/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016-2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ipsec.h" #include "esp.h" #include "ipip.h" int esp_inbound(struct rte_mbuf *m, struct ipsec_sa *sa, struct rte_crypto_op *cop) { struct ip *ip4; struct rte_crypto_sym_op *sym_cop; int32_t payload_len, ip_hdr_len; RTE_ASSERT(sa != NULL); if (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) return 0; RTE_ASSERT(m != NULL); RTE_ASSERT(cop != NULL); ip4 = rte_pktmbuf_mtod(m, struct ip *); if (likely(ip4->ip_v == IPVERSION)) ip_hdr_len = ip4->ip_hl * 4; else if (ip4->ip_v == IP6_VERSION) /* XXX No option headers supported */ ip_hdr_len = sizeof(struct ip6_hdr); else { RTE_LOG(ERR, IPSEC_ESP, "invalid IP packet type %d\n", ip4->ip_v); return -EINVAL; } payload_len = rte_pktmbuf_pkt_len(m) - ip_hdr_len - sizeof(struct esp_hdr) - sa->iv_len - sa->digest_len; if ((payload_len & (sa->block_size - 1)) || (payload_len <= 0)) { RTE_LOG_DP(DEBUG, IPSEC_ESP, "payload %d not multiple of %u\n", payload_len, sa->block_size); return -EINVAL; } sym_cop = get_sym_cop(cop); sym_cop->m_src = m; if (sa->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) { sym_cop->aead.data.offset = ip_hdr_len + sizeof(struct esp_hdr) + sa->iv_len; sym_cop->aead.data.length = payload_len; struct cnt_blk *icb; uint8_t *aad; uint8_t *iv = RTE_PTR_ADD(ip4, ip_hdr_len + sizeof(struct esp_hdr)); icb = get_cnt_blk(m); icb->salt = sa->salt; memcpy(&icb->iv, iv, 8); icb->cnt = rte_cpu_to_be_32(1); aad = get_aad(m); memcpy(aad, iv - sizeof(struct esp_hdr), 8); sym_cop->aead.aad.data = aad; sym_cop->aead.aad.phys_addr = rte_pktmbuf_iova_offset(m, aad - rte_pktmbuf_mtod(m, uint8_t *)); sym_cop->aead.digest.data = rte_pktmbuf_mtod_offset(m, void*, rte_pktmbuf_pkt_len(m) - sa->digest_len); sym_cop->aead.digest.phys_addr = rte_pktmbuf_iova_offset(m, rte_pktmbuf_pkt_len(m) - sa->digest_len); } else { sym_cop->cipher.data.offset = ip_hdr_len + sizeof(struct esp_hdr) + sa->iv_len; sym_cop->cipher.data.length = payload_len; struct cnt_blk *icb; uint8_t *iv = RTE_PTR_ADD(ip4, ip_hdr_len + sizeof(struct esp_hdr)); uint8_t *iv_ptr = rte_crypto_op_ctod_offset(cop, uint8_t *, IV_OFFSET); switch (sa->cipher_algo) { case RTE_CRYPTO_CIPHER_NULL: case RTE_CRYPTO_CIPHER_3DES_CBC: case RTE_CRYPTO_CIPHER_AES_CBC: /* Copy IV at the end of crypto operation */ rte_memcpy(iv_ptr, iv, sa->iv_len); break; case RTE_CRYPTO_CIPHER_AES_CTR: icb = get_cnt_blk(m); icb->salt = sa->salt; memcpy(&icb->iv, iv, 8); icb->cnt = rte_cpu_to_be_32(1); break; default: RTE_LOG(ERR, IPSEC_ESP, "unsupported cipher algorithm %u\n", sa->cipher_algo); return -EINVAL; } switch (sa->auth_algo) { case RTE_CRYPTO_AUTH_NULL: case RTE_CRYPTO_AUTH_SHA1_HMAC: case RTE_CRYPTO_AUTH_SHA256_HMAC: sym_cop->auth.data.offset = ip_hdr_len; sym_cop->auth.data.length = sizeof(struct esp_hdr) + sa->iv_len + payload_len; break; default: RTE_LOG(ERR, IPSEC_ESP, "unsupported