/*- * BSD LICENSE * * Copyright (c) 2016 Solarflare Communications Inc. * All rights reserved. * * This software was jointly developed between OKTET Labs (under contract * for Solarflare) and Solarflare Communications, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* EF10 native datapath implementation */ #include #include #include #include #include #include "efx.h" #include "efx_types.h" #include "efx_regs.h" #include "efx_regs_ef10.h" #include "sfc_tweak.h" #include "sfc_dp_rx.h" #include "sfc_kvargs.h" #include "sfc_ef10.h" #define sfc_ef10_rx_err(dpq, ...) \ SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__) /** * Alignment requirement for value written to RX WPTR: * the WPTR must be aligned to an 8 descriptor boundary. */ #define SFC_EF10_RX_WPTR_ALIGN 8 /** * Maximum number of descriptors/buffers in the Rx ring. * It should guarantee that corresponding event queue never overfill. * EF10 native datapath uses event queue of the same size as Rx queue. * Maximum number of events on datapath can be estimated as number of * Rx queue entries (one event per Rx buffer in the worst case) plus * Rx error and flush events. */ #define SFC_EF10_RXQ_LIMIT(_ndesc) \ ((_ndesc) - 1 /* head must not step on tail */ - \ (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \ 1 /* Rx error */ - 1 /* flush */) struct sfc_ef10_rx_sw_desc { struct rte_mbuf *mbuf; }; struct sfc_ef10_rxq { /* Used on data path */ unsigned int flags; #define SFC_EF10_RXQ_STARTED 0x1 #define SFC_EF10_RXQ_NOT_RUNNING 0x2 #define SFC_EF10_RXQ_EXCEPTION 0x4 #define SFC_EF10_RXQ_RSS_HASH 0x8 unsigned int ptr_mask; unsigned int prepared; unsigned int completed; unsigned int evq_read_ptr; efx_qword_t *evq_hw_ring; struct sfc_ef10_rx_sw_desc *sw_ring; uint64_t rearm_data; uint16_t prefix_size; /* Used on refill */ uint16_t buf_size; unsigned int added; unsigned int refill_threshold; struct rte_mempool *refill_mb_pool; efx_qword_t *rxq_hw_ring; volatile void *doorbell; /* Datapath receive queue anchor */ struct sfc_dp_rxq dp; }; static inline struct sfc_ef10_rxq * sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq) { return container_of(dp_rxq, struct sfc_ef10_rxq, dp); } static void sfc_ef10_rx_qpush(struct sfc_ef10_rxq *rxq) { efx_dword_t dword; /* Hardware has alignment restriction for WPTR */ RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0); SFC_ASSERT(RTE_ALIGN(rxq->added, SFC_EF10_RX_WPTR_ALIGN) == rxq->added); EFX_POPULATE_DWORD_1(dword, ERF_DZ_RX_DESC_WPTR, rxq->added & rxq->ptr_mask); /* DMA sync to device is not required */ /* * rte_write32() has rte_io_wmb() which guarantees that the STORE * operations (i.e. Rx and event descriptor updates) that precede * the rte_io_wmb() call are visible to NIC before the STORE * operations that follow it (i.e. doorbell write). */ rte_write32(dword.ed_u32[0], rxq->doorbell); } static void sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq) { const unsigned int ptr_mask = rxq->ptr_mask; const uint32_t buf_size = rxq->buf_size; unsigned int free_space; unsigned int bulks; void *objs[SFC_RX_REFILL_BULK]; unsigned int added = rxq->added; free_space = SFC_EF10_RXQ_LIMIT(ptr_mask + 1) - (added - rxq->completed); if (free_space < rxq->refill_threshold) return; bulks = free_space / RTE_DIM(objs); /* refill_threshold guarantees that bulks is positive */ SFC_ASSERT(bulks > 0); do { unsigned int id; unsigned int i; if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs, RTE_DIM(objs)) < 0)) { struct rte_eth_dev_data *dev_data = rte_eth_devices[rxq->dp.dpq.port_id].data; /* * It is hardly a safe way to increment counter * from different contexts, but all PMDs do it. */ dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs); /* Return if we have posted nothing yet */ if (added == rxq->added) return; /* Push posted */ break; } for (i = 0, id = added & ptr_mask; i < RTE_DIM(objs); ++i, ++id) { struct rte_mbuf *m = objs[i]; struct sfc_ef10_rx_sw_desc *rxd; rte_iova_t phys_addr; SFC_ASSERT((id & ~ptr_mask) == 0); rxd = &rxq->sw_ring[id]; rxd->mbuf = m; /* * Avoid writing to mbuf. It is cheaper to do it * when we receive packet and fill in nearby * structure members. */ phys_addr = rte_mbuf_data_iova_default(m); EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id], ESF_DZ_RX_KER_BYTE_CNT, buf_size, ESF_DZ_RX_KER_BUF_ADDR, phys_addr); } added += RTE_DIM(objs); } while (--bulks > 0); SFC_ASSERT(rxq->added != added); rxq->added = added; sfc_ef10_rx_qpush(rxq); } static void sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id) { struct rte_mbuf *next_mbuf; /* Prefetch next bunch of software descriptors */ if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0) rte_prefetch0(&rxq->sw_ring[next_id]); /* * It looks strange to prefetch depending on previous prefetch * data, but measurements show that it is really efficient and * increases packet rate. */ next_mbuf = rxq->sw_ring[next_id].mbuf; if (likely(next_mbuf != NULL)) { /* Prefetch the next mbuf structure */ rte_mbuf_prefetch_part1(next_mbuf); /* Prefetch pseudo header of the next packet */ /* data_off is not filled in yet */ /* Yes, data could be not ready yet, but we hope */ rte_prefetch0((uint8_t *)next_mbuf->buf_addr + RTE_PKTMBUF_HEADROOM); } } static uint16_t sfc_ef10_rx_prepared(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->prepared); unsigned int completed = rxq->completed; unsigned int i; rxq->prepared -= n_rx_pkts; rxq->completed = completed + n_rx_pkts; for (i = 0; i < n_rx_pkts; ++i, ++completed) rx_pkts[i] = rxq->sw_ring[completed & rxq->ptr_mask].mbuf; return n_rx_pkts; } static void sfc_ef10_rx_ev_to_offloads(struct sfc_ef10_rxq *rxq, const efx_qword_t rx_ev, struct rte_mbuf *m) { uint32_t l2_ptype = 0; uint32_t l3_ptype = 0; uint32_t l4_ptype = 0; uint64_t ol_flags = 0; if (unlikely(EFX_TEST_QWORD_BIT(rx_ev, ESF_DZ_RX_PARSE_INCOMPLETE_LBN))) goto done; switch (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_ETH_TAG_CLASS)) { case ESE_DZ_ETH_TAG_CLASS_NONE: l2_ptype = RTE_PTYPE_L2_ETHER; break; case ESE_DZ_ETH_TAG_CLASS_VLAN1: l2_ptype = RTE_PTYPE_L2_ETHER_VLAN; break; case ESE_DZ_ETH_TAG_CLASS_VLAN2: l2_ptype = RTE_PTYPE_L2_ETHER_QINQ; break; default: /* Unexpected Eth tag class */ SFC_ASSERT(false); } switch (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_L3_CLASS)) { case ESE_DZ_L3_CLASS_IP4_FRAG: l4_ptype = RTE_PTYPE_L4_FRAG; /* FALLTHROUGH */ case ESE_DZ_L3_CLASS_IP4: l3_ptype = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; ol_flags |= PKT_RX_RSS_HASH | ((EFX_TEST_QWORD_BIT(rx_ev, ESF_DZ_RX_IPCKSUM_ERR_LBN)) ? PKT_RX_IP_CKSUM_BAD : PKT_RX_IP_CKSUM_GOOD); break; case ESE_DZ_L3_CLASS_IP6_FRAG: l4_ptype = RTE_PTYPE_L4_FRAG; /* FALLTHROUGH */ case ESE_DZ_L3_CLASS_IP6: l3_ptype = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; ol_flags |= PKT_RX_RSS_HASH; break; case ESE_DZ_L3_CLASS_ARP: /* Override Layer 2 packet type */ l2_ptype = RTE_PTYPE_L2_ETHER_ARP; break; case ESE_DZ_L3_CLASS_UNKNOWN: break; default: /* Unexpected Layer 3 class */ SFC_ASSERT(false); } switch (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_L4_CLASS)) { case ESE_DZ_L4_CLASS_TCP: l4_ptype = RTE_PTYPE_L4_TCP; ol_flags |= (EFX_TEST_QWORD_BIT(rx_ev, ESF_DZ_RX_TCPUDP_CKSUM_ERR_LBN)) ? PKT_RX_L4_CKSUM_BAD : PKT_RX_L4_CKSUM_GOOD; break; case ESE_DZ_L4_CLASS_UDP: l4_ptype = RTE_PTYPE_L4_UDP; ol_flags |= (EFX_TEST_QWORD_BIT(rx_ev, ESF_DZ_RX_TCPUDP_CKSUM_ERR_LBN)) ? PKT_RX_L4_CKSUM_BAD : PKT_RX_L4_CKSUM_GOOD; break; case ESE_DZ_L4_CLASS_UNKNOWN: break; default: /* Unexpected Layer 4 class */ SFC_ASSERT(false); } /* Remove RSS hash offload flag if RSS is not enabled */ if (~rxq->flags & SFC_EF10_RXQ_RSS_HASH) ol_flags &= ~PKT_RX_RSS_HASH; done: m->ol_flags = ol_flags; m->packet_type = l2_ptype | l3_ptype | l4_ptype; } static uint16_t sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr) { return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]); } static uint32_t sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr) { return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr); } static uint16_t sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { const unsigned int ptr_mask = rxq->ptr_mask; unsigned int completed = rxq->completed; unsigned int ready; struct sfc_ef10_rx_sw_desc *rxd; struct rte_mbuf *m; struct rte_mbuf *m0; uint16_t n_rx_pkts; const uint8_t *pseudo_hdr; uint16_t pkt_len; ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - completed) & EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS); SFC_ASSERT(ready > 0); if (rx_ev.eq_u64[0] & rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) | (1ull << ESF_DZ_RX_ECRC_ERR_LBN))) { SFC_ASSERT(rxq->prepared == 0); rxq->completed += ready; while (ready-- > 0) { rxd = &rxq->sw_ring[completed++ & ptr_mask]; rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf); } return 0; } n_rx_pkts = RTE_MIN(ready, nb_pkts); rxq->prepared = ready - n_rx_pkts; rxq->completed += n_rx_pkts; rxd = &rxq->sw_ring[completed++ & ptr_mask]; sfc_ef10_rx_prefetch_next(rxq, completed & ptr_mask); m = rxd->mbuf; *rx_pkts++ = m; RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data)); m->rearm_data[0] = rxq->rearm_data; /* Classify packet based on Rx event */ sfc_ef10_rx_ev_to_offloads(rxq, rx_ev, m); /* data_off already moved past pseudo header */ pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM; /* * Always get RSS hash from pseudo header to avoid * condition/branching. If it is valid or not depends on * PKT_RX_RSS_HASH in m->ol_flags. */ m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr); if (ready == 1) pkt_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) - rxq->prefix_size; else pkt_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr); SFC_ASSERT(pkt_len > 0); rte_pktmbuf_data_len(m) = pkt_len; rte_pktmbuf_pkt_len(m) = pkt_len; SFC_ASSERT(m->next == NULL); /* Remember mbuf to copy offload flags and packet type from */ m0 = m; for (--ready; ready > 0; --ready) { rxd = &rxq->sw_ring[completed++ & ptr_mask]; sfc_ef10_rx_prefetch_next(rxq, completed & ptr_mask); m = rxd->mbuf; if (ready > rxq->prepared) *rx_pkts++ = m; RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data)); m->rearm_data[0] = rxq->rearm_data; /* Event-dependent information is the same */ m->ol_flags = m0->ol_flags; m->packet_type = m0->packet_type; /* data_off already moved past pseudo header */ pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM; /* * Always get RSS hash from pseudo header to avoid * condition/branching. If it is valid or not depends on * PKT_RX_RSS_HASH in m->ol_flags. */ m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr); pkt_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr); SFC_ASSERT(pkt_len > 0); rte_pktmbuf_data_len(m) = pkt_len; rte_pktmbuf_pkt_len(m) = pkt_len; SFC_ASSERT(m->next == NULL); } return n_rx_pkts; } static bool sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev) { *rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask]; if (!sfc_ef10_ev_present(*rx_ev)) return false; if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) != FSE_AZ_EV_CODE_RX_EV)) { /* * Do not move read_ptr to keep the event for exception * handling by the control path. */ rxq->flags |= SFC_EF10_RXQ_EXCEPTION; sfc_ef10_rx_err(&rxq->dp.dpq, "RxQ exception at EvQ read ptr %#x", rxq->evq_read_ptr); return false; } rxq->evq_read_ptr++; return true; } static uint16_t sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue); unsigned int evq_old_read_ptr; uint16_t n_rx_pkts; efx_qword_t rx_ev; if (unlikely(rxq->flags & (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION))) return 0; n_rx_pkts = sfc_ef10_rx_prepared(rxq, rx_pkts, nb_pkts); evq_old_read_ptr = rxq->evq_read_ptr; while (n_rx_pkts != nb_pkts && sfc_ef10_rx_get_event(rxq, &rx_ev)) { /* * DROP_EVENT is an internal to the NIC, software should * never see it and, therefore, may ignore it. */ n_rx_pkts += sfc_ef10_rx_process_event(rxq, rx_ev, rx_pkts + n_rx_pkts, nb_pkts - n_rx_pkts); } sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr, rxq->evq_read_ptr); /* It is not a problem if we refill in the case of exception */ sfc_ef10_rx_qrefill(rxq); return n_rx_pkts; } static const uint32_t * sfc_ef10_supported_ptypes_get(void) { static const uint32_t ef10_native_ptypes[] = { RTE_PTYPE_L2_ETHER, RTE_PTYPE_L2_ETHER_ARP, RTE_PTYPE_L2_ETHER_VLAN, RTE_PTYPE_L2_ETHER_QINQ, RTE_PTYPE_L3_IPV4_EXT_UNKNOWN, RTE_PTYPE_L3_IPV6_EXT_UNKNOWN, RTE_PTYPE_L4_FRAG, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_UNKNOWN }; return ef10_native_ptypes; } static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending; static unsigned int sfc_ef10_rx_qdesc_npending(__rte_unused struct sfc_dp_rxq *dp_rxq) { /* * Correct implementation requires EvQ polling and events * processing (keeping all ready mbufs in prepared). */ return -ENOTSUP; } static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status; static