/*- * BSD LICENSE * * Copyright(c) 2016-2017 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAX_NUM_STAGES 8 #define BATCH_SIZE 16 #define MAX_NUM_CORE 64 struct prod_data { uint8_t dev_id; uint8_t port_id; int32_t qid; unsigned int num_nic_ports; } __rte_cache_aligned; struct cons_data { uint8_t dev_id; uint8_t port_id; } __rte_cache_aligned; static struct prod_data prod_data; static struct cons_data cons_data; struct worker_data { uint8_t dev_id; uint8_t port_id; } __rte_cache_aligned; struct fastpath_data { volatile int done; uint32_t rx_lock; uint32_t tx_lock; uint32_t sched_lock; bool rx_single; bool tx_single; bool sched_single; unsigned int rx_core[MAX_NUM_CORE]; unsigned int tx_core[MAX_NUM_CORE]; unsigned int sched_core[MAX_NUM_CORE]; unsigned int worker_core[MAX_NUM_CORE]; struct rte_eth_dev_tx_buffer *tx_buf[RTE_MAX_ETHPORTS]; }; static struct fastpath_data *fdata; struct config_data { unsigned int active_cores; unsigned int num_workers; int64_t num_packets; unsigned int num_fids; int queue_type; int worker_cycles; int enable_queue_priorities; int quiet; int dump_dev; int dump_dev_signal; unsigned int num_stages; unsigned int worker_cq_depth; int16_t next_qid[MAX_NUM_STAGES+2]; int16_t qid[MAX_NUM_STAGES]; }; static struct config_data cdata = { .num_packets = (1L << 25), /* do ~32M packets */ .num_fids = 512, .queue_type = RTE_EVENT_QUEUE_CFG_ATOMIC_ONLY, .next_qid = {-1}, .qid = {-1}, .num_stages = 1, .worker_cq_depth = 16 }; static bool core_in_use(unsigned int lcore_id) { return (fdata->rx_core[lcore_id] || fdata->sched_core[lcore_id] || fdata->tx_core[lcore_id] || fdata->worker_core[lcore_id]); } static void eth_tx_buffer_retry(struct rte_mbuf **pkts, uint16_t unsent, void *userdata) { int port_id = (uintptr_t) userdata; unsigned int _sent = 0; do { /* Note: hard-coded TX queue */ _sent += rte_eth_tx_burst(port_id, 0, &pkts[_sent], unsent - _sent); } while (_sent != unsent); } static int consumer(void) { const uint64_t freq_khz = rte_get_timer_hz() / 1000; struct rte_event packets[BATCH_SIZE]; static uint64_t received; static uint64_t last_pkts; static uint64_t last_time; static uint64_t start_time; unsigned int i, j; uint8_t dev_id = cons_data.dev_id; uint8_t port_id = cons_data.port_id; uint16_t n = rte_event_dequeue_burst(dev_id, port_id, packets, RTE_DIM(packets), 0); if (n == 0) { for (j = 0; j < rte_eth_dev_count(); j++) rte_eth_tx_buffer_flush(j, 0, fdata->tx_buf[j]); return 0; } if (start_time == 0) last_time = start_time = rte_get_timer_cycles(); received += n; for (i = 0; i < n; i++) { uint8_t outport = packets[i].mbuf->port; rte_eth_tx_buffer(outport, 0, fdata->tx_buf[outport], packets[i].mbuf); } /* Print out mpps every 1<22 packets */ if (!cdata.quiet && received >= last_pkts + (1<<22)) { const uint64_t now = rte_get_timer_cycles(); const uint64_t total_ms = (now - start_time) / freq_khz; const uint64_t delta_ms = (now - last_time) / freq_khz; uint64_t delta_pkts = received - last_pkts; printf("# consumer RX=%"PRIu64", time %"PRIu64 "ms, " "avg %.3f mpps [current %.3f mpps]\n", received, total_ms, received / (total_ms * 1000.0), delta_pkts / (delta_ms * 1000.0)); last_pkts = received; last_time = now; } cdata.num_packets -= n; if (cdata.num_packets <= 0) fdata->done = 1; return 0; } static int producer(void) { static uint8_t eth_port; struct rte_mbuf *mbufs[BATCH_SIZE+2]; struct rte_event