/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016 Intel Corporation */ /* * Security Policies */ #include #include #include #include #include #include "ipsec.h" #include "parser.h" #define MAX_ACL_RULE_NUM 1024 /* * Rule and trace formats definitions. */ enum { PROTO_FIELD_IPV4, SRC_FIELD_IPV4, DST_FIELD_IPV4, SRCP_FIELD_IPV4, DSTP_FIELD_IPV4, NUM_FIELDS_IPV4 }; /* * That effectively defines order of IPV4 classifications: * - PROTO * - SRC IP ADDRESS * - DST IP ADDRESS * - PORTS (SRC and DST) */ enum { RTE_ACL_IPV4_PROTO, RTE_ACL_IPV4_SRC, RTE_ACL_IPV4_DST, RTE_ACL_IPV4_PORTS, RTE_ACL_IPV4_NUM }; static struct rte_acl_field_def ip4_defs[NUM_FIELDS_IPV4] = { { .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint8_t), .field_index = PROTO_FIELD_IPV4, .input_index = RTE_ACL_IPV4_PROTO, .offset = 0, }, { .type = RTE_ACL_FIELD_TYPE_MASK, .size = sizeof(uint32_t), .field_index = SRC_FIELD_IPV4, .input_index = RTE_ACL_IPV4_SRC, .offset = offsetof(struct ip, ip_src) - offsetof(struct ip, ip_p) }, { .type = RTE_ACL_FIELD_TYPE_MASK, .size = sizeof(uint32_t), .field_index = DST_FIELD_IPV4, .input_index = RTE_ACL_IPV4_DST, .offset = offsetof(struct ip, ip_dst) - offsetof(struct ip, ip_p) }, { .type = RTE_ACL_FIELD_TYPE_RANGE, .size = sizeof(uint16_t), .field_index = SRCP_FIELD_IPV4, .input_index = RTE_ACL_IPV4_PORTS, .offset = sizeof(struct ip) - offsetof(struct ip, ip_p) }, { .type = RTE_ACL_FIELD_TYPE_RANGE, .size = sizeof(uint16_t), .field_index = DSTP_FIELD_IPV4, .input_index = RTE_ACL_IPV4_PORTS, .offset = sizeof(struct ip) - offsetof(struct ip, ip_p) + sizeof(uint16_t) }, }; RTE_ACL_RULE_DEF(acl4_rules, RTE_DIM(ip4_defs)); static struct acl4_rules acl4_rules_out[MAX_ACL_RULE_NUM]; static uint32_t nb_acl4_rules_out; static struct acl4_rules acl4_rules_in[MAX_ACL_RULE_NUM]; static uint32_t nb_acl4_rules_in; void parse_sp4_tokens(char **tokens, uint32_t n_tokens, struct parse_status *status) { struct acl4_rules *rule_ipv4 = NULL; uint32_t *ri = NULL; /* rule index */ uint32_t ti = 0; /* token index */ uint32_t esp_p = 0; uint32_t protect_p = 0; uint32_t bypass_p = 0; uint32_t discard_p = 0; uint32_t pri_p = 0; uint32_t src_p = 0; uint32_t dst_p = 0; uint32_t proto_p = 0; uint32_t sport_p = 0; uint32_t dport_p = 0; if (strcmp(tokens[1], "in") == 0) { ri = &nb_acl4_rules_in; APP_CHECK(*ri <= MAX_ACL_RULE_NUM - 1, status, "too many sp rules, abort insertion\n"); if (status->status < 0) return; rule_ipv4 = &acl4_rules_in[*ri]; } else if (strcmp(tokens[1], "out") == 0) { ri = &nb_acl4_rules_out; APP_CHECK(*ri <= MAX_ACL_RULE_NUM - 1, status, "too many sp rules, abort insertion\n"); if (status->status < 0) return; rule_ipv4 = &acl4_rules_out[*ri]; } else { APP_CHECK(0, status, "unrecognized input \"%s\", expect" " \"in\" or \"out\"\n", tokens[ti]); return; } rule_ipv4->data.category_mask = 1; for (ti = 2; ti < n_tokens; ti++) { if (strcmp(tokens[ti], "esp") == 0) { /* currently do nothing */ APP_CHECK_PRESENCE(esp_p, tokens[ti], status); if (status->status < 0) return; esp_p = 1; continue; } if (strcmp(tokens[ti], "protect") == 0) { APP_CHECK_PRESENCE(protect_p, tokens[ti], status); if (status->status < 0) return; APP_CHECK(bypass_p == 0, status, "conflict item " "between \"%s\" and \"%s\"", tokens[ti], "bypass"); if (status->status < 0) return; APP_CHECK(discard_p == 0, status, "conflict item " "between \"%s\" and \"%s\"", tokens[ti], "discard"); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; APP_CHECK_TOKEN_IS_NUM(tokens, ti, status); if (status->status < 0) return; rule_ipv4->data.userdata = PROTECT(atoi(tokens[ti])); protect_p = 1; continue; } if (strcmp(tokens[ti], "bypass") == 0) { APP_CHECK_PRESENCE(bypass_p, tokens[ti], status); if (status->status < 0) return; APP_CHECK(protect_p == 0, status, "conflict item " "between \"%s\" and \"%s\"", tokens[ti], "protect"); if (status->status < 0) return; APP_CHECK(discard_p == 0, status, "conflict item " "between \"%s\" and \"%s\"", tokens[ti], "discard"); if (status->status < 0) return; rule_ipv4->data.userdata = BYPASS; bypass_p = 1; continue; } if (strcmp(tokens[ti], "discard") == 0) { APP_CHECK_PRESENCE(discard_p, tokens[ti], status); if (status->status < 0) return; APP_CHECK(protect_p == 0, status, "conflict item " "between \"%s\" and \"%s\"", tokens[ti], "protect"); if (status->status < 0) return; APP_CHECK(bypass_p == 0, status, "conflict item " "between \"%s\" and \"%s\"", tokens[ti], "discard"); if (status->status < 0) return; rule_ipv4->data.userdata = DISCARD; discard_p = 1; continue; } if (strcmp(tokens[ti], "pri") == 0) { APP_CHECK_PRESENCE(pri_p, tokens[ti], status); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; APP_CHECK_TOKEN_IS_NUM(tokens, ti, status); if (status->status < 0) return; rule_ipv4->data.priority = atoi(tokens[ti]); pri_p = 1; continue; } if (strcmp(tokens[ti], "src") == 0) { struct in_addr ip; uint32_t depth; APP_CHECK_PRESENCE(src_p, tokens[ti], status); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; APP_CHECK(parse_ipv4_addr(tokens[ti], &ip, &depth) == 0, status, "unrecognized " "input \"%s\", expect valid ipv4 addr", tokens[ti]); if (status->status < 0) return; rule_ipv4->field[1].value.u32 = rte_bswap32(ip.s_addr); rule_ipv4->field[1].mask_range.u32 = depth; src_p = 1; continue; } if (strcmp(tokens[ti], "dst") == 0) { struct in_addr ip; uint32_t depth; APP_CHECK_PRESENCE(dst_p, tokens[ti], status); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; APP_CHECK(parse_ipv4_addr(tokens[ti], &ip, &depth) == 0, status, "unrecognized " "input \"%s\", expect valid ipv4 addr", tokens[ti]); if (status->status < 0) return; rule_ipv4->field[2].value.u32 = rte_bswap32(ip.s_addr); rule_ipv4->field[2].mask_range.u32 = depth; dst_p = 1; continue; } if (strcmp(tokens[ti], "proto") == 0) { uint16_t low, high; APP_CHECK_PRESENCE(proto_p, tokens[ti], status); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; APP_CHECK(parse_range(tokens[ti], &low, &high) == 0, status, "unrecognized input \"%s\"" ", expect \"from:to\"", tokens[ti]); if (status->status < 0) return; APP_CHECK(low <= 0xff, status, "proto low " "over-limit"); if (status->status < 0) return; APP_CHECK(high <= 0xff, status, "proto high " "over-limit"); if (status->status < 0) return; rule_ipv4->field[0].value.u8 = (uint8_t)low; rule_ipv4->field[0].mask_range.u8 = (uint8_t)high; proto_p = 1; continue; } if (strcmp(tokens[ti], "sport") == 0) { uint16_t port_low, port_high; APP_CHECK_PRESENCE(sport_p, tokens[ti], status); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; APP_CHECK(parse_range(tokens[ti], &port_low, &port_high) == 0, status, "unrecognized " "input \"%s\", expect \"port_from:" "port_to\"", tokens[ti]); if (status->status < 0) return; rule_ipv4->field[3].value.u16 = port_low; rule_ipv4->field[3].mask_range.u16 = port_high; sport_p = 1; continue; } if (strcmp(tokens[ti], "dport") == 0) { uint16_t port_low, port_high; APP_CHECK_PRESENCE(dport_p, tokens[ti], status); if (status->status < 0) return; INCREMENT_TOKEN_INDEX(ti, n_tokens, status); if (status->status < 0) return; APP_CHECK(parse_range(tokens[ti], &port_low, &port_high) == 0, status, "unrecognized " "input \"%s\", expect \"port_from:" "port_to\"", tokens[ti]); if (status->status < 0) return; rule_ipv4->field[4].value.u16 = port_low; rule_ipv4->field[4].mask_range.u16 = port_high; dport_p = 1; continue; } /* unrecognizeable input */ APP_CHECK(0, status, "unrecognized input \"%s\"", tokens[ti]); return; } /* check if argument(s) are missing */ APP_CHECK(esp_p == 1, status, "missing argument \"esp\""); if (status->status < 0) return; APP_CHECK(protect_p | bypass_p | discard_p, status, "missing " "argument \"protect\", \"bypass\", or \"discard\""); if (status->status < 0) return; *ri = *ri + 1; } static void print_one_ip4_rule(const struct acl4_rules *rule, int32_t extra) { uint8_t a, b, c, d; uint32_t_to_char(rule->field[SRC_FIELD_IPV4].value.u32, &a, &b, &c, &d); printf("%hhu.%hhu.%hhu.%hhu/%u ", a, b, c, d, rule->field[SRC_FIELD_IPV4].mask_range.u32); uint32_t_to_char(rule->field[DST_FIELD_IPV4].value.u32, &a, &b, &c, &d); printf("%hhu.%hhu.%hhu.%hhu/%u ", a, b, c, d, rule->field[DST_FIELD_IPV4].mask_range.u32); printf("%hu : %hu %hu : %hu 0x%hhx/0x%hhx ", rule->field[SRCP_FIELD_IPV4].value.u16, rule->field[SRCP_FIELD_IPV4].mask_range.u16, rule->field[DSTP_FIELD_IPV4].value.u16, rule->field[DSTP_FIELD_IPV4].mask_range.u16, rule->field[PROTO_FIELD_IPV4].value.u8, rule->field[PROTO_FIELD_IPV4].mask_range.u8); if (extra) printf("0x%x-0x%x-0x%x ", rule->data.category_mask, rule->data.priority, rule->data.userdata); } static inline void dump_ip4_rules(const struct acl4_rules *rule, int32_t num, int32_t extra) { int32_t i; for (i = 0; i < num; i++, rule++) { printf("\t%d:", i + 1); print_one_ip4_rule(rule, extra); printf("\n"); } } static struct rte_acl_ctx * acl4_init(const char *name, int32_t socketid, const struct acl4_rules *rules, uint32_t rules_nb) { char s[PATH_MAX]; struct rte_acl_param acl_param; struct rte_acl_config acl_build_param; struct rte_acl_ctx *ctx; printf("Creating SP context with %u max rules\n", MAX_ACL_RULE_NUM); memset(&acl_param, 0, sizeof(acl_param)); /* Create ACL contexts */ snprintf(s, sizeof(s), "%s_%d", name, socketid); printf("IPv4 %s entries [%u]:\n", s, rules_nb); dump_ip4_rules(rules, rules_nb, 1); acl_param.name = s; acl_param.socket_id = socketid; acl_param.rule_size = RTE_ACL_RULE_SZ(RTE_DIM(ip4_defs)); acl_param.max_rule_num = MAX_ACL_RULE_NUM; ctx = rte_acl_create(&acl_param); if (ctx == NULL) rte_exit(EXIT_FAILURE, "Failed to create ACL context\n"); if (rte_acl_add_rules(ctx, (const struct rte_acl_rule *)rules, rules_nb) < 0) rte_exit(EXIT_FAILURE, "add rules failed\n"); /* Perform builds */ memset(&acl_build_param, 0, sizeof(acl_build_param)); acl_build_param.num_categories = DEFAULT_MAX_CATEGORIES; acl_build_param.num_fields = RTE_DIM(ip4_defs); memcpy(&acl_build_param.defs, ip4_defs, sizeof(ip4_defs)); if (rte_acl_build(ctx, &acl_build_param) != 0) rte_exit(EXIT_FAILURE, "Failed to build ACL trie\n"); rte_acl_dump(ctx); return ctx; } void sp4_init(struct socket_ctx *ctx, int32_t socket_id) { const char *name; if (ctx == NULL) rte_exit(EXIT_FAILURE, "NULL context.\n"); if (ctx->sp_ip4_in != NULL) rte_exit(EXIT_FAILURE, "Inbound SP DB for socket %u already " "initialized\n", socket_id); if (ctx->sp_ip4_out != NULL) rte_exit(EXIT_FAILURE, "Outbound SP DB for socket %u already " "initialized\n", socket_id); if (nb_acl4_rules_in > 0) { name = "sp_ip4_in"; ctx->sp_ip4_in = (struct sp_ctx *)acl4_init(name, socket_id, acl4_rules_in, nb_acl4_rules_in); } else RTE_LOG(WARNING, IPSEC, "No IPv4 SP Inbound rule " "specified\n"); if (nb_acl4_rules_out > 0) { name = "sp_ip4_out"; ctx->sp_ip4_out = (struct sp_ctx *)acl4_init(name, socket_id, acl4_rules_out, nb_acl4_rules_out); } else RTE_LOG(WARNING, IPSEC, "No IPv4 SP Outbound rule " "specified\n"); }