOVE(list, flow, next); /* * Update RX queue flags only if port is started, otherwise it is * already clean. */ if (dev->data->dev_started) mlx5_flow_rxq_flags_trim(dev, flow); rte_free(flow); } /** * Destroy all flows. * * @param dev * Pointer to Ethernet device. * @param list * Pointer to a TAILQ flow list. */ void mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list) { while (!TAILQ_EMPTY(list)) { struct rte_flow *flow; flow = TAILQ_FIRST(list); mlx5_flow_list_destroy(dev, list, flow); } } /** * Remove all flows. * * @param dev * Pointer to Ethernet device. * @param list * Pointer to a TAILQ flow list. */ void mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list) { struct rte_flow *flow; TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next) mlx5_flow_remove(dev, flow); mlx5_flow_rxq_flags_clear(dev); } /** * Add all flows. * * @param dev * Pointer to Ethernet device. * @param list * Pointer to a TAILQ flow list. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list) { struct rte_flow *flow; struct rte_flow_error error; int ret = 0; TAILQ_FOREACH(flow, list, next) { ret = mlx5_flow_apply(dev, flow, &error); if (ret < 0) goto error; mlx5_flow_rxq_flags_set(dev, flow); } return 0; error: ret = rte_errno; /* Save rte_errno before cleanup. */ mlx5_flow_stop(dev, list); rte_errno = ret; /* Restore rte_errno. */ return -rte_errno; } /** * Verify the flow list is empty * * @param dev * Pointer to Ethernet device. * * @return the number of flows not released. */ int mlx5_flow_verify(struct rte_eth_dev *dev) { struct priv *priv = dev->data->dev_private; struct rte_flow *flow; int ret = 0; TAILQ_FOREACH(flow, &priv->flows, next) { DRV_LOG(DEBUG, "port %u flow %p still referenced", dev->data->port_id, (void *)flow); ++ret; } return ret; } /** * Enable a control flow configured from the control plane. * * @param dev * Pointer to Ethernet device. * @param eth_spec * An Ethernet flow spec to apply. * @param eth_mask * An Ethernet flow mask to apply. * @param vlan_spec * A VLAN flow spec to apply. * @param vlan_mask * A VLAN flow mask to apply. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev, struct rte_flow_item_eth *eth_spec, struct rte_flow_item_eth *eth_mask, struct rte_flow_item_vlan *vlan_spec, struct rte_flow_item_vlan *vlan_mask) { struct priv *priv = dev->data->dev_private; const struct rte_flow_attr attr = { .ingress = 1, .priority = MLX5_FLOW_PRIO_RSVD, }; struct rte_flow_item items[] = { { .type = RTE_FLOW_ITEM_TYPE_ETH, .spec = eth_spec, .last = NULL, .mask = eth_mask, }, { .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN : RTE_FLOW_ITEM_TYPE_END, .spec = vlan_spec, .last = NULL, .mask = vlan_mask, }, { .type = RTE_FLOW_ITEM_TYPE_END, }, }; uint16_t queue[priv->reta_idx_n]; struct rte_flow_action_rss action_rss = { .func = RTE_ETH_HASH_FUNCTION_DEFAULT, .level = 0, .types = priv->rss_conf.rss_hf, .key_len = priv->rss_conf.rss_key_len, .queue_num = priv->reta_idx_n, .key = priv->rss_conf.rss_key, .queue = queue, }; struct rte_flow_action actions[] = { { .type = RTE_FLOW_ACTION_TYPE_RSS, .conf = &action_rss, }, { .type = RTE_FLOW_ACTION_TYPE_END, }, }; struct rte_flow *flow; struct rte_flow_error error; unsigned int i; if (!priv->reta_idx_n) { rte_errno = EINVAL; return -rte_errno; } for (i = 0; i != priv->reta_idx_n; ++i) queue[i] = (*priv->reta_idx)[i]; flow = mlx5_flow_list_create(dev, &priv->ctrl_flows, &attr, items, actions, &error); if (!flow) return -rte_errno; return 0; } /** * Enable a flow control configured from the control plane. * * @param dev * Pointer to Ethernet device. * @param eth_spec * An Ethernet flow spec to apply. * @param eth_mask * An Ethernet flow mask to apply. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_ctrl_flow(struct rte_eth_dev *dev, struct rte_flow_item_eth *eth_spec, struct rte_flow_item_eth *eth_mask) { return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL); } /** * Destroy a flow. * * @see rte_flow_destroy() * @see rte_flow_ops */ int mlx5_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow, struct rte_flow_error *error __rte_unused) { struct priv *priv = dev->data->dev_private; mlx5_flow_list_destroy(dev, &priv->flows, flow); return 0; } /** * Destroy all flows. * * @see rte_flow_flush() * @see rte_flow_ops */ int mlx5_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *error __rte_unused) { struct priv *priv = dev->data->dev_private; mlx5_flow_list_flush(dev, &priv->flows); return 0; } /** * Isolated mode. * * @see rte_flow_isolate() * @see rte_flow_ops */ int mlx5_flow_isolate(struct rte_eth_dev *dev, int enable, struct rte_flow_error *error) { struct priv *priv = dev->data->dev_private; if (dev->data->dev_started) { rte_flow_error_set(error, EBUSY, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "port must be stopped first"); return -rte_errno; } priv->isolated = !!enable; if (enable) dev->dev_ops = &mlx5_dev_ops_isolate; else dev->dev_ops = &mlx5_dev_ops; return 0; } /** * Query flow counter. * * @param flow * Pointer to the flow. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_flow_query_count(struct rte_flow *flow __rte_unused, void *data __rte_unused, struct rte_flow_error *error) { #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT if (flow->modifier & MLX5_FLOW_MOD_COUNT) { struct rte_flow_query_count *qc = data; uint64_t counters[2] = {0, 0}; struct ibv_query_counter_set_attr query_cs_attr = { .cs = flow->counter->cs, .query_flags = IBV_COUNTER_SET_FORCE_UPDATE, }; struct ibv_counter_set_data query_out = { .out = counters, .outlen = 2 * sizeof(uint64_t), }; int err = mlx5_glue->query_counter_set(&query_cs_attr, &query_out); if (err) return rte_flow_error_set (error, err, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "cannot read counter"); qc->hits_set = 1; qc->bytes_set = 1; qc->hits = counters[0] - flow->counter->hits; qc->bytes = counters[1] - flow->counter->bytes; if (qc->reset) { flow->counter->hits = counters[0]; flow->counter->bytes = counters[1]; } return 0; } return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "flow does not have counter"); #endif return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, "counters are not available"); } /** * Query a flows. * * @see rte_flow_query() * @see rte_flow_ops */ int mlx5_flow_query(struct rte_eth_dev *dev __rte_unused, struct rte_flow *flow, const struct rte_flow_action *actions, void *data, struct rte_flow_error *error) { int ret = 0; for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { switch (actions->type) { case RTE_FLOW_ACTION_TYPE_VOID: break; case RTE_FLOW_ACTION_TYPE_COUNT: ret = mlx5_flow_query_count(flow, data, error); break; default: return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions, "action not supported"); } if (ret < 0) return ret; } return 0; } /** * Convert a flow director filter to a generic flow. * * @param dev * Pointer to Ethernet device. * @param fdir_filter * Flow director filter to add. * @param attributes * Generic flow parameters structure. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_fdir_filter_convert(struct rte_eth_dev *dev, const struct rte_eth_fdir_filter *fdir_filter, struct mlx5_fdir *attributes) { struct priv *priv = dev->data->dev_private; const struct rte_eth_fdir_input *input = &fdir_filter->input; const struct rte_eth_fdir_masks *mask = &dev->data->dev_conf.fdir_conf.mask; /* Validate queue number. */ if (fdir_filter->action.rx_queue >= priv->rxqs_n) { DRV_LOG(ERR, "port %u invalid queue number %d", dev->data->port_id, fdir_filter->action.rx_queue); rte_errno = EINVAL; return -rte_errno; } attributes->attr.ingress = 1; attributes->items[0] = (struct rte_flow_item) { .type = RTE_FLOW_ITEM_TYPE_ETH, .spec = &attributes->l2, .mask = &attributes->l2_mask, }; switch (fdir_filter->action.behavior) { case RTE_ETH_FDIR_ACCEPT: attributes->actions[0] = (struct rte_flow_action){ .type = RTE_FLOW_ACTION_TYPE_QUEUE, .conf = &attributes->queue, }; break; case RTE_ETH_FDIR_REJECT: attributes->actions[0] = (struct rte_flow_action){ .type = RTE_FLOW_ACTION_TYPE_DROP, }; break; default: DRV_LOG(ERR, "port %u invalid behavior %d", dev->data->port_id, fdir_filter->action.behavior); rte_errno = ENOTSUP; return -rte_errno; } attributes->queue.index = fdir_filter->action.rx_queue; /* Handle L3. */ switch (fdir_filter->input.flow_type) { case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: attributes->l3.ipv4.hdr = (struct ipv4_hdr){ .src_addr = input->flow.ip4_flow.src_ip, .dst_addr = input->flow.ip4_flow.dst_ip, .time_to_live = input->flow.ip4_flow.ttl, .type_of_service = input->flow.ip4_flow.tos, .next_proto_id = input->flow.ip4_flow.proto, }; attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){ .src_addr = mask->ipv4_mask.src_ip, .dst_addr = mask->ipv4_mask.dst_ip, .time_to_live = mask->ipv4_mask.ttl, .type_of_service = mask->ipv4_mask.tos, .next_proto_id = mask->ipv4_mask.proto, }; attributes->items[1] = (struct rte_flow_item){ .type = RTE_FLOW_ITEM_TYPE_IPV4, .spec = &attributes->l3, .mask = &attributes->l3_mask, }; break; case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: attributes->l3.ipv6.hdr = (struct ipv6_hdr){ .hop_limits = input->flow.ipv6_flow.hop_limits, .proto = input->flow.ipv6_flow.proto, }; memcpy(attributes->l3.ipv6.hdr.src_addr, input->flow.ipv6_flow.src_ip, RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); memcpy(attributes->l3.ipv6.hdr.dst_addr, input->flow.ipv6_flow.dst_ip, RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); memcpy(attributes->l3_mask.ipv6.hdr.src_addr, mask->ipv6_mask.src_ip, RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); memcpy(attributes->l3_mask.ipv6.hdr.dst_addr, mask->ipv6_mask.dst_ip, RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); attributes->items[1] = (struct rte_flow_item){ .type = RTE_FLOW_ITEM_TYPE_IPV6, .spec = &attributes->l3, .mask = &attributes->l3_mask, }; break; default: DRV_LOG(ERR, "port %u invalid flow type%d", dev->data->port_id, fdir_filter->input.flow_type); rte_errno = ENOTSUP; return -rte_errno; } /* Handle L4. */ switch (fdir_filter->input.flow_type) { case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: attributes->l4.udp.hdr = (struct udp_hdr){ .src_port = input->flow.udp4_flow.src_port, .dst_port = input->flow.udp4_flow.dst_port, }; attributes->l4_mask.udp.hdr = (struct udp_hdr){ .src_port = mask->src_port_mask, .dst_port = mask->dst_port_mask, }; attributes->items[2] = (struct rte_flow_item){ .type = RTE_FLOW_ITEM_TYPE_UDP, .spec = &attributes->l4, .mask = &attributes->l4_mask, }; break; case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: attributes->l4.tcp.hdr = (struct tcp_hdr){ .src_port = input->flow.tcp4_flow.src_port, .dst_port = input->flow.tcp4_flow.dst_port, }; attributes->l4_mask.tcp.hdr = (struct tcp_hdr){ .src_port = mask->src_port_mask, .dst_port = mask->dst_port_mask, }; attributes->items[2] = (struct rte_flow_item){ .type = RTE_FLOW_ITEM_TYPE_TCP, .spec = &attributes->l4, .mask = &attributes->l4_mask, }; break; case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: attributes->l4.udp.hdr = (struct udp_hdr){ .src_port = input->flow.udp6_flow.src_port, .dst_port = input->flow.udp6_flow.dst_port, }; attributes->l4_mask.udp.hdr = (struct udp_hdr){ .src_port = mask->src_port_mask, .dst_port = mask->dst_port_mask, }; attributes->items[2] = (struct rte_flow_item){ .type = RTE_FLOW_ITEM_TYPE_UDP, .spec = &attributes->l4, .mask = &attributes->l4_mask, }; break; case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: attributes->l4.tcp.hdr = (struct tcp_hdr){ .src_port = input->flow.tcp6_flow.src_port, .dst_port = input->flow.tcp6_flow.dst_port, }; attributes->l4_mask.tcp.hdr = (struct tcp_hdr){ .src_port = mask->src_port_mask, .dst_port = mask->dst_port_mask, }; attributes->items[2] = (struct rte_flow_item){ .type = RTE_FLOW_ITEM_TYPE_TCP, .spec = &attributes->l4, .mask = &attributes->l4_mask, }; break; case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: break; default: DRV_LOG(ERR, "port %u invalid flow type%d", dev->data->port_id, fdir_filter->input.flow_type); rte_errno = ENOTSUP; return -rte_errno; } return 0; } /** * Add new flow director filter and store it in list. * * @param dev * Pointer to Ethernet device. * @param fdir_filter * Flow director filter to add. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_fdir_filter_add(struct rte_eth_dev *dev, const struct rte_eth_fdir_filter *fdir_filter) { struct priv *priv = dev->data->dev_private; struct mlx5_fdir attributes = { .attr.group = 0, .l2_mask = { .dst.addr_bytes = "\x00\x00\x00\x00\x00\x00", .src.addr_bytes = "\x00\x00\x00\x00\x00\x00", .type = 0, }, }; struct rte_flow_error error; struct rte_flow *flow; int ret; ret = mlx5_fdir_filter_convert(dev, fdir_filter, &attributes); if (ret) return ret; flow = mlx5_flow_list_create(dev, &priv->flows, &attributes.attr, attributes.items, attributes.actions, &error); if (flow) { DRV_LOG(DEBUG, "port %u FDIR created %p", dev->data->port_id, (void *)flow); return 0; } return -rte_errno; } /** * Delete specific filter. * * @param dev * Pointer to Ethernet device. * @param fdir_filter * Filter to be deleted. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_fdir_filter_delete(struct rte_eth_dev *dev __rte_unused, const struct rte_eth_fdir_filter *fdir_filter __rte_unused) { rte_errno = ENOTSUP; return -rte_errno; } /** * Update queue for specific filter. * * @param dev * Pointer to Ethernet device. * @param fdir_filter * Filter to be updated. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_fdir_filter_update(struct rte_eth_dev *dev, const struct rte_eth_fdir_filter *fdir_filter) { int ret; ret = mlx5_fdir_filter_delete(dev, fdir_filter); if (ret) return ret; return mlx5_fdir_filter_add(dev, fdir_filter); } /** * Flush all filters. * * @param dev * Pointer to Ethernet device. */ static void mlx5_fdir_filter_flush(struct rte_eth_dev *dev) { struct priv *priv = dev->data->dev_private; mlx5_flow_list_flush(dev, &priv->flows); } /** * Get flow director information. * * @param dev * Pointer to Ethernet device. * @param[out] fdir_info * Resulting flow director information. */ static void mlx5_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info) { struct rte_eth_fdir_masks *mask = &dev->data->dev_conf.fdir_conf.mask; fdir_info->mode = dev->data->dev_conf.fdir_conf.mode; fdir_info->guarant_spc = 0; rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask)); fdir_info->max_flexpayload = 0; fdir_info->flow_types_mask[0] = 0; fdir_info->flex_payload_unit = 0; fdir_info->max_flex_payload_segment_num = 0; fdir_info->flex_payload_limit = 0; memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf)); } /** * Deal with flow director operations. * * @param dev * Pointer to Ethernet device. * @param filter_op * Operation to perform. * @param arg * Pointer to operation-specific structure. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ static int mlx5_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op, void *arg) { enum rte_fdir_mode fdir_mode = dev->data->dev_conf.fdir_conf.mode; if (filter_op == RTE_ETH_FILTER_NOP) return 0; if (fdir_mode != RTE_FDIR_MODE_PERFECT && fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { DRV_LOG(ERR, "port %u flow director mode %d not supported", dev->data->port_id, fdir_mode); rte_errno = EINVAL; return -rte_errno; } switch (filter_op) { case RTE_ETH_FILTER_ADD: return mlx5_fdir_filter_add(dev, arg); case RTE_ETH_FILTER_UPDATE: return mlx5_fdir_filter_update(dev, arg); case RTE_ETH_FILTER_DELETE: return mlx5_fdir_filter_delete(dev, arg); case RTE_ETH_FILTER_FLUSH: mlx5_fdir_filter_flush(dev); break; case RTE_ETH_FILTER_INFO: mlx5_fdir_info_get(dev, arg); break; default: DRV_LOG(DEBUG, "port %u unknown operation %u", dev->data->port_id, filter_op); rte_errno = EINVAL; return -rte_errno; } return 0; } /** * Manage filter operations. * * @param dev * Pointer to Ethernet device structure. * @param filter_type * Filter type. * @param filter_op * Operation to perform. * @param arg * Pointer to operation-specific structure. * * @return * 0 on success, a negative errno value otherwise and rte_errno is set. */ int mlx5_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, enum rte_filter_op filter_op, void *arg) { switch (filter_type) { case RTE_ETH_FILTER_GENERIC: if (filter_op != RTE_ETH_FILTER_GET) { rte_errno = EINVAL; return -rte_errno; } *(const void **)arg = &mlx5_flow_ops; return 0; case RTE_ETH_FILTER_FDIR: return mlx5_fdir_ctrl_func(dev, filter_op, arg); default: DRV_LOG(ERR, "port %u filter type (%d) not supported", dev->data->port_id, filter_type); rte_errno = ENOTSUP; return -rte_errno; } return 0; }