ev[BATCH_SIZE+2]; uint32_t i, num_ports = prod_data.num_nic_ports; int32_t qid = prod_data.qid; uint8_t dev_id = prod_data.dev_id; uint8_t port_id = prod_data.port_id; uint32_t prio_idx = 0; const uint16_t nb_rx = rte_eth_rx_burst(eth_port, 0, mbufs, BATCH_SIZE); if (++eth_port == num_ports) eth_port = 0; if (nb_rx == 0) { rte_pause(); return 0; } for (i = 0; i < nb_rx; i++) { ev[i].flow_id = mbufs[i]->hash.rss; ev[i].op = RTE_EVENT_OP_NEW; ev[i].sched_type = cdata.queue_type; ev[i].queue_id = qid; ev[i].event_type = RTE_EVENT_TYPE_ETHDEV; ev[i].sub_event_type = 0; ev[i].priority = RTE_EVENT_DEV_PRIORITY_NORMAL; ev[i].mbuf = mbufs[i]; RTE_SET_USED(prio_idx); } const int nb_tx = rte_event_enqueue_burst(dev_id, port_id, ev, nb_rx); if (nb_tx != nb_rx) { for (i = nb_tx; i < nb_rx; i++) rte_pktmbuf_free(mbufs[i]); } return 0; } static inline void schedule_devices(uint8_t dev_id, unsigned int lcore_id) { if (fdata->rx_core[lcore_id] && (fdata->rx_single || rte_atomic32_cmpset(&(fdata->rx_lock), 0, 1))) { producer(); rte_atomic32_clear((rte_atomic32_t *)&(fdata->rx_lock)); } if (fdata->sched_core[lcore_id] && (fdata->sched_single || rte_atomic32_cmpset(&(fdata->sched_lock), 0, 1))) { rte_event_schedule(dev_id); if (cdata.dump_dev_signal) { rte_event_dev_dump(0, stdout); cdata.dump_dev_signal = 0; } rte_atomic32_clear((rte_atomic32_t *)&(fdata->sched_lock)); } if (fdata->tx_core[lcore_id] && (fdata->tx_single || rte_atomic32_cmpset(&(fdata->tx_lock), 0, 1))) { consumer(); rte_atomic32_clear((rte_atomic32_t *)&(fdata->tx_lock)); } } static inline void work(struct rte_mbuf *m) { struct ether_hdr *eth; struct ether_addr addr; /* change mac addresses on packet (to use mbuf data) */ /* * FIXME Swap mac address properly and also handle the * case for both odd and even number of stages that the * addresses end up the same at the end of the pipeline */ eth = rte_pktmbuf_mtod(m, struct ether_hdr *); ether_addr_copy(ð->d_addr, &addr); ether_addr_copy(&addr, ð->d_addr); /* do a number of cycles of work per packet */ volatile uint64_t start_tsc = rte_rdtsc(); while (rte_rdtsc() < start_tsc + cdata.worker_cycles) rte_pause(); } static int worker(void *arg) { struct rte_event events[BATCH_SIZE]; struct worker_data *data = (struct worker_data *)arg; uint8_t dev_id = data->dev_id; uint8_t port_id = data->port_id; size_t sent = 0, received = 0; unsigned int lcore_id = rte_lcore_id(); while (!fdata->done) { uint16_t i; schedule_devices(dev_id, lcore_id); if (!fdata->worker_core[lcore_id]) { rte_pause(); continue; } const uint16_t nb_rx = rte_event_dequeue_burst(dev_id, port_id, events, RTE_DIM(events), 0); if (nb_rx == 0) { rte_pause(); continue; } received += nb_rx; for (i = 0; i < nb_rx; i++) { /* The first worker stage does classification */ if (events[i].queue_id == cdata.qid[0]) events[i].flow_id = events[i].mbuf->hash.rss % cdata.num_fids; events[i].queue_id = cdata.next_qid[events[i].queue_id]; events[i].op = RTE_EVENT_OP_FORWARD; events[i].sched_type = cdata.queue_type; work(events[i].mbuf); } uint16_t nb_tx = rte_event_enqueue_burst(dev_id, port_id, events, nb_rx); while (nb_tx < nb_rx && !fdata->done) nb_tx += rte_event_enqueue_burst(dev_id, port_id, events + nb_tx, nb_rx - nb_tx); sent += nb_tx; } if (!cdata.quiet) printf(" worker %u thread done. RX=%zu TX=%zu\n", rte_lcore_id(), received, sent); return 0; } /* * Parse the coremask given as argument (hexadecimal