/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ipsec.h" #include "parser.h" #define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1 #define MAX_JUMBO_PKT_LEN 9600 #define MEMPOOL_CACHE_SIZE 256 #define NB_MBUF (32000) #define CDEV_QUEUE_DESC 2048 #define CDEV_MAP_ENTRIES 16384 #define CDEV_MP_NB_OBJS 2048 #define CDEV_MP_CACHE_SZ 64 #define MAX_QUEUE_PAIRS 1 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ #define NB_SOCKETS 4 /* Configure how many packets ahead to prefetch, when reading packets */ #define PREFETCH_OFFSET 3 #define MAX_RX_QUEUE_PER_LCORE 16 #define MAX_LCORE_PARAMS 1024 #define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid)) /* * Configurable number of RX/TX ring descriptors */ #define IPSEC_SECGW_RX_DESC_DEFAULT 1024 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT; static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT; #if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \ (((uint64_t)((a) & 0xff) << 56) | \ ((uint64_t)((b) & 0xff) << 48) | \ ((uint64_t)((c) & 0xff) << 40) | \ ((uint64_t)((d) & 0xff) << 32) | \ ((uint64_t)((e) & 0xff) << 24) | \ ((uint64_t)((f) & 0xff) << 16) | \ ((uint64_t)((g) & 0xff) << 8) | \ ((uint64_t)(h) & 0xff)) #else #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \ (((uint64_t)((h) & 0xff) << 56) | \ ((uint64_t)((g) & 0xff) << 48) | \ ((uint64_t)((f) & 0xff) << 40) | \ ((uint64_t)((e) & 0xff) << 32) | \ ((uint64_t)((d) & 0xff) << 24) | \ ((uint64_t)((c) & 0xff) << 16) | \ ((uint64_t)((b) & 0xff) << 8) | \ ((uint64_t)(a) & 0xff)) #endif #define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0)) #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \ addr.addr_bytes[0], addr.addr_bytes[1], \ addr.addr_bytes[2], addr.addr_bytes[3], \ addr.addr_bytes[4], addr.addr_bytes[5], \ 0, 0) /* port/source ethernet addr and destination ethernet addr */ struct ethaddr_info { uint64_t src, dst; }; struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = { { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) }, { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) }, { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) }, { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) } }; #define CMD_LINE_OPT_CONFIG "config" #define CMD_LINE_OPT_SINGLE_SA "single-sa" #define CMD_LINE_OPT_CRYPTODEV_MASK "cryptodev_mask" enum { /* long options mapped to a short option */ /* first long only option value must be >= 256, so that we won't * conflict with short options */ CMD_LINE_OPT_MIN_NUM = 256, CMD_LINE_OPT_CONFIG_NUM, CMD_LINE_OPT_SINGLE_SA_NUM, CMD_LINE_OPT_CRYPTODEV_MASK_NUM, }; static const struct option lgopts[] = { {CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM}, {CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM}, {CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM}, {NULL, 0, 0, 0} }; /* mask of enabled ports */ static uint32_t enabled_port_mask; static uint64_t enabled_cryptodev_mask = UINT64_MAX; static uint32_t unprotected_port_mask; static int32_t promiscuous_on = 1; static int32_t numa_on = 1; /**< NUMA is enabled by default. */ static uint32_t nb_lcores; static uint32_t single_sa; static uint32_t single_sa_idx; static uint32_t frame_size; struct lcore_rx_queue { uint16_t port_id; uint8_t queue_id; } __rte_cache_aligned; struct lcore_params { uint16_t port_id; uint8_t queue_id; uint8_t lcore_id; } __rte_cache_aligned; static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS]; static struct lcore_params *lcore_params; static uint16_t nb_lcore_params; static struct rte_hash *cdev_map_in; static struct rte_hash *cdev_map_out; struct buffer { uint16_t len; struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *)); }; struct lcore_conf { uint16_t nb_rx_queue; struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; struct buffer tx_mbufs[RTE_MAX_ETHPORTS]; struct ipsec_ctx inbound; struct ipsec_ctx outbound; struct rt_ctx *rt4_ctx; struct rt_ctx *rt6_ctx; } __rte_cache_aligned; static struct lcore_conf lcore_conf[RTE_MAX_LCORE]; static struct rte_eth_conf port_conf = { .rxmode = { .mq_mode = ETH_MQ_RX_RSS, .max_rx_pkt_len = ETHER_MAX_LEN, .split_hdr_size = 0, .offloads = DEV_RX_OFFLOAD_CHECKSUM, }, .rx_adv_conf = { .rss_conf = { .rss_key = NULL, .rss_hf = ETH_RSS_IP | ETH_RSS_UDP | ETH_RSS_TCP | ETH_RSS_SCTP, }, }, .txmode = { .mq_mode = ETH_MQ_TX_NONE, .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_MULTI_SEGS), }, }; static struct socket_ctx socket_ctx[NB_SOCKETS]; struct traffic_type { const uint8_t *data[MAX_PKT_BURST * 2]; struct rte_mbuf *pkts[MAX_PKT_BURST * 2]; uint32_t res[MAX_PKT_BURST * 2]; uint32_t num; }; struct ipsec_traffic { struct traffic_type ipsec; struct traffic_type ip4; struct traffic_type ip6; }; static inline void prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t) { uint8_t *nlp; struct ether_hdr *eth; eth = rte_pktmbuf_mtod(pkt, struct ether_hdr *); if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) { nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN); nlp = RTE_PTR_ADD(nlp, offsetof(struct ip, ip_p)); if (*nlp == IPPROTO_ESP) t->ipsec.pkts[(t->ipsec.num)++] = pkt; else { t->ip4.data[t->ip4.num] = nlp; t->ip4.pkts[(t->ip4.num)++] = pkt; } } else if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) { nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN); nlp = RTE_PTR_ADD(nlp, offsetof(struct ip6_hdr, ip6_nxt)); if (*nlp == IPPROTO_ESP) t->ipsec.pkts[(t->ipsec.num)++] = pkt; else { t->ip6.data[t->ip6.num] = nlp; t->ip6.pkts[(t->ip6.num)++] = pkt; } } else { /* Unknown/Unsupported type, drop the packet */ RTE_LOG(ERR, IPSEC, "Unsupported packet type 0x%x\n", rte_be_to_cpu_16(eth->ether_type)); rte_pktmbuf_free(pkt); } /* Check if the packet has been processed inline. For inline protocol * processed packets, the metadata in the mbuf can be used to identify * the security processing done on the packet. The metadata will be * used to retrieve the application registered userdata associated * with the security session. */ if (pkt->ol_flags & PKT_RX_SEC_OFFLOAD) { struct ipsec_sa *sa; struct ipsec_mbuf_metadata *priv; struct rte_security_ctx *ctx = (struct rte_security_ctx *) rte_eth_dev_get_sec_ctx( pkt->port); /* Retrieve the userdata registered. Here, the userdata * registered is the SA pointer. */ sa = (struct ipsec_sa *) rte_security_get_userdata(ctx, pkt->udata64); if (sa == NULL) { /* userdata could not be retrieved */ return; } /* Save SA as priv member in mbuf. This will be used in the * IPsec selector(SP-SA) check. */ priv = get_priv(pkt); priv->sa = sa; } } static inline void prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t, uint16_t nb_pkts) { int32_t i; t->ipsec.num = 0; t->ip4.num = 0; t->ip6.num = 0; for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) { rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET], void *)); prepare_one_packet(pkts[i], t); } /* Process left packets */ for (; i < nb_pkts; i++) prepare_one_packet(pkts[i], t); } static inline void prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port) { struct ip *ip; struct ether_hdr *ethhdr; ip = rte_pktmbuf_mtod(pkt, struct ip *); ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, ETHER_HDR_LEN); if (ip->ip_v == IPVERSION) { pkt->ol_flags |= PKT_TX_IP_CKSUM | PKT_TX_IPV4; pkt->l3_len = sizeof(struct ip); pkt->l2_len = ETHER_HDR_LEN; ip->ip_sum = 0; ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4); } else { pkt->ol_flags |= PKT_TX_IPV6; pkt->l3_len = sizeof(struct ip6_hdr); pkt->l2_len = ETHER_HDR_LEN; ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6); } memcpy(ðhdr->s_addr, ðaddr_tbl[port].src, sizeof(struct ether_addr)); memcpy(ðhdr->d_addr, ðaddr_tbl[port].dst, sizeof(struct ether_addr)); } static inline void prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port) { int32_t i; const int32_t prefetch_offset = 2; for (i = 0; i < (nb_pkts - prefetch_offset); i++) { rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]); prepare_tx_pkt(pkts[i], port); } /* Process left packets */ for (; i < nb_pkts; i++) prepare_tx_pkt(pkts[i], port); } /* Send burst of packets on an output interface */ static inline int32_t send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port) { struct rte_mbuf **m_table; int32_t ret; uint16_t queueid; queueid = qconf->tx_queue_id[port]; m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; prepare_tx_burst(m_table, n, port); ret = rte_eth_tx_burst(port, queueid, m_table, n); if (unlikely(ret < n)) { do { rte_pktmbuf_free(m_table[ret]); } while (++ret < n); } return 0; } /* Enqueue a single packet, and send burst if queue is filled */ static inline int32_t send_single_packet(struct rte_mbuf *m, uint16_t port) { uint32_t lcore_id; uint16_t len; struct lcore_conf *qconf; lcore_id = rte_lcore_id(); qconf = &lcore_conf[lcore_id]; len = qconf->tx_mbufs[port].len; qconf->tx_mbufs[port].m_table[len] = m; len++; /* enough pkts to be sent */ if (unlikely(len == MAX_PKT_BURST)) { send_burst(qconf, MAX_PKT_BURST, port); len = 0; } qconf->tx_mbufs[port].len = len; return 0; } static inline void inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip, uint16_t lim) { struct rte_mbuf *m; uint32_t i, j, res, sa_idx; if (ip->num == 0 || sp == NULL) return; rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res, ip->num, DEFAULT_MAX_CATEGORIES); j = 0; for (i = 0; i < ip->num; i++) { m = ip->pkts[i]; res = ip->res[i]; if (res == BYPASS) { ip->pkts[j++] = m; continue; } if (res == DISCARD) { rte_pktmbuf_free(m); continue; } /* Only check SPI match for processed IPSec packets */ if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) { rte_pktmbuf_free(m); continue; } sa_idx = SPI2IDX(res); if (!inbound_sa_check(sa, m, sa_idx)) { rte_pktmbuf_free(m); continue; } ip->pkts[j++] = m; } ip->num = j; } static void split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num) { uint32_t i, n4, n6; struct ip *ip; struct rte_mbuf *m; n4 = trf->ip4.num; n6 = trf->ip6.num; for (i = 0; i < num; i++) { m = mb[i]; ip = rte_pktmbuf_mtod(m, struct ip *); if (ip->ip_v == IPVERSION) { trf->ip4.pkts[n4] = m; trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m, uint8_t *, offsetof(struct ip, ip_p)); n4++; } else if (ip->ip_v == IP6_VERSION) { trf->ip6.pkts[n6] = m; trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m, uint8_t *, offsetof(struct ip6_hdr, ip6_nxt)); n6++; } else rte_pktmbuf_free(m); } trf->ip4.num = n4; trf->ip6.num = n6; } static inline void process_pkts_inbound(struct ipsec_ctx *ipsec_ctx, struct ipsec_traffic *traffic) { uint16_t nb_pkts_in, n_ip4, n_ip6; n_ip4 = traffic->ip4.num; n_ip6 = traffic->ip6.num; nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts, traffic->ipsec.num, MAX_PKT_BURST); split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in); inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4, n_ip4); inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6, n_ip6); } static inline void outbound_sp(struct sp_ctx *sp, struct traffic_type *ip, struct traffic_type *ipsec) { struct rte_mbuf *m; uint32_t i, j, sa_idx; if (ip->num == 0 || sp == NULL) return; rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res, ip->num, DEFAULT_MAX_CATEGORIES); j = 0; for (i = 0; i < ip->num; i++) { m = ip->pkts[i]; sa_idx = SPI2IDX(ip->res[i]); if (ip->res[i] == DISCARD) rte_pktmbuf_free(m); else if (ip->res[i] == BYPASS) ip->pkts[j++] = m; else { ipsec->res[ipsec->num] = sa_idx; ipsec->pkts[ipsec->num++] = m; } } ip->num = j; } static inline void process_pkts_outbound(struct ipsec_ctx *ipsec_ctx, struct ipsec_traffic *traffic) { struct rte_mbuf *m; uint16_t idx, nb_pkts_out, i; /* Drop any IPsec traffic from protected ports */ for (i = 0; i < traffic->ipsec.num; i++) rte_pktmbuf_free(traffic->ipsec.pkts[i]); traffic->ipsec.num = 0; outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec); outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec); nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts, traffic->ipsec.res, traffic->ipsec.num, MAX_PKT_BURST); for (i = 0; i < nb_pkts_out; i++) { m = traffic->ipsec.pkts[i]; struct ip *ip = rte_pktmbuf_mtod(m, struct ip *); if (ip->ip_v == IPVERSION) { idx = traffic->ip4.num++; traffic->ip4.pkts[idx] = m; } else { idx = traffic->ip6.num++; traffic->ip6.pkts[idx] = m; } } } static inline void process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx, struct ipsec_traffic *traffic) { struct rte_mbuf *m; uint32_t nb_pkts_in, i, idx; /* Drop any IPv4 traffic from unprotected ports */ for (i = 0; i < traffic->ip4.num; i++) rte_pktmbuf_free(traffic->ip4.pkts[i]); traffic->ip4.num = 0; /* Drop any IPv6 traffic from unprotected ports */ for (i = 0; i < traffic->ip6.num; i++) rte_pktmbuf_free(traffic->ip6.pkts[i]); traffic->ip6.num = 0; nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts, traffic->ipsec.num, MAX_PKT_BURST); for (i = 0; i < nb_pkts_in; i++) { m = traffic->ipsec.pkts[i]; struct ip *ip = rte_pktmbuf_mtod(m, struct ip *); if (ip->ip_v == IPVERSION) { idx = traffic->ip4.num++; traffic->ip4.pkts[idx] = m; } else { idx = traffic->ip6.num++; traffic->ip6.pkts[idx] = m; } } } static inline void process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx, struct ipsec_traffic *traffic) { struct rte_mbuf *m; uint32_t nb_pkts_out, i, n; struct ip *ip; /* Drop any IPsec traffic from protected ports */ for (i = 0; i < traffic->ipsec.num; i++) rte_pktmbuf_free(traffic->ipsec.pkts[i]); n = 0; for (i = 0; i < traffic->ip4.num; i++) { traffic->ipsec.pkts[n] = traffic->ip4.pkts[i]; traffic->ipsec.res[n++] = single_sa_idx; } for (i = 0; i < traffic->ip6.num; i++) { traffic->ipsec.pkts[n] = traffic->ip6.pkts[i]; traffic->ipsec.res[n++] = single_sa_idx; } traffic->ip4.num = 0; traffic->ip6.num = 0; traffic->ipsec.num = n; nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts, traffic->ipsec.res, traffic->ipsec.num, MAX_PKT_BURST); /* They all sue the same SA (ip4 or ip6 tunnel) */ m = traffic->ipsec.pkts[i]; ip = rte_pktmbuf_mtod(m, struct ip *); if (ip->ip_v == IPVERSION) { traffic->ip4.num = nb_pkts_out; for (i = 0; i < nb_pkts_out; i++) traffic->ip4.pkts[i] = traffic->ipsec.pkts[i]; } else { traffic->ip6.num = nb_pkts_out; for (i = 0; i < nb_pkts_out; i++) traffic->ip6.pkts[i] = traffic->ipsec.pkts[i]; } } static inline int32_t get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6) { struct ipsec_mbuf_metadata *priv; struct ipsec_sa *sa; priv = get_priv(pkt); sa = priv->sa; if (unlikely(sa == NULL)) { RTE_LOG(ERR, IPSEC, "SA not saved in private data\n"); goto fail; } if (is_ipv6) return sa->portid; /* else */ return (sa->portid | RTE_LPM_LOOKUP_SUCCESS); fail: if (is_ipv6) return -1; /* else */ return 0; } static inline void route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts) { uint32_t hop[MAX_PKT_BURST * 2]; uint32_t dst_ip[MAX_PKT_BURST * 2]; int32_t pkt_hop = 0; uint16_t i, offset; uint16_t lpm_pkts = 0; if (nb_pkts == 0) return; /* Need to do an LPM lookup for non-inline packets. Inline packets will * have port ID in the SA */ for (i = 0; i < nb_pkts; i++) { if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) { /* Security offload not enabled. So an LPM lookup is * required to get the hop */ offset = offsetof(struct ip, ip_dst); dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i], uint32_t *, offset); dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]); lpm_pkts++; } } rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts); lpm_pkts = 0; for (i = 0; i < nb_pkts; i++) { if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) { /* Read hop from the SA */ pkt_hop = get_hop_for_offload_pkt(pkts[i], 0); } else { /* Need to use hop returned by lookup */ pkt_hop = hop[lpm_pkts++]; } if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) { rte_pktmbuf_free(pkts[i]); continue; } send_single_packet(pkts[i], pkt_hop & 0xff); } } static inline void route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts) { int32_t hop[MAX_PKT_BURST * 2]; uint8_t dst_ip[MAX_PKT_BURST * 2][16]; uint8_t *ip6_dst; int32_t pkt_hop = 0; uint16_t i, offset; uint16_t lpm_pkts = 0; if (nb_pkts == 0) return; /* Need to do an LPM lookup for non-inline packets. Inline packets will * have port ID in the SA */ for (i = 0; i < nb_pkts; i++) { if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) { /* Security offload not enabled. So an LPM lookup is * required to get the hop */ offset = offsetof(struct ip6_hdr, ip6_dst); ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *, offset); memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16); lpm_pkts++; } } rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop, lpm_pkts); lpm_pkts = 0; for (i = 0; i < nb_pkts; i++) { if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) { /* Read hop from the SA */ pkt_hop = get_hop_for_offload_pkt(pkts[i], 1); } else { /* Need to use hop returned by lookup */ pkt_hop = hop[lpm_pkts++]; } if (pkt_hop == -1) { rte_pktmbuf_free(pkts[i]); continue; } send_single_packet(pkts[i], pkt_hop & 0xff); } } static inline void process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts, uint8_t nb_pkts, uint16_t portid) { struct ipsec_traffic traffic; prepare_traffic(pkts, &traffic, nb_pkts); if (unlikely(single_sa)) { if (UNPROTECTED_PORT(portid)) process_pkts_inbound_nosp(&qconf->inbound, &traffic); else process_pkts_outbound_nosp(&qconf->outbound, &traffic); } else { if (UNPROTECTED_PORT(portid)) process_pkts_inbound(&qconf->inbound, &traffic); else process_pkts_outbound(&qconf->outbound, &traffic); } route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num); route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num); } static inline void drain_tx_buffers(struct lcore_conf *qconf) { struct buffer *buf; uint32_t portid; for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { buf = &qconf->tx_mbufs[portid]; if (buf->len == 0) continue; send_burst(qconf, buf->len, portid); buf->len = 0; } } static inline void drain_crypto_buffers(struct lcore_conf *qconf) { uint32_t i; struct ipsec_ctx *ctx; /* drain inbound buffers*/ ctx = &qconf->inbound; for (i = 0; i != ctx->nb_qps; i++) { if (ctx->tbl[i].len != 0) enqueue_cop_burst(ctx->tbl + i); } /* drain outbound buffers*/ ctx = &qconf->outbound; for (i = 0; i != ctx->nb_qps; i++) { if (ctx->tbl[i].len != 0) enqueue_cop_burst(ctx->tbl + i); } } static void drain_inbound_crypto_queues(const struct lcore_conf *qconf, struct ipsec_ctx *ctx) { uint32_t n; struct ipsec_traffic trf; /* dequeue packets from crypto-queue */ n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts, RTE_DIM(trf.ipsec.pkts)); if (n == 0) return; trf.ip4.num = 0; trf.ip6.num = 0; /* split traffic by ipv4-ipv6 */ split46_traffic(&trf, trf.ipsec.pkts, n); /* process ipv4 packets */ inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0); route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num); /* process ipv6 packets */ inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0); route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num); } static void drain_outbound_crypto_queues(const struct lcore_conf *qconf, struct ipsec_ctx *ctx) { uint32_t n; struct ipsec_traffic trf; /* dequeue packets from crypto-queue */ n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts, RTE_DIM(trf.ipsec.pkts)); if (n == 0) return; trf.ip4.num = 0; trf.ip6.num = 0; /* split traffic by ipv4-ipv6 */ split46_traffic(&trf, trf.ipsec.pkts, n); /* process ipv4 packets */ route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num); /* process ipv6 packets */ route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num); } /* main processing loop */ static int32_t main_loop(__attribute__((unused)) void *dummy) { struct rte_mbuf *pkts[MAX_PKT_BURST]; uint32_t lcore_id; uint64_t prev_tsc, diff_tsc, cur_tsc; int32_t i, nb_rx; uint16_t portid; uint8_t queueid; struct lcore_conf *qconf; int32_t socket_id; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; struct lcore_rx_queue *rxql; prev_tsc = 0; lcore_id = rte_lcore_id(); qconf = &lcore_conf[lcore_id]; rxql = qconf->rx_queue_list; socket_id = rte_lcore_to_socket_id(lcore_id); qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4; qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6; qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in; qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in; qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in; qconf->inbound.cdev_map = cdev_map_in; qconf->inbound.session_pool = socket_ctx[socket_id].session_pool; qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out; qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out; qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out; qconf->outbound.cdev_map = cdev_map_out; qconf->outbound.session_pool = socket_ctx[socket_id].session_pool; if (qconf->nb_rx_queue == 0) { RTE_LOG(DEBUG, IPSEC, "lcore %u has nothing to do\n", lcore_id); return 0; } RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id); for (i = 0; i < qconf->nb_rx_queue; i++) { portid = rxql[i].port_id; queueid = rxql[i].queue_id; RTE_LOG(INFO, IPSEC, " -- lcoreid=%u portid=%u rxqueueid=%hhu\n", lcore_id, portid, queueid); } while (1) { cur_tsc = rte_rdtsc(); /* TX queue buffer drain */ diff_tsc = cur_tsc - prev_tsc; if (unlikely(diff_tsc > drain_tsc)) { drain_tx_buffers(qconf); drain_crypto_buffers(qconf); prev_tsc = cur_tsc; } for (i = 0; i < qconf->nb_rx_queue; ++i) { /* Read packets from RX queues */ portid = rxql[i].port_id; queueid = rxql[i].queue_id; nb_rx = rte_eth_rx_burst(portid, queueid, pkts, MAX_PKT_BURST); if (nb_rx > 0) process_pkts(qconf, pkts, nb_rx, portid); /* dequeue and process completed crypto-ops */ if (UNPROTECTED_PORT(portid)) drain_inbound_crypto_queues(qconf, &qconf->inbound); else drain_outbound_crypto_queues(qconf, &qconf->outbound); } } } static int32_t check_params(void) { uint8_t lcore; uint16_t portid; uint16_t i; int32_t socket_id; if (lcore_params == NULL) { printf("Error: No port/queue/core mappings\n"); return -1; } for (i = 0; i < nb_lcore_params; ++i) { lcore = lcore_params[i].lcore_id; if (!rte_lcore_is_enabled(lcore)) { printf("error: lcore %hhu is not enabled in " "lcore mask\n", lcore); return -1; } socket_id = rte_lcore_to_socket_id(lcore); if (socket_id != 0 && numa_on == 0) { printf("warning: lcore %hhu is on socket %d " "with numa off\n", lcore, socket_id); } portid = lcore_params[i].port_id; if ((enabled_port_mask & (1 << portid)) == 0) { printf("port %u is not enabled in port mask\n", portid); return -1; } if (!rte_eth_dev_is_valid_port(portid)) { printf("port %u is not present on the board\n", portid); return -1; } } return 0; } static uint8_t get_port_nb_rx_queues(const uint16_t port) { int32_t queue = -1; uint16_t i; for (i = 0; i < nb_lcore_params; ++i) { if (lcore_params[i].port_id == port && lcore_params[i].queue_id > queue) queue = lcore_params[i].queue_id; } return (uint8_t)(++queue); } static int32_t init_lcore_rx_queues(void) { uint16_t i, nb_rx_queue; uint8_t lcore; for (i = 0; i < nb_lcore_params; ++i) { lcore = lcore_params[i].lcore_id; nb_rx_queue = lcore_conf[lcore].nb_rx_queue; if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) { printf("error: too many queues (%u) for lcore: %u\n", nb_rx_queue + 1, lcore); return -1; } lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id = lcore_params[i].port_id; lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id = lcore_params[i].queue_id; lcore_conf[lcore].nb_rx_queue++; } return 0; } /* display usage */ static void print_usage(const char *prgname) { fprintf(stderr, "%s [EAL options] --" " -p PORTMASK" " [-P]" " [-u PORTMASK]" " [-j FRAMESIZE]" " -f CONFIG_FILE" " --config (port,queue,lcore)[,(port,queue,lcore)]" " [--single-sa SAIDX]" " [--cryptodev_mask MASK]" "\n\n" " -p PORTMASK: Hexadecimal bitmask of ports to configure\n" " -P : Enable promiscuous mode\n" " -u PORTMASK: Hexadecimal bitmask of unprotected ports\n" " -j FRAMESIZE: Enable jumbo frame with 'FRAMESIZE' as maximum\n" " packet size\n" " -f CONFIG_FILE: Configuration file\n" " --config (port,queue,lcore): Rx queue configuration\n" " --single-sa SAIDX: Use single SA index for outbound traffic,\n" " bypassing the SP\n" " --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n" " devices to configure\n" "\n", prgname); } static int32_t parse_portmask(const char *portmask) { char *end = NULL; unsigned long pm; /* parse hexadecimal string */ pm = strtoul(portmask, &end, 16); if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if ((pm == 0) && errno) return -1; return pm; } static int32_t parse_decimal(const char *str) { char *end = NULL; unsigned long num; num = strtoul(str, &end, 10); if ((str[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; return num; } static int32_t parse_config(const char *q_arg) { char s[256]; const char *p, *p0 = q_arg; char *end; enum fieldnames { FLD_PORT = 0, FLD_QUEUE, FLD_LCORE, _NUM_FLD }; unsigned long int_fld[_NUM_FLD]; char *str_fld[_NUM_FLD]; int32_t i; uint32_t size; nb_lcore_params = 0; while ((p = strchr(p0, '(')) != NULL) { ++p; p0 = strchr(p, ')'); if (p0 == NULL) return -1; size = p0 - p; if (size >= sizeof(s)) return -1; snprintf(s, sizeof(s), "%.*s", size, p); if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD) return -1; for (i = 0; i < _NUM_FLD; i++) { errno = 0; int_fld[i] = strtoul(str_fld[i], &end, 0); if (errno != 0 || end == str_fld[i] || int_fld[i] > 255) return -1; } if (nb_lcore_params >= MAX_LCORE_PARAMS) { printf("exceeded max number of lcore params: %hu\n", nb_lcore_params); return -1; } lcore_params_array[nb_lcore_params].port_id = (uint8_t)int_fld[FLD_PORT]; lcore_params_array[nb_lcore_params].queue_id = (uint8_t)int_fld[FLD_QUEUE]; lcore_params_array[nb_lcore_params].lcore_id = (uint8_t)int_fld[FLD_LCORE]; ++nb_lcore_params; } lcore_params = lcore_params_array; return 0; } static int32_t parse_args(int32_t argc, char **argv) { int32_t opt, ret; char **argvopt; int32_t option_index; char *prgname = argv[0]; int32_t f_present = 0; argvopt = argv; while ((opt = getopt_long(argc, argvopt, "p:Pu:f:j:", lgopts, &option_index)) != EOF) { switch (opt) { case 'p': enabled_port_mask = parse_portmask(optarg); if (enabled_port_mask == 0) { printf("invalid portmask\n"); print_usage(prgname); return -1; } break; case 'P': printf("Promiscuous mode selected\n"); promiscuous_on = 1; break; case 'u': unprotected_port_mask = parse_portmask(optarg); if (unprotected_port_mask == 0) { printf("invalid unprotected portmask\n"); print_usage(prgname); return -1; } break; case 'f': if (f_present == 1) { printf("\"-f\" option present more than " "once!\n"); print_usage(prgname); return -1; } if (parse_cfg_file(optarg) < 0) { printf("parsing file \"%s\" failed\n", optarg); print_usage(prgname); return -1; } f_present = 1; break; case 'j': { int32_t size = parse_decimal(optarg); if (size <= 1518) { printf("Invalid jumbo frame size\n"); if (size < 0) { print_usage(prgname); return -1; } printf("Using default value 9000\n"); frame_size = 9000; } else { frame_size = size; } } printf("Enabled jumbo frames size %u\n", frame_size); break; case CMD_LINE_OPT_CONFIG_NUM: ret = parse_config(optarg); if (ret) { printf("Invalid config\n"); print_usage(prgname); return -1; } break; case CMD_LINE_OPT_SINGLE_SA_NUM: ret = parse_decimal(optarg); if (ret == -1) { printf("Invalid argument[sa_idx]\n"); print_usage(prgname); return -1; } /* else */ single_sa = 1; single_sa_idx = ret; printf("Configured with single SA index %u\n", single_sa_idx); break; case CMD_LINE_OPT_CRYPTODEV_MASK_NUM: ret = parse_portmask(optarg); if (ret == -1) { printf("Invalid argument[portmask]\n"); print_usage(prgname); return -1; } /* else */ enabled_cryptodev_mask = ret; break; default: print_usage(prgname); return -1; } } if (f_present == 0) { printf("Mandatory option \"-f\" not present\n"); return -1; } if (optind >= 0) argv[optind-1] = prgname; ret = optind-1; optind = 1; /* reset getopt lib */ return ret; } static void print_ethaddr(const char *name, const struct ether_addr *eth_addr) { char buf[ETHER_ADDR_FMT_SIZE]; ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); printf("%s%s", name, buf); } /* Check the link status of all ports in up to 9s, and print them finally */ static void check_all_ports_link_status(uint32_t port_mask) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ uint16_t portid; uint8_t count, all_ports_up, print_flag = 0; struct rte_eth_link link; printf("\nChecking link status"); fflush(stdout); for (count = 0; count <= MAX_CHECK_TIME; count++) { all_ports_up = 1; RTE_ETH_FOREACH_DEV(portid) { if ((port_mask & (1 << portid)) == 0) continue; memset(&link, 0, sizeof(link)); rte_eth_link_get_nowait(portid, &link); /* print link status if flag set */ if (print_flag == 1) { if (link.link_status) printf( "Port%d Link Up - speed %u Mbps -%s\n", portid, link.link_speed, (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex\n")); else printf("Port %d Link Down\n", portid); continue; } /* clear all_ports_up flag if any link down */ if (link.link_status == ETH_LINK_DOWN) { all_ports_up = 0; break; } } /* after finally printing all link status, get out */ if (print_flag == 1) break; if (all_ports_up == 0) { printf("."); fflush(stdout); rte_delay_ms(CHECK_INTERVAL); } /* set the print_flag if all ports up or timeout */ if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { print_flag = 1; printf("done\n"); } } } static int32_t add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id, uint16_t qp, struct lcore_params *params, struct ipsec_ctx *ipsec_ctx, const struct rte_cryptodev_capabilities *cipher, const struct rte_cryptodev_capabilities *auth, const struct rte_cryptodev_capabilities *aead) { int32_t ret = 0; unsigned long i; struct cdev_key key = { 0 }; key.lcore_id = params->lcore_id; if (cipher) key.cipher_algo = cipher->sym.cipher.algo; if (auth) key.auth_algo = auth->sym.auth.algo; if (aead) key.aead_algo = aead->sym.aead.algo; ret = rte_hash_lookup(map, &key); if (ret != -ENOENT) return 0; for (i = 0; i < ipsec_ctx->nb_qps; i++) if (ipsec_ctx->tbl[i].id == cdev_id) break; if (i == ipsec_ctx->nb_qps) { if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) { printf("Maximum number of crypto devices assigned to " "a core, increase MAX_QP_PER_LCORE value\n"); return 0; } ipsec_ctx->tbl[i].id = cdev_id; ipsec_ctx->tbl[i].qp = qp; ipsec_ctx->nb_qps++; printf("%s cdev mapping: lcore %u using cdev %u qp %u " "(cdev_id_qp %lu)\n", str, key.lcore_id, cdev_id, qp, i); } ret = rte_hash_add_key_data(map, &key, (void *)i); if (ret < 0) { printf("Faled to insert cdev mapping for (lcore %u, " "cdev %u, qp %u), errno %d\n", key.lcore_id, ipsec_ctx->tbl[i].id, ipsec_ctx->tbl[i].qp, ret); return 0; } return 1; } static int32_t add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id, uint16_t qp, struct lcore_params *params) { int32_t ret = 0; const struct rte_cryptodev_capabilities *i, *j; struct rte_hash *map; struct lcore_conf *qconf; struct ipsec_ctx *ipsec_ctx; const char *str; qconf = &lcore_conf[params->lcore_id]; if ((unprotected_port_mask & (1 << params->port_id)) == 0) { map = cdev_map_out; ipsec_ctx = &qconf->outbound; str = "Outbound"; } else { map = cdev_map_in; ipsec_ctx = &qconf->inbound; str = "Inbound"; } /* Required cryptodevs with operation chainning */ if (!(dev_info->feature_flags & RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING)) return ret; for (i = dev_info->capabilities; i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) { if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC) continue; if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) { ret |= add_mapping(map, str, cdev_id, qp, params, ipsec_ctx, NULL, NULL, i); continue; } if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER) continue; for (j = dev_info->capabilities; j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) { if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC) continue; if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH) continue; ret |= add_mapping(map, str, cdev_id, qp, params, ipsec_ctx, i, j, NULL); } } return ret; } /* Check if the device is enabled by cryptodev_mask */ static int check_cryptodev_mask(uint8_t cdev_id) { if (enabled_cryptodev_mask & (1 << cdev_id)) return 0; return -1; } static int32_t cryptodevs_init(void) { struct rte_cryptodev_config dev_conf; struct rte_cryptodev_qp_conf qp_conf; uint16_t idx, max_nb_qps, qp, i; int16_t cdev_id, port_id; struct rte_hash_parameters params = { 0 }; params.entries = CDEV_MAP_ENTRIES; params.key_len = sizeof(struct cdev_key); params.hash_func = rte_jhash; params.hash_func_init_val = 0; params.socket_id = rte_socket_id(); params.name = "cdev_map_in"; cdev_map_in = rte_hash_create(¶ms); if (cdev_map_in == NULL) rte_panic("Failed to create cdev_map hash table, errno = %d\n", rte_errno); params.name = "cdev_map_out"; cdev_map_out = rte_hash_create(¶ms); if (cdev_map_out == NULL) rte_panic("Failed to create cdev_map hash table, errno = %d\n", rte_errno); printf("lcore/cryptodev/qp mappings:\n"); uint32_t max_sess_sz = 