/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018 Intel Corporation */ #include #include #include #include #include #include #include #include #include "fips_validation.h" #define REQ_FILE_PATH_KEYWORD "req-file" #define RSP_FILE_PATH_KEYWORD "rsp-file" #define FOLDER_KEYWORD "path-is-folder" #define CRYPTODEV_KEYWORD "cryptodev" #define CRYPTODEV_ID_KEYWORD "cryptodev-id" struct fips_test_vector vec; struct fips_test_interim_info info; struct cryptodev_fips_validate_env { const char *req_path; const char *rsp_path; uint32_t is_path_folder; uint32_t dev_id; struct rte_mempool *mpool; struct rte_mempool *op_pool; struct rte_mbuf *mbuf; struct rte_crypto_op *op; struct rte_cryptodev_sym_session *sess; } env; static int cryptodev_fips_validate_app_int(void) { struct rte_cryptodev_config conf = {rte_socket_id(), 1}; struct rte_cryptodev_qp_conf qp_conf = {128}; int ret; ret = rte_cryptodev_configure(env.dev_id, &conf); if (ret < 0) return ret; env.mpool = rte_pktmbuf_pool_create("FIPS_MEMPOOL", 128, 0, 0, UINT16_MAX, rte_socket_id()); if (!env.mpool) return ret; ret = rte_cryptodev_queue_pair_setup(env.dev_id, 0, &qp_conf, rte_socket_id(), env.mpool); if (ret < 0) return ret; ret = -ENOMEM; env.op_pool = rte_crypto_op_pool_create( "FIPS_OP_POOL", RTE_CRYPTO_OP_TYPE_SYMMETRIC, 1, 0, 16, rte_socket_id()); if (!env.op_pool) goto error_exit; env.mbuf = rte_pktmbuf_alloc(env.mpool); if (!env.mbuf) goto error_exit; env.op = rte_crypto_op_alloc(env.op_pool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); if (!env.op) goto error_exit; return 0; error_exit: rte_mempool_free(env.mpool); if (env.op_pool) rte_mempool_free(env.op_pool); return ret; } static void cryptodev_fips_validate_app_uninit(void) { rte_pktmbuf_free(env.mbuf); rte_crypto_op_free(env.op); rte_cryptodev_sym_session_clear(env.dev_id, env.sess); rte_cryptodev_sym_session_free(env.sess); rte_mempool_free(env.mpool); rte_mempool_free(env.op_pool); } static int fips_test_one_file(void); static int parse_cryptodev_arg(char *arg) { int id = rte_cryptodev_get_dev_id(arg); if (id < 0) { RTE_LOG(ERR, USER1, "Error %i: invalid cryptodev name %s\n", id, arg); return id; } env.dev_id = (uint32_t)id; return 0; } static int parse_cryptodev_id_arg(char *arg) { uint32_t cryptodev_id; if (parser_read_uint32(&cryptodev_id, arg) < 0) { RTE_LOG(ERR, USER1, "Error %i: invalid cryptodev id %s\n", -EINVAL, arg); return -1; } if (!rte_cryptodev_pmd_is_valid_dev(cryptodev_id)) { RTE_LOG(ERR, USER1, "Error %i: invalid cryptodev id %s\n", cryptodev_id, arg); return -1; } env.dev_id = (uint32_t)cryptodev_id; return 0; } static void cryptodev_fips_validate_usage(const char *prgname) { printf("%s [EAL options] --\n" " --%s: REQUEST-FILE-PATH\n" " --%s: RESPONSE-FILE-PATH\n" " --%s: indicating both paths are folders\n" " --%s: CRYPTODEV-NAME\n" " --%s: CRYPTODEV-ID-NAME\n", prgname, REQ_FILE_PATH_KEYWORD, RSP_FILE_PATH_KEYWORD, FOLDER_KEYWORD, CRYPTODEV_KEYWORD, CRYPTODEV_ID_KEYWORD); } static int cryptodev_fips_validate_parse_args(int argc, char **argv) { int opt, ret; char *prgname = argv[0]; char **argvopt; int option_index; struct option lgopts[] = { {REQ_FILE_PATH_KEYWORD, required_argument, 0, 0}, {RSP_FILE_PATH_KEYWORD, required_argument, 0, 0}, {FOLDER_KEYWORD, no_argument, 