string) and fill * the global configuration (core role and core count) with the parsed * value. */ static int xdigit2val(unsigned char c) { int val; if (isdigit(c)) val = c - '0'; else if (isupper(c)) val = c - 'A' + 10; else val = c - 'a' + 10; return val; } static uint64_t parse_coremask(const char *coremask) { int i, j, idx = 0; unsigned int count = 0; char c; int val; uint64_t mask = 0; const int32_t BITS_HEX = 4; if (coremask == NULL) return -1; /* Remove all blank characters ahead and after . * Remove 0x/0X if exists. */ while (isblank(*coremask)) coremask++; if (coremask[0] == '0' && ((coremask[1] == 'x') || (coremask[1] == 'X'))) coremask += 2; i = strlen(coremask); while ((i > 0) && isblank(coremask[i - 1])) i--; if (i == 0) return -1; for (i = i - 1; i >= 0 && idx < MAX_NUM_CORE; i--) { c = coremask[i]; if (isxdigit(c) == 0) { /* invalid characters */ return -1; } val = xdigit2val(c); for (j = 0; j < BITS_HEX && idx < MAX_NUM_CORE; j++, idx++) { if ((1 << j) & val) { mask |= (1UL << idx); count++; } } } for (; i >= 0; i--) if (coremask[i] != '0') return -1; if (count == 0) return -1; return mask; } static struct option long_options[] = { {"workers", required_argument, 0, 'w'}, {"packets", required_argument, 0, 'n'}, {"atomic-flows", required_argument, 0, 'f'}, {"num_stages", required_argument, 0, 's'}, {"rx-mask", required_argument, 0, 'r'}, {"tx-mask", required_argument, 0, 't'}, {"sched-mask", required_argument, 0, 'e'}, {"cq-depth", required_argument, 0, 'c'}, {"work-cycles", required_argument, 0, 'W'}, {"queue-priority", no_argument, 0, 'P'}, {"parallel", no_argument, 0, 'p'}, {"ordered", no_argument, 0, 'o'}, {"quiet", no_argument, 0, 'q'}, {"dump", no_argument, 0, 'D'}, {0, 0, 0, 0} }; static void usage(void) { const char *usage_str = " Usage: eventdev_demo [options]\n" " Options:\n" " -n, --packets=N Send N packets (default ~32M), 0 implies no limit\n" " -f, --atomic-flows=N Use N random flows from 1 to N (default 16)\n" " -s, --num_stages=N Use N atomic stages (default 1)\n" " -r, --rx-mask=core mask Run NIC rx on CPUs in core mask\n" " -w, --worker-mask=core mask Run worker on CPUs in core mask\n" " -t, --tx-mask=core mask Run NIC tx on CPUs in core mask\n" " -e --sched-mask=core mask Run scheduler on CPUs in core mask\n" " -c --cq-depth=N Worker CQ depth (default 16)\n" " -W --work-cycles=N Worker cycles (default 0)\n" " -P --queue-priority Enable scheduler queue prioritization\n" " -o, --ordered Use ordered scheduling\n" " -p, --parallel Use parallel scheduling\n" " -q, --quiet Minimize printed output\n" " -D, --dump Print detailed statistics before exit" "\n"; fprintf(stderr, "%s", usage_str); exit(1); } static void parse_app_args(int argc, char **argv) { /* Parse cli options*/ int option_index; int c; opterr = 0; uint64_t rx_lcore_mask = 0; uint64_t tx_lcore_mask = 0; uint64_t sched_lcore_mask = 0; uint64_t worker_lcore_mask = 0; int i; for (;;) { c = getopt_long(argc, argv, "r:t:e:c:w:n:f:s:poPqDW:", long_options, &option_index); if (c == -1) break; int popcnt = 0; switch (c) { case 'n': cdata.num_packets = (int64_t)atol(optarg); if (cdata.num_packets == 0) cdata.num_packets = INT64_MAX; break; case 'f': cdata.num_fids = (unsigned int)atoi(optarg); break; case 's': cdata.num_stages = (unsigned int)atoi(optarg); break; case 'c': cdata.worker_cq_depth = (unsigned int)atoi(optarg); break; case 'W': cdata.worker_cycles = (unsigned int)atoi(optarg); break; case 'P': cdata.enable_queue_priorities = 1; break; case 'o': cdata.queue_type = RTE_EVENT_QUEUE_CFG_ORDERED_ONLY; break; case 'p': cdata.queue_type = RTE_EVENT_QUEUE_CFG_PARALLEL_ONLY; break; case 'q': cdata.quiet = 1; break; case 'D': cdata.dump_dev = 1; break; case 'w': worker_lcore_mask = parse_coremask(optarg); break; case 'r': rx_lcore_mask = parse_coremask(optarg); popcnt = __builtin_popcountll(rx_lcore_mask); fdata->rx_single = (popcnt == 1); break; case 't': tx_lcore_mask = parse_coremask(optarg); popcnt = __builtin_popcountll(tx_lcore_mask); fdata->tx_single = (popcnt == 1); break; case 'e': sched_lcore_mask = parse_coremask(optarg); popcnt = __builtin_popcountll(sched_lcore_mask); fdata->sched_single = (popcnt == 1); break; default: usage(); } } if (worker_lcore_mask == 0 || rx_lcore_mask == 0 || sched_lcore_mask == 0 || tx_lcore_mask == 0) { printf("Core part of pipeline was not assigned any cores. " "This will stall the pipeline, please check core masks " "(use -h for details on setting core masks):\n" "\trx: %"PRIu64"\n\ttx: %"PRIu64"\n\tsched: %"PRIu64 "\n\tworkers: %"PRIu64"\n", rx_lcore_mask, tx_lcore_mask, sched_lcore_mask, worker_lcore_mask); rte_exit(-1, "Fix core masks\n"); } if (cdata.num_stages == 0 || cdata.num_stages > MAX_NUM_STAGES) usage(); for (i = 0; i < MAX_NUM_CORE; i++) { fdata->rx_core[i] = !!(rx_lcore_mask & (1UL << i)); fdata->tx_core[i] = !!(tx_lcore_mask & (1UL << i)); fdata->sched_core[i] = !!(sched_lcore_mask & (1UL << i)); fdata->worker_core[i] = !!(worker_lcore_mask & (1UL << i)); if (fdata->worker_core[i]) cdata.num_workers++; if (core_in_use(i)) cdata.active_cores++; } } /* * Initializes a given port using global settings and with the RX buffers * coming from the mbuf_pool passed as a parameter. */ static inline int port_init(uint8_t port, struct rte_mempool *mbuf_pool) { static const struct rte_eth_conf port_conf_default = { .rxmode = { .mq_mode = ETH_MQ_RX_RSS, .max_rx_pkt_len = ETHER_MAX_LEN }, .rx_adv_conf = { .rss_conf = { .rss_hf = ETH_RSS_IP | ETH_RSS_TCP | ETH_RSS_UDP, } } }; const uint16_t rx_rings = 1, tx_rings = 1; const uint16_t rx_ring_size = 512, tx_ring_size = 512; struct rte_eth_conf port_conf = port_conf_default; int retval; uint16_t q; if (port >= rte_eth_dev_count()) return -1; /* Configure the Ethernet device. */ retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); if (retval != 0) return retval; /* Allocate and set up 1 RX queue per Ethernet port. */ for (q = 0; q < rx_rings; q++) { retval = rte_eth_rx_queue_setup(port, q, rx_ring_size, rte_eth_dev_socket_id(port), NULL, mbuf_pool); if (retval < 0) return retval; } /* Allocate and set up 1 TX queue per Ethernet port. */ for (q = 0; q < tx_rings; q++) { retval = rte_eth_tx_queue_setup(port, q, tx_ring_size, rte_eth_dev_socket_id(port), NULL); if (retval < 0) return retval; } /* Start the Ethernet port. */ retval = rte_eth_dev_start(port); if (retval < 0) return retval; /* Display the port MAC address. */ struct ether_addr addr; rte_eth_macaddr_get(port, &addr); printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n", (unsigned int)port, addr.addr_bytes[0], addr.addr_bytes[1], addr.addr_bytes[2], addr.addr_bytes[3], addr.addr_bytes[4], addr.addr_bytes[5]); /* Enable RX in promiscuous mode for the Ethernet device. */ rte_eth_promiscuous_enable(port); return 