/*- * BSD LICENSE * * Copyright(c) 2016-2017 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Linux based path to the TUN device */ #define TUN_TAP_DEV_PATH "/dev/net/tun" #define DEFAULT_TAP_NAME "dtap" #define ETH_TAP_IFACE_ARG "iface" #define ETH_TAP_SPEED_ARG "speed" #define ETH_TAP_REMOTE_ARG "remote" #define ETH_TAP_MAC_ARG "mac" #define ETH_TAP_MAC_FIXED "fixed" static struct rte_vdev_driver pmd_tap_drv; static const char *valid_arguments[] = { ETH_TAP_IFACE_ARG, ETH_TAP_SPEED_ARG, ETH_TAP_REMOTE_ARG, ETH_TAP_MAC_ARG, NULL }; static int tap_unit; static volatile uint32_t tap_trigger; /* Rx trigger */ static struct rte_eth_link pmd_link = { .link_speed = ETH_SPEED_NUM_10G, .link_duplex = ETH_LINK_FULL_DUPLEX, .link_status = ETH_LINK_DOWN, .link_autoneg = ETH_LINK_FIXED, }; static void tap_trigger_cb(int sig __rte_unused) { /* Valid trigger values are nonzero */ tap_trigger = (tap_trigger + 1) | 0x80000000; } /* Specifies on what netdevices the ioctl should be applied */ enum ioctl_mode { LOCAL_AND_REMOTE, LOCAL_ONLY, REMOTE_ONLY, }; static int tap_intr_handle_set(struct rte_eth_dev *dev, int set); /* Tun/Tap allocation routine * * name is the number of the interface to use, unless NULL to take the host * supplied name. */ static int tun_alloc(struct pmd_internals *pmd) { struct ifreq ifr; #ifdef IFF_MULTI_QUEUE unsigned int features; #endif int fd; memset(&ifr, 0, sizeof(struct ifreq)); /* * Do not set IFF_NO_PI as packet information header will be needed * to check if a received packet has been truncated. */ ifr.ifr_flags = IFF_TAP; snprintf(ifr.ifr_name, IFNAMSIZ, "%s", pmd->name); RTE_LOG(DEBUG, PMD, "ifr_name '%s'\n", ifr.ifr_name); fd = open(TUN_TAP_DEV_PATH, O_RDWR); if (fd < 0) { RTE_LOG(ERR, PMD, "Unable to create TAP interface\n"); goto error; } #ifdef IFF_MULTI_QUEUE /* Grab the TUN features to verify we can work multi-queue */ if (ioctl(fd, TUNGETFEATURES, &features) < 0) { RTE_LOG(ERR, PMD, "TAP unable to get TUN/TAP features\n"); goto error; } RTE_LOG(DEBUG, PMD, " TAP Features %08x\n", features); if (features & IFF_MULTI_QUEUE) { RTE_LOG(DEBUG, PMD, " Multi-queue support for %d queues\n", RTE_PMD_TAP_MAX_QUEUES); ifr.ifr_flags |= IFF_MULTI_QUEUE; } else #endif { ifr.ifr_flags |= IFF_ONE_QUEUE; RTE_LOG(DEBUG, PMD, " Single queue only support\n"); } /* Set the TUN/TAP configuration and set the name if needed */ if (ioctl(fd, TUNSETIFF, (void *)&ifr) < 0) { RTE_LOG(WARNING, PMD, "Unable to set TUNSETIFF for %s\n", ifr.ifr_name); perror("TUNSETIFF"); goto error; } /* Always set the file descriptor to non-blocking */ if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0) { RTE_LOG(WARNING, PMD, "Unable to set %s to nonblocking\n", ifr.ifr_name); perror("F_SETFL, NONBLOCK"); goto error; } /* Set up trigger to optimize empty Rx bursts */ errno = 0; do { struct sigaction sa; int flags = fcntl(fd, F_GETFL); if (flags == -1 || sigaction(SIGIO, NULL, &sa) == -1) break; if (sa.sa_handler != tap_trigger_cb) { /* * Make sure SIGIO is not already taken. This is done * as late as possible to leave the application a * chance to set up its own signal handler first. */ if (sa.sa_handler != SIG_IGN && sa.sa_handler != SIG_DFL) { errno = EBUSY; break; } sa = (struct sigaction){ .sa_flags = SA_RESTART, .sa_handler = tap_trigger_cb, }; if (sigaction(SIGIO, &sa, NULL) == -1) break; } /* Enable SIGIO on file descriptor */ fcntl(fd, F_SETFL, flags | O_ASYNC); fcntl(fd, F_SETOWN, getpid()); } while (0); if (errno) { /* Disable trigger globally in case of error */ tap_trigger = 0; RTE_LOG(WARNING, PMD, "Rx trigger disabled: %s\n", strerror(errno)); } return fd; error: if (fd >= 0) close(fd); return -1; } static void tap_verify_csum(struct rte_mbuf *mbuf) { uint32_t l2 = mbuf->packet_type & RTE_PTYPE_L2_MASK; uint32_t l3 = mbuf->packet_type & RTE_PTYPE_L3_MASK; uint32_t l4 = mbuf->packet_type & RTE_PTYPE_L4_MASK; unsigned int l2_len = sizeof(struct ether_hdr); unsigned int l3_len; uint16_t cksum = 0; void *l3_hdr; void *l4_hdr; if (l2 == RTE_PTYPE_L2_ETHER_VLAN) l2_len += 4; else if (l2 == RTE_PTYPE_L2_ETHER_QINQ) l2_len += 8; /* Don't verify checksum for packets with discontinuous L2 header */ if (unlikely(l2_len + sizeof(struct ipv4_hdr) > rte_pktmbuf_data_len(mbuf))) return; l3_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len); if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) { struct ipv4_hdr *iph = l3_hdr; /* ihl contains the number of 4-byte words in the header */ l3_len = 4 * (iph->version_ihl & 0xf); if (unlikely(l2_len + l3_len > rte_pktmbuf_data_len(mbuf))) return; cksum = ~rte_raw_cksum(iph, l3_len); mbuf->ol_flags |= cksum ? PKT_RX_IP_CKSUM_BAD : PKT_RX_IP_CKSUM_GOOD; } else if (l3 == RTE_PTYPE_L3_IPV6) { l3_len = sizeof(struct ipv6_hdr); } else { /* IPv6 extensions are not supported */ return; } if (l4 == RTE_PTYPE_L4_UDP || l4 == RTE_PTYPE_L4_TCP) { l4_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len + l3_len); /* Don't verify checksum for multi-segment packets. */ if (mbuf->nb_segs > 1) return; if (l3 == RTE_PTYPE_L3_IPV4) cksum = ~rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr); else if (l3 == RTE_PTYPE_L3_IPV6) cksum = ~rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr); mbuf->ol_flags |= cksum ? PKT_RX_L4_CKSUM_BAD : PKT_RX_L4_CKSUM_GOOD; } } /* Callback to handle the rx burst of packets to the correct interface and * file descriptor(s) in a multi-queue setup. */ static uint16_t pmd_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts) { struct rx_queue *rxq = queue; uint16_t num_rx; unsigned long num_rx_bytes = 0; uint32_t trigger = tap_trigger; if (trigger == rxq->trigger_seen) return 0; if (trigger) rxq->trigger_seen = trigger; rte_compiler_barrier(); for (num_rx = 0; num_rx < nb_pkts; ) { struct rte_mbuf *mbuf = rxq->pool; struct rte_mbuf *seg = NULL; struct rte_mbuf *new_tail = NULL; uint16_t data_off = rte_pktmbuf_headroom(mbuf); int len; len = readv(rxq->fd, *rxq->iovecs, 1 + (rxq->rxmode->enable_scatter ? rxq->nb_rx_desc : 1)); if (len < (int)sizeof(struct tun_pi)) break; /* Packet couldn't fit in the provided mbuf */ if (unlikely(rxq->pi.flags & TUN_PKT_STRIP)) { rxq->stats.ierrors++; continue; } len -= sizeof(struct tun_pi); mbuf->pkt_len = len; mbuf->port = rxq->in_port; while (1) { struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp); if (unlikely(!buf)) { rxq->stats.rx_nombuf++; /* No new buf has been allocated: do nothing */ if (!new_tail || !seg) goto end; seg->next = NULL; rte_pktmbuf_free(mbuf); goto end; } seg = seg ? seg->next : mbuf; if (rxq->pool == mbuf) rxq->pool = buf; if (new_tail) new_tail->next = buf; new_tail = buf; new_tail->next = seg->next; /* iovecs[0] is reserved for packet info (pi) */ (*rxq->iovecs)[mbuf->nb_segs].iov_len = buf->buf_len - data_off; (*rxq->iovecs)[mbuf->nb_segs].iov_base = (char *)buf->buf_addr + data_off; seg->data_len = RTE_MIN(seg->buf_len - data_off, len); seg->data_off = data_off; len -= seg->data_len; if (len <= 0) break; mbuf->nb_segs++; /* First segment has headroom, not the others */ data_off = 0; } seg->next = NULL; mbuf->packet_type = rte_net_get_ptype(mbuf, NULL, RTE_PTYPE_ALL_MASK); if (rxq->rxmode->hw_ip_checksum) tap_verify_csum(mbuf); /* account for the receive frame */ bufs[num_rx++] = mbuf; num_rx_bytes += mbuf->pkt_len; } end: rxq->stats.ipackets += num_rx; rxq->stats.ibytes += num_rx_bytes; return num_rx; } static void tap_tx_offload(char *packet, uint64_t ol_flags, unsigned int l2_len, unsigned int l3_len) { void *l3_hdr = packet + l2_len; if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4)) { struct ipv4_hdr *iph = l3_hdr; uint16_t cksum; iph->hdr_checksum = 0; cksum = rte_raw_cksum(iph, l3_len); iph->hdr_checksum = (cksum == 0xffff) ? cksum : ~cksum; } if (ol_flags & PKT_TX_L4_MASK) { uint16_t l4_len; uint32_t cksum; uint16_t *l4_cksum; void *l4_hdr; l4_hdr = packet + l2_len + l3_len; if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM) l4_cksum = &((struct udp_hdr *)l4_hdr)->dgram_cksum; else if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) l4_cksum = &((struct tcp_hdr *)l4_hdr)->cksum; else return; *l4_cksum = 0; if (ol_flags & PKT_TX_IPV4) { struct ipv4_hdr *iph = l3_hdr; l4_len = rte_be_to_cpu_16(iph->total_length) - l3_len; cksum = rte_ipv4_phdr_cksum(l3_hdr, 0); } else { struct ipv6_hdr *ip6h = l3_hdr; /* payload_len does not include ext headers */ l4_len = rte_be_to_cpu_16(ip6h->payload_len) - l3_len + sizeof(struct ipv6_hdr); cksum = rte_ipv6_phdr_cksum(l3_hdr, 0); } cksum += rte_raw_cksum(l4_hdr, l4_len); cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff); cksum = (~cksum) & 0xffff; if (cksum == 0) cksum = 0xffff; *l4_cksum = cksum; } } /* Callback to handle sending packets from the tap interface */ static uint16_t pmd_tx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts) { struct tx_queue *txq = queue; uint16_t num_tx = 0; unsigned long num_tx_bytes = 0; uint32_t max_size; int i; if (unlikely(nb_pkts == 0)) return 0; max_size = *txq->mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN + 4); for (i = 0; i < nb_pkts; i++) { struct rte_mbuf *mbuf = bufs[num_tx]; struct iovec iovecs[mbuf->nb_segs + 1]; struct tun_pi pi = { .flags = 0 }; struct rte_mbuf *seg = mbuf; char m_copy[mbuf->data_len]; int n; int j; /* stats.errs will be incremented */ if (rte_pktmbuf_pkt_len(mbuf) > max_size) break; iovecs[0].iov_base = π iovecs[0].iov_len = sizeof(pi); for (j = 1; j <= mbuf->nb_segs; j++) { iovecs[j].iov_len = rte_pktmbuf_data_len(seg); iovecs[j].iov_base = rte_pktmbuf_mtod(seg, void *); seg = seg->next; } if (mbuf->ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4) || (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM || (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) { /* Support only packets with all data in the same seg */ if (mbuf->nb_segs > 1) break; /* To change checksums, work on a copy of data. */ rte_memcpy(m_copy, rte_pktmbuf_mtod(mbuf, void *), rte_pktmbuf_data_len(mbuf)); tap_tx_offload(m_copy, mbuf->ol_flags, mbuf->l2_len, mbuf->l3_len); iovecs[1].iov_base = m_copy; } /* copy the tx frame data */ n = writev(txq->fd, iovecs, mbuf->nb_segs + 1); if (n <= 0) break; num_tx++; num_tx_bytes += mbuf->pkt_len; rte_pktmbuf_free(mbuf); } txq->stats.opackets += num_tx; txq->stats.errs += nb_pkts - num_tx; txq->stats.obytes += num_tx_bytes; return num_tx; } static const char * tap_ioctl_req2str(unsigned long request) { switch (request) { case SIOCSIFFLAGS: return "SIOCSIFFLAGS"; case SIOCGIFFLAGS: return "SIOCGIFFLAGS"; case SIOCGIFHWADDR: return "SIOCGIFHWADDR"; case SIOCSIFHWADDR: return "SIOCSIFHWADDR"; case SIOCSIFMTU: return "SIOCSIFMTU"; } return "UNKNOWN"; } static int tap_ioctl(struct pmd_internals *pmd, unsigned long request, struct ifreq *ifr, int set, enum ioctl_mode mode) { short req_flags = ifr->ifr_flags; int remote = pmd->remote_if_index && (mode == REMOTE_ONLY || mode == LOCAL_AND_REMOTE); if (!pmd->remote_if_index && mode == REMOTE_ONLY) return 0; /* * If there is a remote netdevice, apply ioctl on it, then apply it on * the tap netdevice. */ apply: if (remote) snprintf(ifr->ifr_name, IFNAMSIZ, "%s", pmd->remote_iface); else if (mode == LOCAL_ONLY || mode == LOCAL_AND_REMOTE) snprintf(ifr->ifr_name, IFNAMSIZ, "%s", pmd->name); switch (request) { case SIOCSIFFLAGS: /* fetch current flags to leave other flags untouched */ if (ioctl(pmd->ioctl_sock, SIOCGIFFLAGS, ifr) < 0) goto error; if (set) ifr->ifr_flags |= req_flags; else ifr->ifr_flags &= ~req_flags; break; case SIOCGIFFLAGS: case SIOCGIFHWADDR: case SIOCSIFHWADDR: case SIOCSIFMTU: break; default: RTE_LOG(WARNING, PMD, "%s: ioctl() called with wrong arg\n", pmd->name); return -EINVAL; } if (ioctl(pmd->ioctl_sock, request, ifr) < 0) goto error; if (remote-- && mode == LOCAL_AND_REMOTE) goto apply; return 0; error: RTE_LOG(DEBUG, PMD, "%s: %s(%s) failed: %s(%d)\n", ifr->ifr_name, __func__, tap_ioctl_req2str(request), strerror(errno), errno); return -errno; } static int tap_link_set_down(struct rte_eth_dev *dev) { struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_flags = IFF_UP }; dev->data->dev_link.link_status = ETH_LINK_DOWN; return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_ONLY); } static int tap_link_set_up(struct rte_eth_dev *dev) { struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_flags = IFF_UP }; dev->data->dev_link.link_status = ETH_LINK_UP; return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE); } static int tap_dev_start(struct rte_eth_dev *dev) { int err; err = tap_intr_handle_set(dev, 1); if (err) return err; return tap_link_set_up(dev); } /* This function gets called when the current port gets stopped. */ static void tap_dev_stop(struct rte_eth_dev *dev) { tap_intr_handle_set(dev, 0); tap_link_set_down(dev); } static int tap_dev_configure(struct rte_eth_dev *dev) { if (dev->data->nb_rx_queues > RTE_PMD_TAP_MAX_QUEUES) { RTE_LOG(ERR, PMD, "%s: number of rx queues %d exceeds max num of queues %d\n", dev->device->name, dev->data->nb_rx_queues, RTE_PMD_TAP_MAX_QUEUES); return -1; } if (dev->data->nb_tx_queues > RTE_PMD_TAP_MAX_QUEUES) { RTE_LOG(ERR, PMD, "%s: number of tx queues %d exceeds max num of queues %d\n", dev->device->name, dev->data->nb_tx_queues, RTE_PMD_TAP_MAX_QUEUES); return -1; } RTE_LOG(INFO, PMD, "%s: %p: TX configured queues number: %u\n", dev->device->name, (void *)dev, dev->data->nb_tx_queues); RTE_LOG(INFO, PMD, "%s: %p: RX configured queues number: %u\n", dev->device->name, (void *)dev, dev->data->nb_rx_queues); return 0; } static uint32_t tap_dev_speed_capa(void) { uint32_t speed = pmd_link.link_speed; uint32_t capa = 0; if (speed >= ETH_SPEED_NUM_10M) capa |= ETH_LINK_SPEED_10M; if (speed >= ETH_SPEED_NUM_100M) capa |= ETH_LINK_SPEED_100M; if (speed >= ETH_SPEED_NUM_1G) capa |= ETH_LINK_SPEED_1G; if (speed >= ETH_SPEED_NUM_5G) capa |= ETH_LINK_SPEED_2_5G; if (speed >= ETH_SPEED_NUM_5G) capa |= ETH_LINK_SPEED_5G; if (speed >= ETH_SPEED_NUM_10G) capa |= ETH_LINK_SPEED_10G; if (speed >= ETH_SPEED_NUM_20G) capa |= ETH_LINK_SPEED_20G; if (speed >= ETH_SPEED_NUM_25G) capa |= ETH_LINK_SPEED_25G; if (speed >= ETH_SPEED_NUM_40G) capa |= ETH_LINK_SPEED_40G; if (speed >= ETH_SPEED_NUM_50G) capa |= ETH_LINK_SPEED_50G; if (speed >= ETH_SPEED_NUM_56G) capa |= ETH_LINK_SPEED_56G; if (speed >= ETH_SPEED_NUM_100G) capa |= ETH_LINK_SPEED_100G; return capa; } static void tap_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct pmd_internals *internals = dev->data->dev_private; dev_info->if_index = internals->if_index; dev_info->max_mac_addrs = 1; dev_info->max_rx_pktlen = (uint32_t)ETHER_MAX_VLAN_FRAME_LEN; dev_info->max_rx_queues = RTE_PMD_TAP_MAX_QUEUES; dev_info->max_tx_queues = RTE_PMD_TAP_MAX_QUEUES; dev_info->min_rx_bufsize = 0; dev_info->pci_dev = NULL; dev_info->speed_capa = tap_dev_speed_capa(); dev_info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM); dev_info->tx_offload_capa = (DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM); } static int tap_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *tap_stats) { unsigned int i, imax; unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0; unsigned long rx_bytes_total = 0, tx_bytes_total = 0; unsigned long rx_nombuf = 0, ierrors = 0; const struct pmd_internals *pmd = dev->data->dev_private; /* rx queue statistics */ imax = (dev->data->nb_rx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ? dev->data->nb_rx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS; for (i = 0; i < imax; i++) { tap_stats->q_ipackets[i] = pmd->rxq[i].stats.ipackets; tap_stats->q_ibytes[i] = pmd->rxq[i].stats.ibytes; rx_total += tap_stats->q_ipackets[i]; rx_bytes_total += tap_stats->q_ibytes[i]; rx_nombuf += pmd->rxq[i].stats.rx_nombuf; ierrors += pmd->rxq[i].stats.ierrors; } /* tx queue statistics */ imax = (dev->data->nb_tx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ? dev->data->nb_tx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS; for (i = 0; i < imax; i++) { tap_stats->q_opackets[i] = pmd->txq[i].stats.opackets; tap_stats->q_errors[i] = pmd->txq[i].stats.errs; tap_stats->q_obytes[i] = pmd->txq[i].stats.obytes; tx_total += tap_stats->q_opackets[i]; tx_err_total += tap_stats->q_errors[i]; tx_bytes_total += tap_stats->q_obytes[i]; } tap_stats->ipackets = rx_total; tap_stats->ibytes = rx_bytes_total; tap_stats->ierrors = ierrors; tap_stats->rx_nombuf = rx_nombuf; tap_stats->opackets = tx_total; tap_stats->oerrors = tx_err_total; tap_stats->obytes = tx_bytes_total; return 0; } static void tap_stats_reset(struct rte_eth_dev *dev) { int i; struct pmd_internals *pmd = dev->data->dev_private; for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) { pmd->rxq[i].stats.ipackets = 0; pmd->rxq[i].stats.ibytes = 0; pmd->rxq[i].stats.ierrors = 0; pmd->rxq[i].stats.rx_nombuf = 0; pmd->txq[i].stats.opackets = 0; pmd->txq[i].stats.errs = 0; pmd->txq[i].stats.obytes = 0; } } static void tap_dev_close(struct rte_eth_dev *dev) { int i; struct pmd_internals *internals = dev->data->dev_private; tap_link_set_down(dev); tap_flow_flush(dev, NULL); tap_flow_implicit_flush(internals, NULL); for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) { if (internals->rxq[i].fd != -1) { close(internals->rxq[i].fd); internals->rxq[i].fd = -1; } if (internals->txq[i].fd != -1) { close(internals->txq[i].fd); internals->txq[i].fd = -1; } } if (internals->remote_if_index) { /* Restore initial remote state */ ioctl(internals->ioctl_sock, SIOCSIFFLAGS, &internals->remote_initial_flags); } } static void tap_rx_queue_release(void *queue) { struct rx_queue *rxq = queue; if (rxq && (rxq->fd > 0)) { close(rxq->fd); rxq->fd = -1; rte_pktmbuf_free(rxq->pool); rte_free(rxq->iovecs); rxq->pool = NULL; rxq->iovecs = NULL; } } static void tap_tx_queue_release(void *queue) { struct tx_queue *txq = queue; if (txq && (txq->fd > 0)) { close(txq->fd); txq->fd = -1; } } static int tap_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused) { struct rte_eth_link *dev_link = &dev->data->dev_link; struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_flags = 0 }; if (pmd->remote_if_index) { tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, REMOTE_ONLY); if (!(ifr.ifr_flags & IFF_UP) || !(ifr.ifr_flags & IFF_RUNNING)) { dev_link->link_status = ETH_LINK_DOWN; return 0; } } tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, LOCAL_ONLY); dev_link->link_status = ((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING) ? ETH_LINK_UP : ETH_LINK_DOWN); return 0; } static void tap_promisc_enable(struct rte_eth_dev *dev) { struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_flags = IFF_PROMISC }; dev->data->promiscuous = 1; tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE); if (pmd->remote_if_index && !pmd->flow_isolate) tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC); } static void tap_promisc_disable(struct rte_eth_dev *dev) { struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_flags = IFF_PROMISC }; dev->data->promiscuous = 0; tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE); if (pmd->remote_if_index && !pmd->flow_isolate) tap_flow_implicit_destroy(pmd, TAP_REMOTE_PROMISC); } static void tap_allmulti_enable(struct rte_eth_dev *dev) { struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI }; dev->data->all_multicast = 1; tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE); if (pmd->remote_if_index && !pmd->flow_isolate) tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI); } static void tap_allmulti_disable(struct rte_eth_dev *dev) { struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI }; dev->data->all_multicast = 0; tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE); if (pmd->remote_if_index && !pmd->flow_isolate) tap_flow_implicit_destroy(pmd, TAP_REMOTE_ALLMULTI); } static void tap_mac_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) { struct pmd_internals *pmd = dev->data->dev_private; enum ioctl_mode mode = LOCAL_ONLY; struct ifreq ifr; if (is_zero_ether_addr(mac_addr)) { RTE_LOG(ERR, PMD, "%s: can't set an empty MAC address\n", dev->device->name); return; } /* Check the actual current MAC address on the tap netdevice */ if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) return; if (is_same_ether_addr((struct ether_addr *)&ifr.ifr_hwaddr.sa_data, mac_addr)) return; /* Check the current MAC address on the remote */ if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) return; if (!is_same_ether_addr((struct ether_addr *)&ifr.ifr_hwaddr.sa_data, mac_addr)) mode = LOCAL_AND_REMOTE; ifr.ifr_hwaddr.sa_family = AF_LOCAL; rte_memcpy(ifr.ifr_hwaddr.sa_data, mac_addr, ETHER_ADDR_LEN); if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 1, mode) < 0) return; rte_memcpy(&pmd->eth_addr, mac_addr, ETHER_ADDR_LEN); if (pmd->remote_if_index && !pmd->flow_isolate) { /* Replace MAC redirection rule after a MAC change */ if (tap_flow_implicit_destroy(pmd, TAP_REMOTE_LOCAL_MAC) < 0) { RTE_LOG(ERR, PMD, "%s: Couldn't delete MAC redirection rule\n", dev->device->name); return; } if (tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0) RTE_LOG(ERR, PMD, "%s: Couldn't add MAC redirection rule\n", dev->device->name); } } static int tap_setup_queue(struct rte_eth_dev *dev, struct pmd_internals *internals, uint16_t qid, int is_rx) { int *fd; int *other_fd; const char *dir; struct pmd_internals *pmd = dev->data->dev_private; struct rx_queue *rx = &internals->rxq[qid]; struct tx_queue *tx = &internals->txq[qid]; if (is_rx) { fd = &rx->fd; other_fd = &tx->fd; dir = "rx"; } else { fd = &tx->fd; other_fd = &rx->fd; dir = "tx"; } if (*fd != -1) { /* fd for this queue already exists */ RTE_LOG(DEBUG, PMD, "%s: fd %d for %s queue qid %d exists\n", pmd->name, *fd, dir, qid); } else if (*other_fd != -1) { /* Only other_fd exists. dup it */ *fd = dup(*other_fd); if (*fd < 0) { *fd = -1; RTE_LOG(ERR, PMD, "%s: dup() failed.\n", pmd->name); return -1; } RTE_LOG(DEBUG, PMD, "%s: dup fd %d for %s queue qid %d (%d)\n", pmd->name, *other_fd, dir, qid, *fd); } else { /* Both RX and TX fds do not exist (equal -1). Create fd */ *fd = tun_alloc(pmd); if (*fd < 0) { *fd = -1; /* restore original value */ RTE_LOG(ERR, PMD, "%s: tun_alloc() failed.\n", pmd->name); return -1; } RTE_LOG(DEBUG, PMD, "%s: add %s queue for qid %d fd %d\n", pmd->name, dir, qid, *fd); } tx->mtu = &dev->data->mtu; rx->rxmode = &dev->data->dev_conf.rxmode; return *fd; } static int tap_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, uint16_t nb_rx_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf __rte_unused, struct rte_mempool *mp) { struct pmd_internals *internals = dev->data->dev_private; struct rx_queue *rxq = &internals->rxq[rx_queue_id]; struct rte_mbuf **tmp = &rxq->pool; long iov_max = sysconf(_SC_IOV_MAX); uint16_t nb_desc = RTE_MIN(nb_rx_desc, iov_max - 1); struct iovec (*iovecs)[nb_desc + 1]; int data_off = RTE_PKTMBUF_HEADROOM; int ret = 0; int fd; int i; if (rx_queue_id >= dev->data->nb_rx_queues || !mp) { RTE_LOG(WARNING, PMD, "nb_rx_queues %d too small or mempool NULL\n", dev->data->nb_rx_queues); return -1; } rxq->mp = mp; rxq->trigger_seen = 1; /* force initial burst */ rxq->in_port = dev->data->port_id; rxq->nb_rx_desc = nb_desc; iovecs = rte_zmalloc_socket(dev->device->name, sizeof(*iovecs), 0, socket_id); if (!iovecs) { RTE_LOG(WARNING, PMD, "%s: Couldn't allocate %d RX descriptors\n", dev->device->name, nb_desc); return -ENOMEM; } rxq->iovecs = iovecs; dev->data->rx_queues[rx_queue_id] = rxq; fd = tap_setup_queue(dev, internals, rx_queue_id, 1); if (fd == -1) { ret = fd; goto error; } (*rxq->iovecs)[0].iov_len = sizeof(struct tun_pi); (*rxq->iovecs)[0].iov_base = &rxq->pi; for (i = 1; i <= nb_desc; i++) { *tmp = rte_pktmbuf_alloc(rxq->mp); if (!