0, 0}, {CRYPTODEV_KEYWORD, required_argument, 0, 0}, {CRYPTODEV_ID_KEYWORD, required_argument, 0, 0}, {NULL, 0, 0, 0} }; argvopt = argv; while ((opt = getopt_long(argc, argvopt, "s:", lgopts, &option_index)) != EOF) { switch (opt) { case 0: if (strcmp(lgopts[option_index].name, REQ_FILE_PATH_KEYWORD) == 0) env.req_path = optarg; else if (strcmp(lgopts[option_index].name, RSP_FILE_PATH_KEYWORD) == 0) env.rsp_path = optarg; else if (strcmp(lgopts[option_index].name, FOLDER_KEYWORD) == 0) env.is_path_folder = 1; else if (strcmp(lgopts[option_index].name, CRYPTODEV_KEYWORD) == 0) { ret = parse_cryptodev_arg(optarg); if (ret < 0) { cryptodev_fips_validate_usage(prgname); return -EINVAL; } } else if (strcmp(lgopts[option_index].name, CRYPTODEV_ID_KEYWORD) == 0) { ret = parse_cryptodev_id_arg(optarg); if (ret < 0) { cryptodev_fips_validate_usage(prgname); return -EINVAL; } } else { cryptodev_fips_validate_usage(prgname); return -EINVAL; } break; default: return -1; } } if (env.req_path == NULL || env.rsp_path == NULL || env.dev_id == UINT32_MAX) { cryptodev_fips_validate_usage(prgname); return -EINVAL; } return 0; } int main(int argc, char *argv[]) { int ret; ret = rte_eal_init(argc, argv); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Failed init\n", ret); return -1; } argc -= ret; argv += ret; ret = cryptodev_fips_validate_parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Failed to parse arguments!\n"); ret = cryptodev_fips_validate_app_int(); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Failed init\n", ret); return -1; } if (!env.is_path_folder) { printf("Processing file %s... ", env.req_path); ret = fips_test_init(env.req_path, env.rsp_path, rte_cryptodev_name_get(env.dev_id)); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Failed test %s\n", ret, env.req_path); goto exit; } ret = fips_test_one_file(); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Failed test %s\n", ret, env.req_path); goto exit; } printf("Done\n"); } else { struct dirent *dir; DIR *d_req, *d_rsp; char req_path[1024]; char rsp_path[1024]; d_req = opendir(env.req_path); if (!d_req) { RTE_LOG(ERR, USER1, "Error %i: Path %s not exist\n", -EINVAL, env.req_path); goto exit; } d_rsp = opendir(env.rsp_path); if (!d_rsp) { ret = mkdir(env.rsp_path, 0700); if (ret == 0) d_rsp = opendir(env.rsp_path); else { RTE_LOG(ERR, USER1, "Error %i: Invalid %s\n", -EINVAL, env.rsp_path); goto exit; } } closedir(d_rsp); while ((dir = readdir(d_req)) != NULL) { if (strstr(dir->d_name, "req") == NULL) continue; snprintf(req_path, 1023, "%s/%s", env.req_path, dir->d_name); snprintf(rsp_path, 1023, "%s/%s", env.rsp_path, dir->d_name); strlcpy(strstr(rsp_path, "req"), "rsp", 4); printf("Processing file %s... ", req_path); ret = fips_test_init(req_path, rsp_path, rte_cryptodev_name_get(env.dev_id)); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Failed test %s\n", ret, req_path); break; } ret = fips_test_one_file(); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Failed test %s\n", ret, req_path); break; } printf("Done\n"); } closedir(d_req); } exit: fips_test_clear(); cryptodev_fips_validate_app_uninit(); return ret; } #define IV_OFF (sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op)) #define CRYPTODEV_FIPS_MAX_RETRIES 