auth algorithm %u\n", sa->auth_algo); return -EINVAL; } sym_cop->auth.digest.data = rte_pktmbuf_mtod_offset(m, void*, rte_pktmbuf_pkt_len(m) - sa->digest_len); sym_cop->auth.digest.phys_addr = rte_pktmbuf_iova_offset(m, rte_pktmbuf_pkt_len(m) - sa->digest_len); } return 0; } int esp_inbound_post(struct rte_mbuf *m, struct ipsec_sa *sa, struct rte_crypto_op *cop) { struct ip *ip4, *ip; struct ip6_hdr *ip6; uint8_t *nexthdr, *pad_len; uint8_t *padding; uint16_t i; RTE_ASSERT(m != NULL); RTE_ASSERT(sa != NULL); RTE_ASSERT(cop != NULL); if ((sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL) || (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO)) { if (m->ol_flags & PKT_RX_SEC_OFFLOAD) { if (m->ol_flags & PKT_RX_SEC_OFFLOAD_FAILED) cop->status = RTE_CRYPTO_OP_STATUS_ERROR; else cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; } else cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; } if (cop->status != RTE_CRYPTO_OP_STATUS_SUCCESS) { RTE_LOG(ERR, IPSEC_ESP, "failed crypto op\n"); return -1; } if (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO && sa->ol_flags & RTE_SECURITY_RX_HW_TRAILER_OFFLOAD) { nexthdr = &m->inner_esp_next_proto; } else { nexthdr = rte_pktmbuf_mtod_offset(m, uint8_t*, rte_pktmbuf_pkt_len(m) - sa->digest_len - 1); pad_len = nexthdr - 1; padding = pad_len - *pad_len; for (i = 0; i < *pad_len; i++) { if (padding[i] != i + 1) { RTE_LOG(ERR, IPSEC_ESP, "invalid padding\n"); return -EINVAL; } } if (rte_pktmbuf_trim(m, *pad_len + 2 + sa->digest_len)) { RTE_LOG(ERR, IPSEC_ESP, "failed to remove pad_len + digest\n"); return -EINVAL; } } if (unlikely(sa->flags == TRANSPORT)) { ip = rte_pktmbuf_mtod(m, struct ip *); ip4 = (struct ip *)rte_pktmbuf_adj(m, sizeof(struct esp_hdr) + sa->iv_len); if (likely(ip->ip_v == IPVERSION)) { memmove(ip4, ip, ip->ip_hl * 4); ip4->ip_p = *nexthdr; ip4->ip_len = htons(rte_pktmbuf_data_len(m)); } else { ip6 = (struct ip6_hdr *)ip4; /* XXX No option headers supported */ memmove(ip6, ip, sizeof(struct ip6_hdr)); ip6->ip6_nxt = *nexthdr; ip6->ip6_plen = htons(rte_pktmbuf_data_len(m) - sizeof(struct ip6_hdr)); } } else ipip_inbound(m, sizeof(struct esp_hdr) + sa->iv_len); return 0; } int esp_outbound(struct rte_mbuf *m, struct ipsec_sa *sa, struct rte_crypto_op *cop) { struct ip *ip4; struct ip6_hdr *ip6; struct esp_hdr *esp = NULL; uint8_t *padding = NULL, *new_ip, nlp; struct rte_crypto_sym_op *sym_cop; int32_t i; uint16_t pad_payload_len, pad_len, ip_hdr_len; RTE_ASSERT(m != NULL); RTE_ASSERT(sa != NULL); ip_hdr_len = 0; ip4 = rte_pktmbuf_mtod(m, struct ip *); if (likely(ip4->ip_v == IPVERSION)) { if (unlikely(sa->flags == TRANSPORT)) { ip_hdr_len = ip4->ip_hl * 4; nlp = ip4->ip_p; } else nlp = IPPROTO_IPIP; } else if (ip4->ip_v == IP6_VERSION) { if (unlikely(sa->flags == TRANSPORT)) { /* XXX No option headers supported */ ip_hdr_len = sizeof(struct ip6_hdr); ip6 = (struct ip6_hdr *)ip4; nlp = ip6->ip6_nxt; } else nlp = IPPROTO_IPV6; } else { RTE_LOG(ERR, IPSEC_ESP, "invalid IP packet type %d\n", ip4->ip_v); return -EINVAL; } /* Padded payload length */ pad_payload_len = RTE_ALIGN_CEIL(rte_pktmbuf_pkt_len(m) - ip_hdr_len + 2, sa->block_size); pad_len = pad_payload_len + ip_hdr_len - rte_pktmbuf_pkt_len(m); RTE_ASSERT(sa->flags == IP4_TUNNEL || sa->flags == IP6_TUNNEL || sa->flags == TRANSPORT); if (likely(sa->flags == IP4_TUNNEL)) ip_hdr_len = sizeof(struct ip); else if (sa->flags == IP6_TUNNEL) ip_hdr_len = sizeof(struct ip6_hdr); else if (sa->flags != TRANSPORT) { RTE_LOG(ERR, IPSEC_ESP, "Unsupported SA flags: 0x%x\n", sa->flags); return -EINVAL; } /* Check maximum packet size */ if (unlikely(ip_hdr_len + sizeof(struct esp_hdr) + sa->iv_len + pad_payload_len + sa->digest_len > IP_MAXPACKET)) { RTE_LOG(ERR, IPSEC_ESP, "ipsec packet is too big\n"); return -EINVAL; } /* Add trailer padding if it is not constructed by HW */ if (sa->type != RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO || (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO && !(sa->ol_flags & RTE_SECURITY_TX_HW_TRAILER_OFFLOAD))) { padding = (uint8_t *)rte_pktmbuf_append(m, pad_len + sa->digest_len); if (unlikely(padding == NULL)) { RTE_LOG(ERR, IPSEC_ESP, "not enough mbuf trailing space\n"); return -ENOSPC; } rte_prefetch0(padding); } switch (sa->flags) { case IP4_TUNNEL: ip4 = ip4ip_outbound(m, sizeof(struct esp_hdr) + sa->iv_len, &sa->src, &sa->dst); esp = (struct esp_hdr *)(ip4 + 1); break; case IP6_TUNNEL: ip6 = ip6ip_outbound(m, sizeof(struct esp_hdr) + sa->iv_len, &sa->src, &sa->dst); esp = (struct esp_hdr *)(ip6 + 1); break; case TRANSPORT: new_ip = (uint8_t *)rte_pktmbuf_prepend(m, sizeof(struct esp_hdr) + sa->iv_len); memmove(new_ip, ip4, ip_hdr_len); esp = (struct esp_hdr *)(new_ip + ip_hdr_len); ip4 = (struct ip *)new_ip; if (likely(ip4->ip_v == IPVERSION)) { ip4->ip_p = IPPROTO_ESP; ip4->ip_len = htons(rte_pktmbuf_data_len(m)); } else { ip6 = (struct ip6_hdr *)new_ip; ip6->ip6_nxt = IPPROTO_ESP; ip6->ip6_plen = htons(rte_pktmbuf_data_len(m) - sizeof(struct ip6_hdr)); } } sa->seq++; esp->spi = rte_cpu_to_be_32(sa->spi); esp->seq = rte_cpu_to_be_32((uint32_t)sa->seq); /* set iv */ uint64_t *iv = (uint64_t *)(esp + 1); if (sa->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) { *iv = rte_cpu_to_be_64(sa->seq); } else { switch (sa->cipher_algo) { case RTE_CRYPTO_CIPHER_NULL: case RTE_CRYPTO_CIPHER_3DES_CBC: case RTE_CRYPTO_CIPHER_AES_CBC: memset(iv, 0, sa->iv_len); break; case RTE_CRYPTO_CIPHER_AES_CTR: *iv = rte_cpu_to_be_64(sa->seq); break; default: RTE_LOG(ERR, IPSEC_ESP, "unsupported cipher algorithm %u\n", sa->cipher_algo); return -EINVAL; } } if (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) { if (sa->ol_flags & RTE_SECURITY_TX_HW_TRAILER_OFFLOAD) { /* Set the inner esp next protocol for HW trailer */ m->inner_esp_next_proto = nlp; m->packet_type |= RTE_PTYPE_TUNNEL_ESP; } else { padding[pad_len - 2] = pad_len - 2; padding[pad_len - 1] = nlp; } goto done; } RTE_ASSERT(cop != NULL); sym_cop = get_sym_cop(cop); sym_cop->m_src = m; if (sa->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) { uint8_t *aad; sym_cop->aead.data.offset = ip_hdr_len + sizeof(struct esp_hdr) + sa->iv_len; sym_cop->aead.data.length = pad_payload_len; /* Fill pad_len using default sequential scheme */ for (i = 0; i < pad_len - 2; i++) padding[i] = i + 1; padding[pad_len - 2] = pad_len - 2; padding[pad_len - 1] = nlp; struct cnt_blk *icb = get_cnt_blk(m); icb->salt = sa->salt; icb->iv = rte_cpu_to_be_64(sa->seq); icb->cnt = rte_cpu_to_be_32(1); aad = get_aad(m); memcpy(aad, esp, 8); sym_cop->aead.aad.data = aad; sym_cop->aead.aad.phys_addr = rte_pktmbuf_iova_offset(m, aad - rte_pktmbuf_mtod(m, uint8_t *)); sym_cop->aead.digest.data = rte_pktmbuf_mtod_offset(m, uint8_t *, rte_pktmbuf_pkt_len(m) - sa->digest_len); sym_cop->aead.digest.phys_addr = rte_pktmbuf_iova_offset(m, rte_pktmbuf_pkt_len(m) - sa->digest_len); } else { switch (sa->cipher_algo) { case RTE_CRYPTO_CIPHER_NULL: case RTE_CRYPTO_CIPHER_3DES_CBC: case RTE_CRYPTO_CIPHER_AES_CBC: sym_cop->cipher.data.offset = ip_hdr_len + sizeof(struct esp_hdr); sym_cop->cipher.data.length = pad_payload_len + sa->iv_len; break; case RTE_CRYPTO_CIPHER_AES_CTR: sym_cop->cipher.data.offset = ip_hdr_len + sizeof(struct esp_hdr) + sa->iv_len; sym_cop->cipher.data.length = pad_payload_len; break; default: RTE_LOG(ERR, IPSEC_ESP, "unsupported cipher algorithm %u\n", sa->cipher_algo); return -EINVAL; } /* Fill pad_len using default sequential scheme */ for (i = 0; i < pad_len - 2; i++) padding[i] = i + 1; padding[pad_len - 2] = pad_len - 2; padding[pad_len - 1] = nlp; struct cnt_blk *icb = get_cnt_blk(m); icb->salt = sa->salt; icb->iv = rte_cpu_to_be_64(sa->seq); icb->cnt = rte_cpu_to_be_32(1); switch (sa->auth_algo) { case RTE_CRYPTO_AUTH_NULL: case RTE_CRYPTO_AUTH_SHA1_HMAC: case RTE_CRYPTO_AUTH_SHA256_HMAC: sym_cop->auth.data.offset = ip_hdr_len; sym_cop->auth.data.length = sizeof(struct esp_hdr) + sa->iv_len + pad_payload_len; break; default: RTE_LOG(ERR, IPSEC_ESP, "unsupported auth algorithm %u\n", sa->auth_algo); return -EINVAL; } sym_cop->auth.digest.data = rte_pktmbuf_mtod_offset(m, uint8_t *, rte_pktmbuf_pkt_len(m) - sa->digest_len); sym_cop->auth.digest.phys_addr = rte_pktmbuf_iova_offset(m, rte_pktmbuf_pkt_len(m) - sa->digest_len); } done: return 0; } int esp_outbound_post(struct rte_mbuf *m, struct ipsec_sa *sa, struct rte_crypto_op *cop) { RTE_ASSERT(m != NULL); RTE_ASSERT(sa != NULL); if ((sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL) || (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO)) { m->ol_flags |= PKT_TX_SEC_OFFLOAD; } else { RTE_ASSERT(cop != NULL); if (cop->status != RTE_CRYPTO_OP_STATUS_SUCCESS) { RTE_LOG(ERR, IPSEC_ESP, "Failed crypto op\n"); return -1; } } return 0; }