int sfc_ef10_rx_qdesc_status(__rte_unused struct sfc_dp_rxq *dp_rxq, __rte_unused uint16_t offset) { return -ENOTSUP; } static uint64_t sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size) { struct rte_mbuf m; memset(&m, 0, sizeof(m)); rte_mbuf_refcnt_set(&m, 1); m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size; m.nb_segs = 1; m.port = port_id; /* rearm_data covers structure members filled in above */ rte_compiler_barrier(); RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t)); return m.rearm_data[0]; } static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate; static int sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id, const struct rte_pci_addr *pci_addr, int socket_id, const struct sfc_dp_rx_qcreate_info *info, struct sfc_dp_rxq **dp_rxqp) { struct sfc_ef10_rxq *rxq; int rc; rc = EINVAL; if (info->rxq_entries != info->evq_entries) goto fail_rxq_args; rc = ENOMEM; rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE, socket_id); if (rxq == NULL) goto fail_rxq_alloc; sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr); rc = ENOMEM; rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring", info->rxq_entries, sizeof(*rxq->sw_ring), RTE_CACHE_LINE_SIZE, socket_id); if (rxq->sw_ring == NULL) goto fail_desc_alloc; rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING; if (info->flags & SFC_RXQ_FLAG_RSS_HASH) rxq->flags |= SFC_EF10_RXQ_RSS_HASH; rxq->ptr_mask = info->rxq_entries - 1; rxq->evq_hw_ring = info->evq_hw_ring; rxq->refill_threshold = info->refill_threshold; rxq->rearm_data = sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size); rxq->prefix_size = info->prefix_size; rxq->buf_size = info->buf_size; rxq->refill_mb_pool = info->refill_mb_pool; rxq->rxq_hw_ring = info->rxq_hw_ring; rxq->doorbell = (volatile uint8_t *)info->mem_bar + ER_DZ_RX_DESC_UPD_REG_OFST + info->hw_index * ER_DZ_RX_DESC_UPD_REG_STEP; *dp_rxqp = &rxq->dp; return 0; fail_desc_alloc: rte_free(rxq); fail_rxq_alloc: fail_rxq_args: return rc; } static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy; static void sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq) { struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq); rte_free(rxq->sw_ring); rte_free(rxq); } static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart; static int sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr) { struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq); rxq->prepared = 0; rxq->completed = rxq->added = 0; sfc_ef10_rx_qrefill(rxq); rxq->evq_read_ptr = evq_read_ptr; rxq->flags |= SFC_EF10_RXQ_STARTED; rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION); return 0; } static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop; static void sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr) { struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq); rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING; *evq_read_ptr = rxq->evq_read_ptr; } static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev; static bool sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id) { __rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq); SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING); /* * It is safe to ignore Rx event since we free all mbufs on * queue purge anyway. */ return false; } static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge; static void sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq) { struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq); unsigned int i; struct sfc_ef10_rx_sw_desc *rxd; for (i = rxq->completed; i != rxq->added; ++i) { rxd = &rxq->sw_ring[i & rxq->ptr_mask]; rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf); rxd->mbuf = NULL; } rxq->flags &= ~SFC_EF10_RXQ_STARTED; } struct sfc_dp_rx sfc_ef10_rx = { .dp = { .name = SFC_KVARG_DATAPATH_EF10, .type = SFC_DP_RX, .hw_fw_caps = SFC_DP_HW_FW_CAP_EF10, }, .features = SFC_DP_RX_FEAT_MULTI_PROCESS, .qcreate = sfc_ef10_rx_qcreate, .qdestroy = sfc_ef10_rx_qdestroy, .qstart = sfc_ef10_rx_qstart, .qstop = sfc_ef10_rx_qstop, .qrx_ev = sfc_ef10_rx_qrx_ev, .qpurge = sfc_ef10_rx_qpurge, .supported_ptypes_get = sfc_ef10_supported_ptypes_get, .qdesc_npending = sfc_ef10_rx_qdesc_npending, .qdesc_status = sfc_ef10_rx_qdesc_status, .pkt_burst = sfc_ef10_recv_pkts, };