16 typedef int (*fips_test_one_case_t)(void); typedef int (*fips_prepare_op_t)(void); typedef int (*fips_prepare_xform_t)(struct rte_crypto_sym_xform *); struct fips_test_ops { fips_prepare_xform_t prepare_xform; fips_prepare_op_t prepare_op; fips_test_one_case_t test; } test_ops; static int prepare_cipher_op(void) { struct rte_crypto_sym_op *sym = env.op->sym; uint8_t *iv = rte_crypto_op_ctod_offset(env.op, uint8_t *, IV_OFF); __rte_crypto_op_reset(env.op, RTE_CRYPTO_OP_TYPE_SYMMETRIC); rte_pktmbuf_reset(env.mbuf); sym->m_src = env.mbuf; sym->cipher.data.offset = 0; memcpy(iv, vec.iv.val, vec.iv.len); if (info.op == FIPS_TEST_ENC_AUTH_GEN) { uint8_t *pt; if (vec.pt.len > RTE_MBUF_MAX_NB_SEGS) { RTE_LOG(ERR, USER1, "PT len %u\n", vec.pt.len); return -EPERM; } pt = (uint8_t *)rte_pktmbuf_append(env.mbuf, vec.pt.len); if (!pt) { RTE_LOG(ERR, USER1, "Error %i: MBUF too small\n", -ENOMEM); return -ENOMEM; } memcpy(pt, vec.pt.val, vec.pt.len); sym->cipher.data.length = vec.pt.len; } else { uint8_t *ct; if (vec.ct.len > RTE_MBUF_MAX_NB_SEGS) { RTE_LOG(ERR, USER1, "CT len %u\n", vec.ct.len); return -EPERM; } ct = (uint8_t *)rte_pktmbuf_append(env.mbuf, vec.ct.len); if (!ct) { RTE_LOG(ERR, USER1, "Error %i: MBUF too small\n", -ENOMEM); return -ENOMEM; } memcpy(ct, vec.ct.val, vec.ct.len); sym->cipher.data.length = vec.ct.len; } rte_crypto_op_attach_sym_session(env.op, env.sess); return 0; } static int prepare_auth_op(void) { struct rte_crypto_sym_op *sym = env.op->sym; __rte_crypto_op_reset(env.op, RTE_CRYPTO_OP_TYPE_SYMMETRIC); rte_pktmbuf_reset(env.mbuf); sym->m_src = env.mbuf; sym->auth.data.offset = 0; if (info.op == FIPS_TEST_ENC_AUTH_GEN) { uint8_t *pt; if (vec.pt.len > RTE_MBUF_MAX_NB_SEGS) { RTE_LOG(ERR, USER1, "PT len %u\n", vec.pt.len); return -EPERM; } pt = (uint8_t *)rte_pktmbuf_append(env.mbuf, vec.pt.len + vec.cipher_auth.digest.len); if (!pt) { RTE_LOG(ERR, USER1, "Error %i: MBUF too small\n", -ENOMEM); return -ENOMEM; } memcpy(pt, vec.pt.val, vec.pt.len); sym->auth.data.length = vec.pt.len; sym->auth.digest.data = pt + vec.pt.len; sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset( env.mbuf, vec.pt.len); } else { uint8_t *ct; if (vec.ct.len > RTE_MBUF_MAX_NB_SEGS) { RTE_LOG(ERR, USER1, "CT len %u\n", vec.ct.len); return -EPERM; } ct = (uint8_t *)rte_pktmbuf_append(env.mbuf, vec.ct.len + vec.cipher_auth.digest.len); if (!ct) { RTE_LOG(ERR, USER1, "Error %i: MBUF too small\n", -ENOMEM); return -ENOMEM; } memcpy(ct, vec.ct.val, vec.ct.len); sym->auth.data.length = vec.ct.len; sym->auth.digest.data = vec.cipher_auth.digest.val; sym->auth.digest.phys_addr = rte_malloc_virt2iova( sym->auth.digest.data); } rte_crypto_op_attach_sym_session(env.op, env.sess); return 0; } static int prepare_aead_op(void) { struct rte_crypto_sym_op *sym = env.op->sym; uint8_t *iv = rte_crypto_op_ctod_offset(env.op, uint8_t *, IV_OFF); __rte_crypto_op_reset(env.op, RTE_CRYPTO_OP_TYPE_SYMMETRIC); rte_pktmbuf_reset(env.mbuf); if (info.algo == FIPS_TEST_ALGO_AES_CCM) memcpy(iv + 1, vec.iv.val, vec.iv.len); else memcpy(iv, vec.iv.val, vec.iv.len); sym->m_src = env.mbuf; sym->aead.data.offset = 0; sym->aead.aad.data = vec.aead.aad.val; sym->aead.aad.phys_addr = rte_malloc_virt2iova(sym->aead.aad.data); if (info.op == FIPS_TEST_ENC_AUTH_GEN) { uint8_t *pt; if (vec.pt.len > RTE_MBUF_MAX_NB_SEGS) { RTE_LOG(ERR, USER1, "PT len %u\n", vec.pt.len); return -EPERM; } pt = (uint8_t *)rte_pktmbuf_append(env.mbuf, vec.pt.len + vec.aead.digest.len); if (!pt) { RTE_LOG(ERR, USER1, "Error %i: MBUF too small\n", -ENOMEM); return -ENOMEM; } memcpy(pt, vec.pt.val, vec.pt.len); sym->aead.data.length = vec.pt.len; sym->aead.digest.data = pt + vec.pt.len; sym->aead.digest.phys_addr = rte_pktmbuf_mtophys_offset( env.mbuf, vec.pt.len); } else { uint8_t *ct; if (vec.ct.len > RTE_MBUF_MAX_NB_SEGS) { RTE_LOG(ERR, USER1, "CT len %u\n", vec.ct.len); return -EPERM; } ct = (uint8_t *)rte_pktmbuf_append(env.mbuf, vec.ct.len); if (!ct) { RTE_LOG(ERR, USER1, "Error %i: MBUF too small\n", -ENOMEM); return -ENOMEM; } memcpy(ct, vec.ct.val, vec.ct.len); sym->aead.data.length = vec.ct.len; sym->aead.digest.data = vec.aead.digest.val; sym->aead.digest.phys_addr = rte_malloc_virt2iova( sym->aead.digest.data); } rte_crypto_op_attach_sym_session(env.op, env.sess); return 0; } static int prepare_aes_xform(struct rte_crypto_sym_xform *xform) { const struct rte_cryptodev_symmetric_capability *cap; struct rte_cryptodev_sym_capability_idx cap_idx; struct rte_crypto_cipher_xform *cipher_xform = &xform->cipher; xform->type = RTE_CRYPTO_SYM_XFORM_CIPHER; cipher_xform->algo = RTE_CRYPTO_CIPHER_AES_CBC; cipher_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ? RTE_CRYPTO_CIPHER_OP_ENCRYPT : RTE_CRYPTO_CIPHER_OP_DECRYPT; cipher_xform->key.data = vec.cipher_auth.key.val; cipher_xform->key.length = vec.cipher_auth.key.len; cipher_xform->iv.length = vec.iv.len; cipher_xform->iv.offset = IV_OFF; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_AES_CBC; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx); if (!cap) { RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n", env.dev_id); return -EINVAL; } if (rte_cryptodev_sym_capability_check_cipher(cap, cipher_xform->key.length, cipher_xform->iv.length) != 0) { RTE_LOG(ERR, USER1, "PMD %s key length %u IV length %u\n", info.device_name, cipher_xform->key.length, cipher_xform->iv.length); return -EPERM; } return 0; } static int prepare_tdes_xform(struct rte_crypto_sym_xform *xform) { const struct rte_cryptodev_symmetric_capability *cap; struct rte_cryptodev_sym_capability_idx cap_idx; struct rte_crypto_cipher_xform *cipher_xform = &xform->cipher; xform->type = RTE_CRYPTO_SYM_XFORM_CIPHER; cipher_xform->algo = RTE_CRYPTO_CIPHER_3DES_CBC; cipher_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ? RTE_CRYPTO_CIPHER_OP_ENCRYPT : RTE_CRYPTO_CIPHER_OP_DECRYPT; cipher_xform->key.data = vec.cipher_auth.key.val; cipher_xform->key.length = vec.cipher_auth.key.len; cipher_xform->iv.length = vec.iv.len; cipher_xform->iv.offset = IV_OFF; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_3DES_CBC; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx); if (!cap) { RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n", env.dev_id); return -EINVAL; } if (rte_cryptodev_sym_capability_check_cipher(cap, cipher_xform->key.length, cipher_xform->iv.length) != 0) { RTE_LOG(ERR, USER1, "PMD %s key length %u IV length %u\n", info.device_name, cipher_xform->key.length, cipher_xform->iv.length); return -EPERM; } return 0; } static