*tmp) { RTE_LOG(WARNING, PMD, "%s: couldn't allocate memory for queue %d\n", dev->device->name, rx_queue_id); ret = -ENOMEM; goto error; } (*rxq->iovecs)[i].iov_len = (*tmp)->buf_len - data_off; (*rxq->iovecs)[i].iov_base = (char *)(*tmp)->buf_addr + data_off; data_off = 0; tmp = &(*tmp)->next; } RTE_LOG(DEBUG, PMD, " RX TAP device name %s, qid %d on fd %d\n", internals->name, rx_queue_id, internals->rxq[rx_queue_id].fd); return 0; error: rte_pktmbuf_free(rxq->pool); rxq->pool = NULL; rte_free(rxq->iovecs); rxq->iovecs = NULL; return ret; } static int tap_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, uint16_t nb_tx_desc __rte_unused, unsigned int socket_id __rte_unused, const struct rte_eth_txconf *tx_conf __rte_unused) { struct pmd_internals *internals = dev->data->dev_private; int ret; if (tx_queue_id >= dev->data->nb_tx_queues) return -1; dev->data->tx_queues[tx_queue_id] = &internals->txq[tx_queue_id]; ret = tap_setup_queue(dev, internals, tx_queue_id, 0); if (ret == -1) return -1; RTE_LOG(DEBUG, PMD, " TX TAP device name %s, qid %d on fd %d\n", internals->name, tx_queue_id, internals->txq[tx_queue_id].fd); return 0; } static int tap_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { struct pmd_internals *pmd = dev->data->dev_private; struct ifreq ifr = { .ifr_mtu = mtu }; int err = 0; err = tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE); if (!err) dev->data->mtu = mtu; return err; } static int tap_set_mc_addr_list(struct rte_eth_dev *dev __rte_unused, struct ether_addr *mc_addr_set __rte_unused, uint32_t nb_mc_addr __rte_unused) { /* * Nothing to do actually: the tap has no filtering whatsoever, every * packet is received. */ return 0; } static int tap_nl_msg_handler(struct nlmsghdr *nh, void *arg) { struct rte_eth_dev *dev = arg; struct pmd_internals *pmd = dev->data->dev_private; struct ifinfomsg *info = NLMSG_DATA(nh); if (nh->nlmsg_type != RTM_NEWLINK || (info->ifi_index != pmd->if_index && info->ifi_index != pmd->remote_if_index)) return 0; return tap_link_update(dev, 0); } static void tap_dev_intr_handler(void *cb_arg) { struct rte_eth_dev *dev = cb_arg; struct pmd_internals *pmd = dev->data->dev_private; nl_recv(pmd->intr_handle.fd, tap_nl_msg_handler, dev); } static int tap_intr_handle_set(struct rte_eth_dev *dev, int set) { struct pmd_internals *pmd = dev->data->dev_private; /* In any case, disable interrupt if the conf is no longer there. */ if (!dev->data->dev_conf.intr_conf.lsc) { if (pmd->intr_handle.fd != -1) { nl_final(pmd->intr_handle.fd); rte_intr_callback_unregister(&pmd->intr_handle, tap_dev_intr_handler, dev); } return 0; } if (set) { pmd->intr_handle.fd = nl_init(RTMGRP_LINK); if (unlikely(pmd->intr_handle.fd == -1)) return -EBADF; return rte_intr_callback_register( &pmd->intr_handle, tap_dev_intr_handler, dev); } nl_final(pmd->intr_handle.fd); return rte_intr_callback_unregister(&pmd->intr_handle, tap_dev_intr_handler, dev); } static const uint32_t* tap_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused) { static const uint32_t ptypes[] = { RTE_PTYPE_INNER_L2_ETHER, RTE_PTYPE_INNER_L2_ETHER_VLAN, RTE_PTYPE_INNER_L2_ETHER_QINQ, RTE_PTYPE_INNER_L3_IPV4, RTE_PTYPE_INNER_L3_IPV4_EXT, RTE_PTYPE_INNER_L3_IPV6, RTE_PTYPE_INNER_L3_IPV6_EXT, RTE_PTYPE_INNER_L4_FRAG, RTE_PTYPE_INNER_L4_UDP, RTE_PTYPE_INNER_L4_TCP, RTE_PTYPE_INNER_L4_SCTP, RTE_PTYPE_L2_ETHER, RTE_PTYPE_L2_ETHER_VLAN, RTE_PTYPE_L2_ETHER_QINQ, RTE_PTYPE_L3_IPV4, RTE_PTYPE_L3_IPV4_EXT, RTE_PTYPE_L3_IPV6_EXT, RTE_PTYPE_L3_IPV6, RTE_PTYPE_L4_FRAG, RTE_PTYPE_L4_UDP, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_SCTP, }; return ptypes; } static int tap_flow_ctrl_get(struct rte_eth_dev *dev __rte_unused, struct rte_eth_fc_conf *fc_conf) { fc_conf->mode = RTE_FC_NONE; return 0; } static int tap_flow_ctrl_set(struct rte_eth_dev *dev __rte_unused, struct rte_eth_fc_conf *fc_conf) { if (fc_conf->mode != RTE_FC_NONE) return -ENOTSUP; return 0; } static const struct eth_dev_ops ops = { .dev_start = tap_dev_start, .dev_stop = tap_dev_stop, .dev_close = tap_dev_close, .dev_configure = tap_dev_configure, .dev_infos_get = tap_dev_info, .rx_queue_setup = tap_rx_queue_setup, .tx_queue_setup = tap_tx_queue_setup, .rx_queue_release = tap_rx_queue_release, .tx_queue_release = tap_tx_queue_release, .flow_ctrl_get = tap_flow_ctrl_get, .flow_ctrl_set = tap_flow_ctrl_set, .link_update = tap_link_update, .dev_set_link_up = tap_link_set_up, .dev_set_link_down = tap_link_set_down, .promiscuous_enable = tap_promisc_enable, .promiscuous_disable = tap_promisc_disable, .allmulticast_enable = tap_allmulti_enable, .allmulticast_disable = tap_allmulti_disable, .mac_addr_set = tap_mac_set, .mtu_set = tap_mtu_set, .set_mc_addr_list = tap_set_mc_addr_list, .stats_get = tap_stats_get, .stats_reset = tap_stats_reset, .dev_supported_ptypes_get = tap_dev_supported_ptypes_get, .filter_ctrl = tap_dev_filter_ctrl, }; static int eth_dev_tap_create(struct rte_vdev_device *vdev, char *tap_name, char *remote_iface, int fixed_mac_type) { int numa_node = rte_socket_id(); struct rte_eth_dev *dev; struct pmd_internals *pmd; struct rte_eth_dev_data *data; struct ifreq ifr; int i; RTE_LOG(DEBUG, PMD, " TAP device on numa %u\n", rte_socket_id()); data = rte_zmalloc_socket(tap_name, sizeof(*data), 0, numa_node); if (!data) { RTE_LOG(ERR, PMD, "TAP Failed to allocate data\n"); goto error_exit_nodev; } dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd)); if (!dev) { RTE_LOG(ERR, PMD, "TAP Unable to allocate device struct\n"); goto error_exit_nodev; } pmd = dev->data->dev_private; pmd->dev = dev; snprintf(pmd->name, sizeof(pmd->name), "%s", tap_name); pmd->ioctl_sock = socket(AF_INET, SOCK_DGRAM, 0); if (pmd->ioctl_sock == -1) { RTE_LOG(ERR, PMD, "TAP Unable to get a socket for management: %s\n", strerror(errno)); goto error_exit; } /* Setup some default values */ rte_memcpy(data, dev->data, sizeof(*data)); data->dev_private = pmd; data->dev_flags = RTE_ETH_DEV_INTR_LSC; data->numa_node = numa_node; data->dev_link = pmd_link; data->mac_addrs = &pmd->eth_addr; /* Set the number of RX and TX queues */ data->nb_rx_queues = 0; data->nb_tx_queues = 0; dev->data = data; dev->dev_ops = &ops; dev->rx_pkt_burst = pmd_rx_burst; dev->tx_pkt_burst = pmd_tx_burst; pmd->intr_handle.type = RTE_INTR_HANDLE_EXT; pmd->intr_handle.fd = -1; /* Presetup the fds to -1 as being not valid */ for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) { pmd->rxq[i].fd = -1; pmd->txq[i].fd = -1; } if (fixed_mac_type) { /* fixed mac = 00:64:74:61:70: */ static int iface_idx; char mac[ETHER_ADDR_LEN] = "\0dtap"; mac[ETHER_ADDR_LEN - 1] = iface_idx++; rte_memcpy(&pmd->eth_addr, mac, ETHER_ADDR_LEN); } else { eth_random_addr((uint8_t *)&pmd->eth_addr); } /* Immediately create the netdevice (this will create the 1st queue). */ /* rx queue */ if (tap_setup_queue(dev, pmd, 0, 1) == -1) goto error_exit; /* tx queue */ if (tap_setup_queue(dev, pmd, 0, 0) == -1) goto error_exit; ifr.ifr_mtu = dev->data->mtu; if (tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE) < 0) goto error_exit; memset(&ifr, 0, sizeof(struct ifreq)); ifr.ifr_hwaddr.sa_family = AF_LOCAL; rte_memcpy(ifr.ifr_hwaddr.sa_data, &pmd->eth_addr, ETHER_ADDR_LEN); if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) goto error_exit; /* * Set up everything related to rte_flow: * - netlink socket * - tap / remote if_index * - mandatory QDISCs * - rte_flow actual/implicit lists * - implicit rules */ pmd->nlsk_fd = nl_init(0); if (pmd->nlsk_fd == -1) { RTE_LOG(WARNING, PMD, "%s: failed to create netlink socket.\n", pmd->name); goto disable_rte_flow; } pmd->if_index = if_nametoindex(pmd->name); if (!pmd->if_index) { RTE_LOG(ERR, PMD, "%s: failed to get if_index.\n", pmd->name); goto disable_rte_flow; } if (qdisc_create_multiq(pmd->nlsk_fd, pmd->if_index) < 0) { RTE_LOG(ERR, PMD, "%s: failed to create multiq qdisc.\n", pmd->name); goto disable_rte_flow; } if (qdisc_create_ingress(pmd->nlsk_fd, pmd->if_index) < 0) { RTE_LOG(ERR, PMD, "%s: failed to create ingress qdisc.\n", pmd->name); goto disable_rte_flow; } LIST_INIT(&pmd->flows); if (strlen(remote_iface)) { pmd->remote_if_index = if_nametoindex(remote_iface); if (!pmd->remote_if_index) { RTE_LOG(ERR, PMD, "%s: failed to get %s if_index.\n", pmd->name, remote_iface); goto error_remote; } snprintf(pmd->remote_iface, RTE_ETH_NAME_MAX_LEN, "%s", remote_iface); /* Save state of remote device */ tap_ioctl(pmd, SIOCGIFFLAGS, &pmd->remote_initial_flags, 0, REMOTE_ONLY); /* Replicate remote MAC address */ if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) { RTE_LOG(ERR, PMD, "%s: failed to get %s MAC address.\n", pmd->name, pmd->remote_iface); goto error_remote; } rte_memcpy(&pmd->eth_addr, ifr.ifr_hwaddr.sa_data, ETHER_ADDR_LEN); /* The desired MAC is already in ifreq after SIOCGIFHWADDR. */ if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) { RTE_LOG(ERR, PMD, "%s: failed to get %s MAC address.\n", pmd->name, remote_iface); goto error_remote; } /* * Flush usually returns negative value because it tries to * delete every QDISC (and on a running device, one QDISC at * least is needed). Ignore negative return value. */ qdisc_flush(pmd->nlsk_fd, pmd->remote_if_index); if (qdisc_create_ingress(pmd->nlsk_fd, pmd->remote_if_index) < 0) { RTE_LOG(ERR, PMD, "%s: failed to create ingress qdisc.