/*- * BSD LICENSE * * Copyright(c) 2015-2016 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include enum cdev_type { CDEV_TYPE_ANY, CDEV_TYPE_HW, CDEV_TYPE_SW }; #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1 #define NB_MBUF 8192 #define MAX_STR_LEN 32 #define MAX_KEY_SIZE 128 #define MAX_IV_SIZE 16 #define MAX_AAD_SIZE 65535 #define MAX_PKT_BURST 32 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ #define MAX_SESSIONS 32 #define SESSION_POOL_CACHE_SIZE 0 #define MAXIMUM_IV_LENGTH 16 #define IV_OFFSET (sizeof(struct rte_crypto_op) + \ sizeof(struct rte_crypto_sym_op)) /* * Configurable number of RX/TX ring descriptors */ #define RTE_TEST_RX_DESC_DEFAULT 128 #define RTE_TEST_TX_DESC_DEFAULT 512 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /* ethernet addresses of ports */ static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS]; /* mask of enabled ports */ static uint64_t l2fwd_enabled_port_mask; static uint64_t l2fwd_enabled_crypto_mask; /* list of enabled ports */ static uint16_t l2fwd_dst_ports[RTE_MAX_ETHPORTS]; struct pkt_buffer { unsigned len; struct rte_mbuf *buffer[MAX_PKT_BURST]; }; struct op_buffer { unsigned len; struct rte_crypto_op *buffer[MAX_PKT_BURST]; }; #define MAX_RX_QUEUE_PER_LCORE 16 #define MAX_TX_QUEUE_PER_PORT 16 enum l2fwd_crypto_xform_chain { L2FWD_CRYPTO_CIPHER_HASH, L2FWD_CRYPTO_HASH_CIPHER, L2FWD_CRYPTO_CIPHER_ONLY, L2FWD_CRYPTO_HASH_ONLY, L2FWD_CRYPTO_AEAD }; struct l2fwd_key { uint8_t *data; uint32_t length; rte_iova_t phys_addr; }; struct l2fwd_iv { uint8_t *data; uint16_t length; }; /** l2fwd crypto application command line options */ struct l2fwd_crypto_options { unsigned portmask; unsigned nb_ports_per_lcore; unsigned refresh_period; unsigned single_lcore:1; enum cdev_type type; unsigned sessionless:1; enum l2fwd_crypto_xform_chain xform_chain; struct rte_crypto_sym_xform cipher_xform; unsigned ckey_param; int ckey_random_size; struct l2fwd_iv cipher_iv; unsigned int cipher_iv_param; int cipher_iv_random_size; struct rte_crypto_sym_xform auth_xform; uint8_t akey_param; int akey_random_size; struct l2fwd_iv auth_iv; unsigned int auth_iv_param; int auth_iv_random_size; struct rte_crypto_sym_xform aead_xform; unsigned int aead_key_param; int aead_key_random_size; struct l2fwd_iv aead_iv; unsigned int aead_iv_param; int aead_iv_random_size; struct l2fwd_key aad; unsigned aad_param; int aad_random_size; int digest_size; uint16_t block_size; char string_type[MAX_STR_LEN]; uint64_t cryptodev_mask; unsigned int mac_updating; }; /** l2fwd crypto lcore params */ struct l2fwd_crypto_params { uint8_t dev_id; uint8_t qp_id; unsigned digest_length; unsigned block_size; struct l2fwd_iv cipher_iv; struct l2fwd_iv auth_iv; struct l2fwd_iv aead_iv; struct l2fwd_key aad; struct rte_cryptodev_sym_session *session; uint8_t do_cipher; uint8_t do_hash; uint8_t do_aead; uint8_t hash_verify; enum rte_crypto_cipher_algorithm cipher_algo; enum rte_crypto_auth_algorithm auth_algo; enum rte_crypto_aead_algorithm aead_algo; }; /** lcore configuration */ struct lcore_queue_conf { unsigned nb_rx_ports; uint16_t rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned nb_crypto_devs; unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE]; struct op_buffer op_buf[RTE_CRYPTO_MAX_DEVS]; struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS]; } __rte_cache_aligned; struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; static const struct rte_eth_conf port_conf = { .rxmode = { .mq_mode = ETH_MQ_RX_NONE, .max_rx_pkt_len = ETHER_MAX_LEN, .split_hdr_size = 0, .header_split = 0, /**< Header Split disabled */ .hw_ip_checksum = 0, /**< IP checksum offload disabled */ .hw_vlan_filter = 0, /**< VLAN filtering disabled */ .