int prepare_hmac_xform(struct rte_crypto_sym_xform *xform) { const struct rte_cryptodev_symmetric_capability *cap; struct rte_cryptodev_sym_capability_idx cap_idx; struct rte_crypto_auth_xform *auth_xform = &xform->auth; xform->type = RTE_CRYPTO_SYM_XFORM_AUTH; auth_xform->algo = info.interim_info.hmac_data.algo; auth_xform->op = RTE_CRYPTO_AUTH_OP_GENERATE; auth_xform->digest_length = vec.cipher_auth.digest.len; auth_xform->key.data = vec.cipher_auth.key.val; auth_xform->key.length = vec.cipher_auth.key.len; cap_idx.algo.auth = auth_xform->algo; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx); if (!cap) { RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n", env.dev_id); return -EINVAL; } if (rte_cryptodev_sym_capability_check_auth(cap, auth_xform->key.length, auth_xform->digest_length, 0) != 0) { RTE_LOG(ERR, USER1, "PMD %s key length %u IV length %u\n", info.device_name, auth_xform->key.length, auth_xform->digest_length); return -EPERM; } return 0; } static int prepare_gcm_xform(struct rte_crypto_sym_xform *xform) { const struct rte_cryptodev_symmetric_capability *cap; struct rte_cryptodev_sym_capability_idx cap_idx; struct rte_crypto_aead_xform *aead_xform = &xform->aead; xform->type = RTE_CRYPTO_SYM_XFORM_AEAD; aead_xform->algo = RTE_CRYPTO_AEAD_AES_GCM; aead_xform->aad_length = vec.aead.aad.len; aead_xform->digest_length = vec.aead.digest.len; aead_xform->iv.offset = IV_OFF; aead_xform->iv.length = vec.iv.len; aead_xform->key.data = vec.aead.key.val; aead_xform->key.length = vec.aead.key.len; aead_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ? RTE_CRYPTO_AEAD_OP_ENCRYPT : RTE_CRYPTO_AEAD_OP_DECRYPT; cap_idx.algo.aead = aead_xform->algo; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD; cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx); if (!cap) { RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n", env.dev_id); return -EINVAL; } if (rte_cryptodev_sym_capability_check_aead(cap, aead_xform->key.length, aead_xform->digest_length, aead_xform->aad_length, aead_xform->iv.length) != 0) { RTE_LOG(ERR, USER1, "PMD %s key_len %u tag_len %u aad_len %u iv_len %u\n", info.device_name, aead_xform->key.length, aead_xform->digest_length, aead_xform->aad_length, aead_xform->iv.length); return -EPERM; } return 0; } static int prepare_cmac_xform(struct rte_crypto_sym_xform *xform) { const struct rte_cryptodev_symmetric_capability *cap; struct rte_cryptodev_sym_capability_idx cap_idx; struct rte_crypto_auth_xform *auth_xform = &xform->auth; xform->type = RTE_CRYPTO_SYM_XFORM_AUTH; auth_xform->algo = RTE_CRYPTO_AUTH_AES_CMAC; auth_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ? RTE_CRYPTO_AUTH_OP_GENERATE : RTE_CRYPTO_AUTH_OP_VERIFY; auth_xform->digest_length = vec.cipher_auth.digest.len; auth_xform->key.data = vec.cipher_auth.key.val; auth_xform->key.length = vec.cipher_auth.key.len; cap_idx.algo.auth = auth_xform->algo; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx); if (!cap) { RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n", env.dev_id); return -EINVAL; } if (rte_cryptodev_sym_capability_check_auth(cap, auth_xform->key.length, auth_xform->digest_length, 0) != 0) { RTE_LOG(ERR, USER1, "PMD %s key length %u IV length %u\n", info.device_name, auth_xform->key.length, auth_xform->digest_length); return -EPERM; } return 0; } static int prepare_ccm_xform(struct rte_crypto_sym_xform *xform) { const struct rte_cryptodev_symmetric_capability *cap; struct rte_cryptodev_sym_capability_idx cap_idx; struct rte_crypto_aead_xform *aead_xform = &xform->aead; xform->type = RTE_CRYPTO_SYM_XFORM_AEAD; aead_xform->algo = RTE_CRYPTO_AEAD_AES_CCM; aead_xform->aad_length = vec.aead.aad.len; aead_xform->digest_length = vec.aead.digest.len; aead_xform->iv.offset = IV_OFF; aead_xform->iv.length = vec.iv.len; aead_xform->key.data = vec.aead.key.val; aead_xform->key.length = vec.aead.key.len; aead_xform->op = (info.op == FIPS_TEST_ENC_AUTH_GEN) ? RTE_CRYPTO_AEAD_OP_ENCRYPT : RTE_CRYPTO_AEAD_OP_DECRYPT; cap_idx.algo.aead = aead_xform->algo; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD; cap = rte_cryptodev_sym_capability_get(env.dev_id, &cap_idx); if (!cap) { RTE_LOG(ERR, USER1, "Failed to get capability for cdev %u\n", env.dev_id); return -EINVAL; } if (rte_cryptodev_sym_capability_check_aead(cap, aead_xform->key.length, aead_xform->digest_length, aead_xform->aad_length, aead_xform->iv.length) != 0) { RTE_LOG(ERR, USER1, "PMD %s key_len %u tag_len %u aad_len %u iv_len %u\n", info.device_name, aead_xform->key.length, aead_xform->digest_length, aead_xform->aad_length, aead_xform->iv.length); return -EPERM; } return 0; } static void get_writeback_data(struct fips_val *val) { val->val = rte_pktmbuf_mtod(env.mbuf, uint8_t *); val->len = rte_pktmbuf_pkt_len(env.mbuf); } static int fips_run_test(void) { struct rte_crypto_sym_xform xform = {0}; uint16_t n_deqd; int ret; ret = test_ops.prepare_xform(&xform); if (ret < 0) return ret; env.sess = rte_cryptodev_sym_session_create(env.mpool); if (!env.sess) return -ENOMEM; ret = rte_cryptodev_sym_session_init(env.dev_id, env.sess, &xform, env.mpool); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Init session\n", ret); goto exit; } ret = test_ops.prepare_op(); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Prepare op\n", ret); goto exit; } if (rte_cryptodev_enqueue_burst(env.dev_id, 0, &env.op, 1) < 1) { RTE_LOG(ERR, USER1, "Error: Failed enqueue\n"); ret = -1; goto exit; } do { struct rte_crypto_op *deqd_op; n_deqd = rte_cryptodev_dequeue_burst(env.dev_id, 0, &deqd_op, 1); } while (n_deqd == 0); vec.status = env.op->status; exit: rte_cryptodev_sym_session_clear(env.dev_id, env.sess); rte_cryptodev_sym_session_free(env.sess); env.sess = NULL; return ret; } static int fips_generic_test(void) { struct fips_val val; int ret; fips_test_write_one_case(); ret = fips_run_test(); if (ret < 0) { if (ret == -EPERM) { fprintf(info.fp_wr, "Bypass\n\n"); return 0; } return ret; } get_writeback_data(&val); switch (info.file_type) { case FIPS_TYPE_REQ: case FIPS_TYPE_RSP: if (info.parse_writeback == NULL) return -EPERM; ret = info.parse_writeback(&val); if (ret < 0) return ret; break; case FIPS_TYPE_FAX: if (info.kat_check == NULL) return -EPERM; ret = info.kat_check(&val); if (ret < 0) return ret; break; } fprintf(info.fp_wr, "\n"); return 0; } static int fips_mct_tdes_test(void) { #define TDES_BLOCK_SIZE 8 #define TDES_EXTERN_ITER 400 #define TDES_INTERN_ITER 10000 struct fips_val val, val_key; uint8_t prev_out[TDES_BLOCK_SIZE] = {0}; uint8_t