0, sess_sz; for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) { void *sec_ctx; /* Get crypto priv session size */ sess_sz = rte_cryptodev_sym_get_private_session_size(cdev_id); if (sess_sz > max_sess_sz) max_sess_sz = sess_sz; /* * If crypto device is security capable, need to check the * size of security session as well. */ /* Get security context of the crypto device */ sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id); if (sec_ctx == NULL) continue; /* Get size of security session */ sess_sz = rte_security_session_get_size(sec_ctx); if (sess_sz > max_sess_sz) max_sess_sz = sess_sz; } RTE_ETH_FOREACH_DEV(port_id) { void *sec_ctx; if ((enabled_port_mask & (1 << port_id)) == 0) continue; sec_ctx = rte_eth_dev_get_sec_ctx(port_id); if (sec_ctx == NULL) continue; sess_sz = rte_security_session_get_size(sec_ctx); if (sess_sz > max_sess_sz) max_sess_sz = sess_sz; } idx = 0; for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) { struct rte_cryptodev_info cdev_info; if (check_cryptodev_mask((uint8_t)cdev_id)) continue; rte_cryptodev_info_get(cdev_id, &cdev_info); if (nb_lcore_params > cdev_info.max_nb_queue_pairs) max_nb_qps = cdev_info.max_nb_queue_pairs; else max_nb_qps = nb_lcore_params; qp = 0; i = 0; while (qp < max_nb_qps && i < nb_lcore_params) { if (add_cdev_mapping(&cdev_info, cdev_id, qp, &lcore_params[idx])) qp++; idx++; idx = idx % nb_lcore_params; i++; } if (qp == 0) continue; dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id); dev_conf.nb_queue_pairs = qp; uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions; if (dev_max_sess != 0 && dev_max_sess < (CDEV_MP_NB_OBJS / 2)) rte_exit(EXIT_FAILURE, "Device does not support at least %u " "sessions", CDEV_MP_NB_OBJS / 2); if (!socket_ctx[dev_conf.socket_id].session_pool) { char mp_name[RTE_MEMPOOL_NAMESIZE]; struct rte_mempool *sess_mp; snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, "sess_mp_%u", dev_conf.socket_id); sess_mp = rte_mempool_create(mp_name, CDEV_MP_NB_OBJS, max_sess_sz, CDEV_MP_CACHE_SZ, 0, NULL, NULL, NULL, NULL, dev_conf.socket_id, 0); if (sess_mp == NULL) rte_exit(EXIT_FAILURE, "Cannot create session pool on socket %d\n", dev_conf.socket_id); else printf("Allocated session pool on socket %d\n", dev_conf.socket_id); socket_ctx[dev_conf.socket_id].session_pool = sess_mp; } if (rte_cryptodev_configure(cdev_id, &dev_conf)) rte_panic("Failed to initialize cryptodev %u\n", cdev_id); qp_conf.nb_descriptors = CDEV_QUEUE_DESC; for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++) if (rte_cryptodev_queue_pair_setup(cdev_id, qp, &qp_conf, dev_conf.socket_id, socket_ctx[dev_conf.socket_id].session_pool)) rte_panic("Failed to setup queue %u for " "cdev_id %u\n", 0, cdev_id); if (rte_cryptodev_start(cdev_id)) rte_panic("Failed to start cryptodev %u\n", cdev_id); } /* create session pools for eth devices that implement security */ RTE_ETH_FOREACH_DEV(port_id) { if ((enabled_port_mask & (1 << port_id)) && rte_eth_dev_get_sec_ctx(port_id)) { int socket_id = rte_eth_dev_socket_id(port_id); if (!socket_ctx[socket_id].session_pool) { char mp_name[RTE_MEMPOOL_NAMESIZE]; struct rte_mempool *sess_mp; snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, "sess_mp_%u", socket_id); sess_mp = rte_mempool_create(mp_name, CDEV_MP_NB_OBJS, max_sess_sz, CDEV_MP_CACHE_SZ, 0, NULL, NULL, NULL, NULL, socket_id, 0); if (sess_mp == NULL) rte_exit(EXIT_FAILURE, "Cannot create session pool " "on socket %d\n", socket_id); else printf("Allocated session pool " "on socket %d\n", socket_id); socket_ctx[socket_id].session_pool = sess_mp; } } } printf("\n"); return 0; } static void port_init(uint16_t portid) { struct rte_eth_dev_info dev_info; struct rte_eth_txconf *txconf; uint16_t nb_tx_queue, nb_rx_queue; uint16_t tx_queueid, rx_queueid, queue, lcore_id; int32_t ret, socket_id; struct lcore_conf *qconf; struct ether_addr ethaddr; struct rte_eth_conf local_port_conf = port_conf; rte_eth_dev_info_get(portid, &dev_info); printf("Configuring device port %u:\n", portid); rte_eth_macaddr_get(portid, ðaddr); ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ethaddr); print_ethaddr("Address: ", ðaddr); printf("\n"); nb_rx_queue = get_port_nb_rx_queues(portid); nb_tx_queue = nb_lcores; if (nb_rx_queue > dev_info.max_rx_queues) rte_exit(EXIT_FAILURE, "Error: queue %u not available " "(max rx queue is %u)\n", nb_rx_queue, dev_info.max_rx_queues); if (nb_tx_queue > dev_info.max_tx_queues) rte_exit(EXIT_FAILURE, "Error: queue %u not available " "(max tx queue is %u)\n", nb_tx_queue, dev_info.max_tx_queues); printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n", nb_rx_queue, nb_tx_queue); if (frame_size) { local_port_conf.rxmode.max_rx_pkt_len = frame_size; local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; } if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SECURITY) local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SECURITY; if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SECURITY) local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_SECURITY; if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; local_port_conf.rx_adv_conf.rss_conf.rss_hf &= dev_info.flow_type_rss_offloads; if (local_port_conf.rx_adv_conf.rss_conf.rss_hf != port_conf.rx_adv_conf.rss_conf.rss_hf) { printf("Port %u modified RSS hash function based on hardware support," "requested:%#"PRIx64" configured:%#"PRIx64"\n", portid, port_conf.rx_adv_conf.rss_conf.rss_hf, local_port_conf.rx_adv_conf.rss_conf.rss_hf); } ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue, &local_port_conf); if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot configure device: " "err=%d, port=%d\n", ret, portid); ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd); if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: " "err=%d, port=%d\n", ret, portid); /* init one TX queue per lcore */ tx_queueid = 0; for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { if (rte_lcore_is_enabled(lcore_id) == 0) continue; if (numa_on) socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id); else socket_id = 0; /* init TX queue */ printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id); txconf = &dev_info.default_txconf; txconf->offloads = local_port_conf.txmode.offloads; ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd, socket_id, txconf); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " "err=%d, port=%d\n", ret, portid); qconf = &lcore_conf[lcore_id]; qconf->tx_queue_id[portid] = tx_queueid; tx_queueid++; /* init RX queues */ for (queue = 0; queue < qconf->nb_rx_queue; ++queue) { struct rte_eth_rxconf rxq_conf; if (portid != qconf->rx_queue_list[queue].port_id) continue; rx_queueid = qconf->rx_queue_list[queue].queue_id; printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid, socket_id); rxq_conf = dev_info.default_rxconf; rxq_conf.offloads = local_port_conf.rxmode.offloads; ret = rte_eth_rx_queue_setup(portid, rx_queueid, nb_rxd, socket_id, &rxq_conf, socket_ctx[socket_id].mbuf_pool); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, " "port=%d\n", ret, portid); } } printf("\n"); } static void pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf) { char s[64]; uint32_t buff_size = frame_size ? (frame_size + RTE_PKTMBUF_HEADROOM) : RTE_MBUF_DEFAULT_BUF_SIZE; snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id); ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf, MEMPOOL_CACHE_SIZE, ipsec_metadata_size(), buff_size, socket_id); if (ctx->mbuf_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n", socket_id); else printf("Allocated mbuf pool on socket %d\n", socket_id); } static inline int inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md) { struct ipsec_sa *sa; /* For inline protocol processing, the metadata in the event will * uniquely identify the security session which raised the event. * Application would then need the userdata it had registered with the * security session to process the event. */ sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md); if (sa == NULL) { /* userdata could not be retrieved */ return -1; } /* Sequence number over flow. SA need to be re-established */ RTE_SET_USED(sa); return 0; } static int inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type, void *param, void *ret_param) { uint64_t md; struct rte_eth_event_ipsec_desc *event_desc = NULL; struct rte_security_ctx *ctx = (struct rte_security_ctx *) rte_eth_dev_get_sec_ctx(port_id); RTE_SET_USED(param); if (type != RTE_ETH_EVENT_IPSEC) return -1; event_desc = ret_param; if (event_desc == NULL) { printf("Event descriptor not set\n"); return -1; } md = event_desc->metadata; if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW) return inline_ipsec_event_esn_overflow(ctx, md); else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) { printf("Invalid IPsec event reported\n"); return -1; } return -1; } int32_t main(int32_t argc, char **argv) { int32_t ret; uint32_t lcore_id; uint8_t socket_id; uint16_t portid; /* init EAL */ ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); argc -= ret; argv += ret; /* parse application arguments (after the EAL ones) */ ret = parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid parameters\n"); if ((unprotected_port_mask & enabled_port_mask) != unprotected_port_mask) rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n", unprotected_port_mask); if (check_params() < 0) rte_exit(EXIT_FAILURE, "check_params failed\n"); ret = init_lcore_rx_queues(); if (ret < 0) rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n"); nb_lcores = rte_lcore_count(); /* Replicate each context per socket */ for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { if (rte_lcore_is_enabled(lcore_id) == 0) continue; if (numa_on) socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id); else socket_id = 0; if (socket_ctx[socket_id].mbuf_pool) continue; sa_init(&socket_ctx[socket_id], socket_id); sp4_init(&socket_ctx[socket_id], socket_id); sp6_init(&socket_ctx[socket_id], socket_id); rt_init(&socket_ctx[socket_id], socket_id); pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF); } RTE_ETH_FOREACH_DEV(portid) { if ((enabled_port_mask & (1 << portid)) == 0) continue; port_init(portid); } cryptodevs_init(); /* start ports */ RTE_ETH_FOREACH_DEV(portid) { if ((enabled_port_mask & (1 << portid)) == 0) continue; /* Start device */ ret = rte_eth_dev_start(portid); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_dev_start: " "err=%d, port=%d\n", ret, portid); /* * If enabled, put device in promiscuous mode. * This allows IO forwarding mode to forward packets * to itself through 2 cross-connected ports of the * target machine. */ if (promiscuous_on) rte_eth_promiscuous_enable(portid); rte_eth_dev_callback_register(portid, RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL); } check_all_ports_link_status(enabled_port_mask); /* launch per-lcore init on every lcore */ rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (rte_eal_wait_lcore(lcore_id) < 0) return -1; } return 0; }