\n", pmd->remote_iface); goto error_remote; } LIST_INIT(&pmd->implicit_flows); if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0 || tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0 || tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0 || tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) { RTE_LOG(ERR, PMD, "%s: failed to create implicit rules.\n", pmd->name); goto error_remote; } } return 0; disable_rte_flow: RTE_LOG(ERR, PMD, " Disabling rte flow support: %s(%d)\n", strerror(errno), errno); if (strlen(remote_iface)) { RTE_LOG(ERR, PMD, "Remote feature requires flow support.\n"); goto error_exit; } return 0; error_remote: RTE_LOG(ERR, PMD, " Can't set up remote feature: %s(%d)\n", strerror(errno), errno); tap_flow_implicit_flush(pmd, NULL); error_exit: if (pmd->ioctl_sock > 0) close(pmd->ioctl_sock); rte_eth_dev_release_port(dev); error_exit_nodev: RTE_LOG(ERR, PMD, "TAP Unable to initialize %s\n", rte_vdev_device_name(vdev)); rte_free(data); return -EINVAL; } static int set_interface_name(const char *key __rte_unused, const char *value, void *extra_args) { char *name = (char *)extra_args; if (value) snprintf(name, RTE_ETH_NAME_MAX_LEN - 1, "%s", value); else snprintf(name, RTE_ETH_NAME_MAX_LEN - 1, "%s%d", DEFAULT_TAP_NAME, (tap_unit - 1)); return 0; } static int set_interface_speed(const char *key __rte_unused, const char *value, void *extra_args) { *(int *)extra_args = (value) ? atoi(value) : ETH_SPEED_NUM_10G; return 0; } static int set_remote_iface(const char *key __rte_unused, const char *value, void *extra_args) { char *name = (char *)extra_args; if (value) snprintf(name, RTE_ETH_NAME_MAX_LEN, "%s", value); return 0; } static int set_mac_type(const char *key __rte_unused, const char *value, void *extra_args) { if (value && !strncasecmp(ETH_TAP_MAC_FIXED, value, strlen(ETH_TAP_MAC_FIXED))) *(int *)extra_args = 1; return 0; } /* Open a TAP interface device. */ static int rte_pmd_tap_probe(struct rte_vdev_device *dev) { const char *name, *params; int ret; struct rte_kvargs *kvlist = NULL; int speed; char tap_name[RTE_ETH_NAME_MAX_LEN]; char remote_iface[RTE_ETH_NAME_MAX_LEN]; int fixed_mac_type = 0; name = rte_vdev_device_name(dev); params = rte_vdev_device_args(dev); speed = ETH_SPEED_NUM_10G; snprintf(tap_name, sizeof(tap_name), "%s%d", DEFAULT_TAP_NAME, tap_unit++); memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN); if (params && (params[0] != '\0')) { RTE_LOG(DEBUG, PMD, "parameters (%s)\n", params); kvlist = rte_kvargs_parse(params, valid_arguments); if (kvlist) { if (rte_kvargs_count(kvlist, ETH_TAP_SPEED_ARG) == 1) { ret = rte_kvargs_process(kvlist, ETH_TAP_SPEED_ARG, &set_interface_speed, &speed); if (ret == -1) goto leave; } if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) { ret = rte_kvargs_process(kvlist, ETH_TAP_IFACE_ARG, &set_interface_name, tap_name); if (ret == -1) goto leave; } if (rte_kvargs_count(kvlist, ETH_TAP_REMOTE_ARG) == 1) { ret = rte_kvargs_process(kvlist, ETH_TAP_REMOTE_ARG, &set_remote_iface, remote_iface); if (ret == -1) goto leave; } if (rte_kvargs_count(kvlist, ETH_TAP_MAC_ARG) == 1) { ret = rte_kvargs_process(kvlist, ETH_TAP_MAC_ARG, &set_mac_type, &fixed_mac_type); if (ret == -1) goto leave; } } } pmd_link.link_speed = speed; RTE_LOG(NOTICE, PMD, "Initializing pmd_tap for %s as %s\n", name, tap_name); ret = eth_dev_tap_create(dev, tap_name, remote_iface, fixed_mac_type); leave: if (ret == -1) { RTE_LOG(ERR, PMD, "Failed to create pmd for %s as %s\n", name, tap_name); tap_unit--; /* Restore the unit number */ } rte_kvargs_free(kvlist); return ret; } /* detach a TAP device. */ static int rte_pmd_tap_remove(struct rte_vdev_device *dev) { struct rte_eth_dev *eth_dev = NULL; struct pmd_internals *internals; int i; RTE_LOG(DEBUG, PMD, "Closing TUN/TAP Ethernet device on numa %u\n", rte_socket_id()); /* find the ethdev entry */ eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev)); if (!eth_dev) return 0; internals = eth_dev->data->dev_private; if (internals->nlsk_fd) { tap_flow_flush(eth_dev, NULL); tap_flow_implicit_flush(internals, NULL); nl_final(internals->nlsk_fd); } for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) { if (internals->rxq[i].fd != -1) { close(internals->rxq[i].fd); internals->rxq[i].fd = -1; } if (internals->txq[i].fd != -1) { close(internals->txq[i].fd); internals->txq[i].fd = -1; } } close(internals->ioctl_sock); rte_free(eth_dev->data->dev_private); rte_free(eth_dev->data); rte_eth_dev_release_port(eth_dev); return 0; } static struct rte_vdev_driver pmd_tap_drv = { .probe = rte_pmd_tap_probe, .remove = rte_pmd_tap_remove, }; RTE_PMD_REGISTER_VDEV(net_tap, pmd_tap_drv); RTE_PMD_REGISTER_ALIAS(net_tap, eth_tap); RTE_PMD_REGISTER_PARAM_STRING(net_tap, ETH_TAP_IFACE_ARG "= " ETH_TAP_SPEED_ARG "= " ETH_TAP_MAC_ARG "=" ETH_TAP_MAC_FIXED " " ETH_TAP_REMOTE_ARG "=");