prev_prev_out[TDES_BLOCK_SIZE] = {0}; uint8_t prev_in[TDES_BLOCK_SIZE] = {0}; uint32_t i, j, k; int ret; for (i = 0; i < TDES_EXTERN_ITER; i++) { if (i != 0) update_info_vec(i); fips_test_write_one_case(); for (j = 0; j < TDES_INTERN_ITER; j++) { ret = fips_run_test(); if (ret < 0) { if (ret == -EPERM) { fprintf(info.fp_wr, "Bypass\n"); return 0; } return ret; } get_writeback_data(&val); if (info.op == FIPS_TEST_DEC_AUTH_VERIF) memcpy(prev_in, vec.ct.val, TDES_BLOCK_SIZE); if (j == 0) { memcpy(prev_out, val.val, TDES_BLOCK_SIZE); if (info.op == FIPS_TEST_ENC_AUTH_GEN) { memcpy(vec.pt.val, vec.iv.val, TDES_BLOCK_SIZE); memcpy(vec.iv.val, val.val, TDES_BLOCK_SIZE); } else { memcpy(vec.iv.val, vec.ct.val, TDES_BLOCK_SIZE); memcpy(vec.ct.val, val.val, TDES_BLOCK_SIZE); } continue; } if (info.op == FIPS_TEST_ENC_AUTH_GEN) { memcpy(vec.iv.val, val.val, TDES_BLOCK_SIZE); memcpy(vec.pt.val, prev_out, TDES_BLOCK_SIZE); } else { memcpy(vec.iv.val, vec.ct.val, TDES_BLOCK_SIZE); memcpy(vec.ct.val, val.val, TDES_BLOCK_SIZE); } if (j == TDES_INTERN_ITER - 1) continue; memcpy(prev_out, val.val, TDES_BLOCK_SIZE); if (j == TDES_INTERN_ITER - 3) memcpy(prev_prev_out, val.val, TDES_BLOCK_SIZE); } info.parse_writeback(&val); fprintf(info.fp_wr, "\n"); if (i == TDES_EXTERN_ITER - 1) continue; /** update key */ memcpy(&val_key, &vec.cipher_auth.key, sizeof(val_key)); if (info.interim_info.tdes_data.nb_keys == 0) { if (memcmp(val_key.val, val_key.val + 8, 8) == 0) info.interim_info.tdes_data.nb_keys = 1; else if (memcmp(val_key.val, val_key.val + 16, 8) == 0) info.interim_info.tdes_data.nb_keys = 2; else info.interim_info.tdes_data.nb_keys = 3; } for (k = 0; k < TDES_BLOCK_SIZE; k++) { switch (info.interim_info.tdes_data.nb_keys) { case 3: val_key.val[k] ^= val.val[k]; val_key.val[k + 8] ^= prev_out[k]; val_key.val[k + 16] ^= prev_prev_out[k]; break; case 2: val_key.val[k] ^= val.val[k]; val_key.val[k + 8] ^= prev_out[k]; val_key.val[k + 16] ^= val.val[k]; break; default: /* case 1 */ val_key.val[k] ^= val.val[k]; val_key.val[k + 8] ^= val.val[k]; val_key.val[k + 16] ^= val.val[k]; break; } } for (k = 0; k < 24; k++) val_key.val[k] = (__builtin_popcount(val_key.val[k]) & 0x1) ? val_key.val[k] : (val_key.val[k] ^ 0x1); if (info.op == FIPS_TEST_ENC_AUTH_GEN) { memcpy(vec.iv.val, val.val, TDES_BLOCK_SIZE); memcpy(vec.pt.val, prev_out, TDES_BLOCK_SIZE); } else { memcpy(vec.iv.val, prev_out, TDES_BLOCK_SIZE); memcpy(vec.ct.val, val.val, TDES_BLOCK_SIZE); } } return 0; } static int fips_mct_aes_test(void) { #define AES_BLOCK_SIZE 16 #define AES_EXTERN_ITER 100 #define AES_INTERN_ITER 1000 struct fips_val val, val_key; uint8_t prev_out[AES_BLOCK_SIZE] = {0}; uint8_t prev_in[AES_BLOCK_SIZE] = {0}; uint32_t i, j, k; int ret; for (i = 0; i < AES_EXTERN_ITER; i++) { if (i != 0) update_info_vec(i); fips_test_write_one_case(); for (j = 0; j < AES_INTERN_ITER; j++) { ret = fips_run_test(); if (ret < 0) { if (ret == -EPERM) { fprintf(info.fp_wr, "Bypass\n"); return 0; } return ret; } get_writeback_data(&val); if (info.op == FIPS_TEST_DEC_AUTH_VERIF) memcpy(prev_in, vec.ct.val, AES_BLOCK_SIZE); if (j == 0) { memcpy(prev_out, val.val, AES_BLOCK_SIZE); if (info.op == FIPS_TEST_ENC_AUTH_GEN) { memcpy(vec.pt.val, vec.iv.val, AES_BLOCK_SIZE); memcpy(vec.iv.val, val.val, AES_BLOCK_SIZE); } else { memcpy(vec.ct.val, vec.iv.val, AES_BLOCK_SIZE); memcpy(vec.iv.val, prev_in, AES_BLOCK_SIZE); } continue; } if (info.op == FIPS_TEST_ENC_AUTH_GEN) { memcpy(vec.iv.val, val.val, AES_BLOCK_SIZE); memcpy(vec.pt.val, prev_out, AES_BLOCK_SIZE); } else { memcpy(vec.iv.val, prev_in, AES_BLOCK_SIZE); memcpy(vec.ct.val, prev_out, AES_BLOCK_SIZE); } if (j == AES_INTERN_ITER - 1) continue; memcpy(prev_out, val.val, AES_BLOCK_SIZE); } info.parse_writeback(&val); fprintf(info.fp_wr, "\n"); if (i == AES_EXTERN_ITER - 1) continue; /** update key */ memcpy(&val_key, &vec.cipher_auth.key, sizeof(val_key)); for (k = 0; k < vec.cipher_auth.key.len; k++) { switch (vec.cipher_auth.key.len) { case 16: val_key.val[k] ^= val.val[k]; break; case 24: if (k < 8) val_key.val[k] ^= prev_out[k + 8]; else val_key.val[k] ^= val.val[k - 8]; break; case 32: if (k < 16) val_key.val[k] ^= prev_out[k]; else val_key.val[k] ^= val.val[k - 16]; break; default: return -1; } } if (info.op == FIPS_TEST_DEC_AUTH_VERIF) memcpy(vec.iv.val, val.val, AES_BLOCK_SIZE); } return 0; } static int init_test_ops(void) { switch (info.algo) { case FIPS_TEST_ALGO_AES: test_ops.prepare_op = prepare_cipher_op; test_ops.prepare_xform = prepare_aes_xform; if (info.interim_info.aes_data.test_type == AESAVS_TYPE_MCT) test_ops.test = fips_mct_aes_test; else test_ops.test = fips_generic_test; break; case FIPS_TEST_ALGO_HMAC: test_ops.prepare_op = prepare_auth_op; test_ops.prepare_xform = prepare_hmac_xform; test_ops.test = fips_generic_test; break; case FIPS_TEST_ALGO_TDES: test_ops.prepare_op = prepare_cipher_op; test_ops.prepare_xform = prepare_tdes_xform; if (info.interim_info.tdes_data.test_type == TDES_MCT) test_ops.test = fips_mct_tdes_test; else test_ops.test = fips_generic_test; break; case FIPS_TEST_ALGO_AES_GCM: test_ops.prepare_op = prepare_aead_op; test_ops.prepare_xform = prepare_gcm_xform; test_ops.test = fips_generic_test; break; case FIPS_TEST_ALGO_AES_CMAC: test_ops.prepare_op = prepare_auth_op; test_ops.prepare_xform = prepare_cmac_xform; test_ops.test = fips_generic_test; break; case FIPS_TEST_ALGO_AES_CCM: test_ops.prepare_op = prepare_aead_op; test_ops.prepare_xform = prepare_ccm_xform; test_ops.test = fips_generic_test; break; default: return -1; } return 0; } static void print_test_block(void) { uint32_t i; for (i = 0; i < info.nb_vec_lines; i++) printf("%s\n", info.vec[i]); printf("\n"); } static int fips_test_one_file(void) { int fetch_ret = 0, ret; ret = init_test_ops(); if (ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Init test op\n", ret); return ret; } while (ret >= 0 && fetch_ret == 0) { fetch_ret = fips_test_fetch_one_block(); if (fetch_ret < 0) { RTE_LOG(ERR, USER1, "Error %i: Fetch block\n", fetch_ret); ret = fetch_ret; goto error_one_case; } if (info.nb_vec_lines == 0) { if (fetch_ret == -EOF) break; fprintf(info.fp_wr, "\n"); continue; } ret = fips_test_parse_one_case(); switch (ret) { case 0: ret = test_ops.test(); if (ret == 0) break; RTE_LOG(ERR, USER1, "Error %i: test block\n", ret); goto error_one_case; case 1: break; default: RTE_LOG(ERR, USER1, "Error %i: Parse block\n", ret); goto error_one_case; } continue; error_one_case: print_test_block(); } fips_test_clear(); return ret; }