0; } static int init_ports(unsigned int num_ports) { uint8_t portid; unsigned int i; struct rte_mempool *mp = rte_pktmbuf_pool_create("packet_pool", /* mbufs */ 16384 * num_ports, /* cache_size */ 512, /* priv_size*/ 0, /* data_room_size */ RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); for (portid = 0; portid < num_ports; portid++) if (port_init(portid, mp) != 0) rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n", portid); for (i = 0; i < num_ports; i++) { void *userdata = (void *)(uintptr_t) i; fdata->tx_buf[i] = rte_malloc(NULL, RTE_ETH_TX_BUFFER_SIZE(32), 0); if (fdata->tx_buf[i] == NULL) rte_panic("Out of memory\n"); rte_eth_tx_buffer_init(fdata->tx_buf[i], 32); rte_eth_tx_buffer_set_err_callback(fdata->tx_buf[i], eth_tx_buffer_retry, userdata); } return 0; } struct port_link { uint8_t queue_id; uint8_t priority; }; static int setup_eventdev(struct prod_data *prod_data, struct cons_data *cons_data, struct worker_data *worker_data) { const uint8_t dev_id = 0; /* +1 stages is for a SINGLE_LINK TX stage */ const uint8_t nb_queues = cdata.num_stages + 1; /* + 2 is one port for producer and one for consumer */ const uint8_t nb_ports = cdata.num_workers + 2; struct rte_event_dev_config config = { .nb_event_queues = nb_queues, .nb_event_ports = nb_ports, .nb_events_limit = 4096, .nb_event_queue_flows = 1024, .nb_event_port_dequeue_depth = 128, .nb_event_port_enqueue_depth = 128, }; struct rte_event_port_conf wkr_p_conf = { .dequeue_depth = cdata.worker_cq_depth, .enqueue_depth = 64, .new_event_threshold = 4096, }; struct rte_event_queue_conf wkr_q_conf = { .event_queue_cfg = cdata.queue_type, .priority = RTE_EVENT_DEV_PRIORITY_NORMAL, .nb_atomic_flows = 1024, .nb_atomic_order_sequences = 1024, }; struct rte_event_port_conf tx_p_conf = { .dequeue_depth = 128, .enqueue_depth = 128, .new_event_threshold = 4096, }; const struct rte_event_queue_conf tx_q_conf = { .priority = RTE_EVENT_DEV_PRIORITY_HIGHEST, .event_queue_cfg = RTE_EVENT_QUEUE_CFG_ATOMIC_ONLY | RTE_EVENT_QUEUE_CFG_SINGLE_LINK, .nb_atomic_flows = 1024, .nb_atomic_order_sequences = 1024, }; struct port_link worker_queues[MAX_NUM_STAGES]; struct port_link tx_queue; unsigned int i; int ret, ndev = rte_event_dev_count(); if (ndev < 1) { printf("%d: No Eventdev Devices Found\n", __LINE__); return -1; } struct rte_event_dev_info dev_info; ret = rte_event_dev_info_get(dev_id, &dev_info); printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name); if (dev_info.max_event_port_dequeue_depth < config.nb_event_port_dequeue_depth) config.nb_event_port_dequeue_depth = dev_info.max_event_port_dequeue_depth; if (dev_info.max_event_port_enqueue_depth < config.nb_event_port_enqueue_depth) config.nb_event_port_enqueue_depth = dev_info.max_event_port_enqueue_depth; ret = rte_event_dev_configure(dev_id, &config); if (ret < 0) { printf("%d: Error configuring device\n", __LINE__); return -1; } /* Q creation - one load balanced per pipeline stage*/ printf(" Stages:\n"); for (i = 0; i < cdata.num_stages; i++) { if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) { printf("%d: error creating qid %d\n", __LINE__, i); return -1; } cdata.qid[i] = i; cdata.next_qid[i] = i+1; worker_queues[i].queue_id = i; if (cdata.enable_queue_priorities) { /* calculate priority stepping for each stage, leaving * headroom of 1 for the SINGLE_LINK TX below */ const uint32_t prio_delta = (RTE_EVENT_DEV_PRIORITY_LOWEST-1) / nb_queues; /* higher priority for queues closer to tx */ wkr_q_conf.priority = RTE_EVENT_DEV_PRIORITY_LOWEST - prio_delta * i; } const char *type_str = "Atomic"; switch (wkr_q_conf.event_queue_cfg) { case RTE_EVENT_QUEUE_CFG_ORDERED_ONLY: type_str = "Ordered"; break; case RTE_EVENT_QUEUE_CFG_PARALLEL_ONLY: type_str = "Parallel"; break; } printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str, wkr_q_conf.priority); } printf("\n"); /* final queue for sending to TX core */ if (rte_event_queue_setup(dev_id, i, &tx_q_conf) < 0) { printf("%d: error creating qid %d\n", __LINE__, i); return -1; } tx_queue.queue_id = i; tx_queue.priority = RTE_EVENT_DEV_PRIORITY_HIGHEST; if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth) wkr_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth; if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth) wkr_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth; /* set up one port per worker, linking to all stage queues */ for (i = 0; i < cdata.num_workers; i++) { struct worker_data *w = &worker_data[i]; w->dev_id = dev_id; if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) { printf("Error setting up port %d\n", i); return -1; } uint32_t s; for (s = 0; s < cdata.num_stages; s++) { if (rte_event_port_link(dev_id, i, &worker_queues[s].queue_id, &worker_queues[s].priority, 1) != 1) { printf("%d: error creating link for port %d\n", __LINE__, i); return -1; } } w->port_id = i; } if (tx_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth) tx_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth; if (tx_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth) tx_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth; /* port for consumer, linked to TX queue */ if (rte_event_port_setup(dev_id, i, &tx_p_conf) < 0) { printf("Error setting up port %d\n", i); return -1; } if (rte_event_port_link(dev_id, i, &tx_queue.queue_id, &tx_queue.priority, 1) != 1) { printf("%d: error creating link for port %d\n", __LINE__, i); return -1; } /* port for producer, no links */ struct rte_event_port_conf rx_p_conf = { .dequeue_depth = 8, .enqueue_depth = 8, .new_event_threshold = 1200, }; if (rx_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth) rx_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth; if (rx_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth) rx_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth; if (rte_event_port_setup(dev_id, i + 1, &rx_p_conf) < 0) { printf("Error setting up port %d\n", i); return -1; } *prod_data = (struct prod_data){.dev_id = dev_id, .port_id = i + 1, .qid = cdata.qid[0] }; *cons_data = (struct cons_data){.dev_id = dev_id, .port_id = i }; if (rte_event_dev_start(dev_id) < 0) { printf("Error starting eventdev\n"); return -1; } return dev_id; } static void signal_handler(int signum) { if (fdata->done) rte_exit(1, "Exiting on signal %d\n", signum); if (signum == SIGINT || signum == SIGTERM) { printf("\n\nSignal %d received, preparing to exit...\n", signum); fdata->done = 1; } if (signum == SIGTSTP) rte_event_dev_dump(0, stdout); } static inline uint64_t port_stat(int dev_id, int32_t p) { char statname[64]; snprintf(statname, sizeof(statname), "port_%u_rx", p); return rte_event_dev_xstats_by_name_get(dev_id, statname, NULL); } int main(int argc, char **argv) { struct worker_data *worker_data; unsigned int num_ports; int lcore_id; int err; signal(SIGINT, signal_handler); signal(SIGTERM, signal_handler); signal(SIGTSTP, signal_handler); err = rte_eal_init(argc, argv); if (err < 0) rte_panic("Invalid EAL arguments\n"); argc -= err; argv += err; fdata = rte_malloc(NULL, sizeof(struct fastpath_data), 0); if (fdata == NULL) rte_panic("Out of memory\n"); /* Parse cli options*/ parse_app_args(argc, argv); num_ports = rte_eth_dev_count(); if (num_ports == 0) rte_panic("No ethernet ports found\n"); const unsigned int cores_needed = cdata.active_cores; if (!cdata.quiet) { printf(" Config:\n"); printf("\tports: %u\n", num_ports); printf("\tworkers: %u\n", cdata.num_workers); printf("\tpackets: %"PRIi64"\n", cdata.num_packets); printf("\tQueue-prio: %u\n", cdata.enable_queue_priorities); if (cdata.queue_type == RTE_EVENT_QUEUE_CFG_ORDERED_ONLY) printf("\tqid0 type: ordered\n"); if (cdata.queue_type == RTE_EVENT_QUEUE_CFG_ATOMIC_ONLY) printf("\tqid0 type: atomic\n"); printf("\tCores available: %u\n", rte_lcore_count()); printf("\tCores used: %u\n", cores_needed); } if (rte_lcore_count() < cores_needed) rte_panic("Too few cores (%d < %d)\n", rte_lcore_count(), cores_needed); const unsigned int ndevs = rte_event_dev_count(); if (ndevs == 0) rte_panic("No dev_id devs found. Pasl in a --vdev eventdev.\n"); if (ndevs > 1) fprintf(stderr, "Warning: More than one eventdev, using idx 0"); worker_data = rte_calloc(0, cdata.num_workers, sizeof(worker_data[0]), 0); if (worker_data == NULL) rte_panic("rte_calloc failed\n"); int dev_id = setup_eventdev(&prod_data, &cons_data, worker_data); if (dev_id < 0) rte_exit(EXIT_FAILURE, "Error setting up eventdev\n"); prod_data.num_nic_ports = num_ports; init_ports(num_ports); int worker_idx = 0; RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (lcore_id >= MAX_NUM_CORE) break; if (!fdata->rx_core[lcore_id] && !fdata->worker_core[lcore_id] && !fdata->tx_core[lcore_id] && !fdata->sched_core[lcore_id]) continue; if (fdata->rx_core[lcore_id]) printf( "[%s()] lcore %d executing NIC Rx, and using eventdev port %u\n", __func__, lcore_id, prod_data.port_id); if (fdata->tx_core[lcore_id]) printf( "[%s()] lcore %d executing NIC Tx, and using eventdev port %u\n", __func__, lcore_id, cons_data.port_id); if (fdata->sched_core[lcore_id]) printf("[%s()] lcore %d executing scheduler\n", __func__, lcore_id); if (fdata->worker_core[lcore_id]) printf( "[%s()] lcore %d executing worker, using eventdev port %u\n", __func__, lcore_id, worker_data[worker_idx].port_id); err = rte_eal_remote_launch(worker, &worker_data[worker_idx], lcore_id); if (err) { rte_panic("Failed to launch worker on core %d\n", lcore_id); continue; } if (fdata->worker_core[lcore_id]) worker_idx++; } lcore_id = rte_lcore_id(); if (core_in_use(lcore_id)) worker(&worker_data[worker_idx++]); rte_eal_mp_wait_lcore(); if (cdata.dump_dev) rte_event_dev_dump(dev_id, stdout); if (!cdata.quiet && (port_stat(dev_id, worker_data[0].port_id) != (uint64_t)-ENOTSUP)) { printf("\nPort Workload distribution:\n"); uint32_t i; uint64_t tot_pkts = 0; uint64_t pkts_per_wkr[RTE_MAX_LCORE] = {0}; for (i = 0; i < cdata.num_workers; i++) { pkts_per_wkr[i] = port_stat(dev_id, worker_data[i].port_id); tot_pkts += pkts_per_wkr[i]; } for (i = 0; i < cdata.num_workers; i++) { float pc = pkts_per_wkr[i] * 100 / ((float)tot_pkts); printf("worker %i :\t%.1f %% (%"PRIu64" pkts)\n", i, pc, pkts_per_wkr[i]); } } return 0; }