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ .hw_strip_crc = 1, /**< CRC stripped by hardware */ }, .txmode = { .mq_mode = ETH_MQ_TX_NONE, }, }; struct rte_mempool *l2fwd_pktmbuf_pool; struct rte_mempool *l2fwd_crypto_op_pool; struct rte_mempool *session_pool_socket[RTE_MAX_NUMA_NODES] = { 0 }; /* Per-port statistics struct */ struct l2fwd_port_statistics { uint64_t tx; uint64_t rx; uint64_t crypto_enqueued; uint64_t crypto_dequeued; uint64_t dropped; } __rte_cache_aligned; struct l2fwd_crypto_statistics { uint64_t enqueued; uint64_t dequeued; uint64_t errors; } __rte_cache_aligned; struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS]; struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS]; /* A tsc-based timer responsible for triggering statistics printout */ #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */ #define MAX_TIMER_PERIOD 86400UL /* 1 day max */ /* default period is 10 seconds */ static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000; /* Print out statistics on packets dropped */ static void print_stats(void) { uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; uint64_t total_packets_enqueued, total_packets_dequeued, total_packets_errors; uint16_t portid; uint64_t cdevid; total_packets_dropped = 0; total_packets_tx = 0; total_packets_rx = 0; total_packets_enqueued = 0; total_packets_dequeued = 0; total_packets_errors = 0; const char clr[] = { 27, '[', '2', 'J', '\0' }; const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; /* Clear screen and move to top left */ printf("%s%s", clr, topLeft); printf("\nPort statistics ===================================="); for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { /* skip disabled ports */ if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) continue; printf("\nStatistics for port %u ------------------------------" "\nPackets sent: %32"PRIu64 "\nPackets received: %28"PRIu64 "\nPackets dropped: %29"PRIu64, portid, port_statistics[portid].tx, port_statistics[portid].rx, port_statistics[portid].dropped); total_packets_dropped += port_statistics[portid].dropped; total_packets_tx += port_statistics[portid].tx; total_packets_rx += port_statistics[portid].rx; } printf("\nCrypto statistics =================================="); for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) { /* skip disabled ports */ if ((l2fwd_enabled_crypto_mask & (((uint64_t)1) << cdevid)) == 0) continue; printf("\nStatistics for cryptodev %"PRIu64 " -------------------------" "\nPackets enqueued: %28"PRIu64 "\nPackets dequeued: %28"PRIu64 "\nPackets errors: %30"PRIu64, cdevid, crypto_statistics[cdevid].enqueued, crypto_statistics[cdevid].dequeued, crypto_statistics[cdevid].errors); total_packets_enqueued += crypto_statistics[cdevid].enqueued; total_packets_dequeued += crypto_statistics[cdevid].dequeued; total_packets_errors += crypto_statistics[cdevid].errors; } printf("\nAggregate statistics ===============================" "\nTotal packets received: %22"PRIu64 "\nTotal packets enqueued: %22"PRIu64 "\nTotal packets dequeued: %22"PRIu64 "\nTotal packets sent: %26"PRIu64 "\nTotal packets dropped: %23"PRIu64 "\nTotal packets crypto errors: %17"PRIu64, total_packets_rx, total_packets_enqueued, total_packets_dequeued, total_packets_tx, total_packets_dropped, total_packets_errors); printf("\n====================================================\n"); } static int l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n, struct l2fwd_crypto_params *cparams) { struct rte_crypto_op **op_buffer; unsigned ret; op_buffer = (struct rte_crypto_op **) qconf->op_buf[cparams->dev_id].buffer; ret = rte_cryptodev_enqueue_burst(cparams->dev_id, cparams->qp_id, op_buffer, (uint16_t) n); crypto_statistics[cparams->dev_id].enqueued += ret; if (unlikely(ret < n)) { crypto_statistics[cparams->dev_id].errors += (n - ret); do { rte_pktmbuf_free(op_buffer[ret]->sym->m_src); rte_crypto_op_free(op_buffer[ret]); } while (++ret < n); } return 0; } static int l2fwd_crypto_enqueue(struct rte_crypto_op *op, struct l2fwd_crypto_params *cparams) { unsigned lcore_id, len; struct lcore_queue_conf *qconf; lcore_id = rte_lcore_id(); qconf = &lcore_queue_conf[lcore_id]; len = qconf->op_buf[cparams->dev_id].len; qconf->op_buf[cparams->dev_id].buffer[len] = op; len++; /* enough ops to be sent */ if (len == MAX_PKT_BURST) { l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams); len = 0; } qconf->op_buf[cparams->dev_id].len = len; return 0; } static int l2fwd_simple_crypto_enqueue(struct rte_mbuf *m, struct rte_crypto_op *op, struct l2fwd_crypto_params *cparams) { struct ether_hdr *eth_hdr; struct ipv4_hdr *ip_hdr; uint32_t ipdata_offset, data_len; uint32_t pad_len = 0; char *padding; eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4)) return -1; ipdata_offset = sizeof(struct ether_hdr); ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) + ipdata_offset); ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK) * IPV4_IHL_MULTIPLIER; /* Zero pad data to be crypto'd so it is block aligned */ data_len = rte_pktmbuf_data_len(m) - ipdata_offset; if ((cparams->do_hash || cparams->do_aead) && cparams->hash_verify) data_len -= cparams->digest_length; if (cparams->do_cipher) { /* * Following algorithms are block cipher algorithms, * and might need padding */ switch (cparams->cipher_algo) { case RTE_CRYPTO_CIPHER_AES_CBC: case RTE_CRYPTO_CIPHER_AES_ECB: case RTE_CRYPTO_CIPHER_DES_CBC: case RTE_CRYPTO_CIPHER_3DES_CBC: case RTE_CRYPTO_CIPHER_3DES_ECB: if (data_len % cparams->block_size) pad_len = cparams->block_size - (data_len % cparams->block_size); break; default: pad_len = 0; } if (pad_len) { padding = rte_pktmbuf_append(m, pad_len); if (unlikely(!padding)) return -1; data_len += pad_len; memset(padding, 0, pad_len); } } /* Set crypto operation data parameters */ rte_crypto_op_attach_sym_session(op, cparams->session); if (cparams->do_hash) { if (cparams->auth_iv.length) { uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, IV_OFFSET + cparams->cipher_iv.length); /* * Copy IV at the end of the crypto operation, * after the cipher IV, if added */ rte_memcpy(iv_ptr, cparams->auth_iv.data, cparams->auth_iv.length); } if (!cparams->hash_verify) { /* Append space for digest to end of packet */ op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m, cparams->digest_length); } else { op->sym->auth.digest.data = rte_pktmbuf_mtod(m, uint8_t *) + ipdata_offset + data_len; } op->sym->auth.digest.phys_addr = rte_pktmbuf_iova_offset(m, rte_pktmbuf_pkt_len(m) - cparams->digest_length); /* For wireless algorithms, offset/length must be in bits */ if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 || cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 || cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { op->sym->auth.data.offset = ipdata_offset << 3; op->sym->auth.data.length = data_len << 3; } else { op->sym->auth.data.offset = ipdata_offset; op->sym->auth.data.length = data_len; } } if (cparams->do_cipher) { uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, IV_OFFSET); /* Copy IV at the end of the crypto operation */ rte_memcpy(iv_ptr, cparams->cipher_iv.data, cparams->cipher_iv.length); /* For wireless algorithms, offset/length must be in bits */ if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 || cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 || cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) { op->sym->cipher.data.offset = ipdata_offset << 3; op->sym->cipher.data.length = data_len << 3; } else { op->sym->cipher.data.offset = ipdata_offset; op->sym->cipher.data.length = data_len; } } if (cparams->do_aead) { uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *, IV_OFFSET); /* Copy IV at the end of the crypto operation */ /* * If doing AES-CCM, nonce is copied one byte * after the start of IV field */ if (cparams->aead_algo == RTE_CRYPTO_AEAD_AES_CCM) rte_memcpy(iv_ptr + 1, cparams->aead_iv.data, cparams->aead_iv.length); else rte_memcpy(iv_ptr, cparams->aead_iv.data, cparams->aead_iv.length); op->sym->aead.data.offset = ipdata_offset; op->sym->aead.data.length = data_len; if (!cparams->hash_verify) { /* Append space for digest to end of packet */ op->sym->aead.digest.data = (uint8_t *)rte_pktmbuf_append(m, cparams->digest_length); } else { op->sym->aead.digest.data = rte_pktmbuf_mtod(m, uint8_t *) + ipdata_offset + data_len; } op->sym->aead.digest.phys_addr = rte_pktmbuf_iova_offset(m, rte_pktmbuf_pkt_len(m) - cparams->digest_length); if (cparams->aad.length) { op->sym->aead.aad.data = cparams->aad.data; op->sym->aead.aad.phys_addr = cparams->aad.phys_addr; } } op->sym->m_src = m; return l2fwd_crypto_enqueue(op, cparams); } /* Send the burst of packets on an output interface */ static int l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n, uint16_t port) { struct rte_mbuf **pkt_buffer; unsigned ret; pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer; ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n); port_statistics[port].tx += ret; if (unlikely(ret < n)) { port_statistics[port].dropped += (n - ret); do { rte_pktmbuf_free(pkt_buffer[ret]); } while (++ret < n); } return 0; } /* Enqueue packets for TX and prepare them to be sent */ static int l2fwd_send_packet(struct rte_mbuf *m, uint16_t port) { unsigned lcore_id, len; struct lcore_queue_conf *qconf; lcore_id = rte_lcore_id(); qconf = &lcore_queue_conf[lcore_id]; len = qconf->pkt_buf[port].len; qconf->pkt_buf[port].buffer[len] = m; len++; /* enough pkts to be sent */ if (unlikely(len == MAX_PKT_BURST)) { l2fwd_send_burst(qconf, MAX_PKT_BURST, port); len = 0; } qconf->pkt_buf[port].len = len; return 0; } static void l2fwd_mac_updating(struct rte_mbuf *m, uint16_t dest_portid) { struct ether_hdr *eth; void *tmp; eth = rte_pktmbuf_mtod(m, struct ether_hdr *); /* 02:00:00:00:00:xx */ tmp = ð->d_addr.addr_bytes[0]; *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40); /* src addr */ ether_addr_copy(&l2fwd_ports_eth_addr[dest_portid], ð->s_addr); } static void l2fwd_simple_forward(struct rte_mbuf *m, uint16_t portid, struct l2fwd_crypto_options *options) { uint16_t dst_port; dst_port = l2fwd_dst_ports[portid]; if (options->mac_updating) l2fwd_mac_updating(m, dst_port); l2fwd_send_packet(m, dst_port); } /** Generate random key */ static void generate_random_key(uint8_t *key, unsigned length) { int fd; int ret; fd = open("/dev/urandom", O_RDONLY); if (fd < 0) rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); ret = read(fd, key, length); close(fd); if (ret != (signed)length) rte_exit(EXIT_FAILURE, "Failed to generate random key\n"); } static struct rte_cryptodev_sym_session * initialize_crypto_session(struct l2fwd_crypto_options *options, uint8_t cdev_id) { struct rte_crypto_sym_xform *first_xform; struct rte_cryptodev_sym_session *session; int retval = rte_cryptodev_socket_id(cdev_id); if (retval < 0) return NULL; uint8_t socket_id = (uint8_t) retval; struct rte_mempool *sess_mp = session_pool_socket[socket_id]; if (options->xform_chain == L2FWD_CRYPTO_AEAD) { first_xform = &options->aead_xform; } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) { first_xform = &options->cipher_xform; first_xform->next = &options->auth_xform; } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) { first_xform = &options->auth_xform; first_xform->next = &options->cipher_xform; } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { first_xform = &options->cipher_xform; } else { first_xform = &options->auth_xform; } session = rte_cryptodev_sym_session_create(sess_mp); if (session == NULL) return NULL; if (rte_cryptodev_sym_session_init(cdev_id, session, first_xform, sess_mp) < 0) return NULL; return session; } static void l2fwd_crypto_options_print(struct l2fwd_crypto_options *options); /* main processing loop */ static void l2fwd_main_loop(struct l2fwd_crypto_options *options) { struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST]; struct rte_crypto_op *ops_burst[MAX_PKT_BURST]; unsigned lcore_id = rte_lcore_id(); uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; unsigned int i, j, nb_rx, len; uint16_t portid; struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id]; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; struct l2fwd_crypto_params *cparams; struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs]; struct rte_cryptodev_sym_session *session; if (qconf->nb_rx_ports == 0) { RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id); return; } RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id); for (i = 0; i < qconf->nb_rx_ports; i++) { portid = qconf->rx_port_list[i]; RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, portid); } for (i = 0; i < qconf->nb_crypto_devs; i++) { port_cparams[i].do_cipher = 0; port_cparams[i].do_hash = 0; port_cparams[i].do_aead = 0; switch (options->xform_chain) { case L2FWD_CRYPTO_AEAD: port_cparams[i].do_aead = 1; break; case L2FWD_CRYPTO_CIPHER_HASH: case L2FWD_CRYPTO_HASH_CIPHER: port_cparams[i].do_cipher = 1; port_cparams[i].do_hash = 1; break; case L2FWD_CRYPTO_HASH_ONLY: port_cparams[i].do_hash = 1; break; case L2FWD_CRYPTO_CIPHER_ONLY: port_cparams[i].do_cipher = 1; break; } port_cparams[i].dev_id = qconf->cryptodev_list[i]; port_cparams[i].qp_id = 0; port_cparams[i].block_size = options->block_size; if (port_cparams[i].do_hash) { port_cparams[i].auth_iv.data = options->auth_iv.data; port_cparams[i].auth_iv.length = options->auth_iv.length; if (!options->auth_iv_param) generate_random_key(port_cparams[i].auth_iv.data, port_cparams[i].auth_iv.length); if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) port_cparams[i].hash_verify = 1; else port_cparams[i].hash_verify = 0; port_cparams[i].auth_algo = options->auth_xform.auth.algo; port_cparams[i].digest_length = options->auth_xform.auth.digest_length; /* Set IV parameters */ if (options->auth_iv.length) { options->auth_xform.auth.iv.offset = IV_OFFSET + options->cipher_iv.length; options->auth_xform.auth.iv.length = options->auth_iv.length; } } if (port_cparams[i].do_aead) { port_cparams[i].aead_iv.data = options->aead_iv.data; port_cparams[i].aead_iv.length = options->aead_iv.length; if (!options->aead_iv_param) generate_random_key(port_cparams[i].aead_iv.data, port_cparams[i].aead_iv.length); port_cparams[i].aead_algo = options->aead_xform.aead.algo; port_cparams[i].digest_length = options->aead_xform.aead.digest_length; if (options->aead_xform.aead.aad_length) { port_cparams[i].aad.data = options->aad.data; port_cparams[i].aad.phys_addr = options->aad.phys_addr; port_cparams[i].aad.length = options->aad.length; if (!options->aad_param) generate_random_key(port_cparams[i].aad.data, port_cparams[i].aad.length); /* * If doing AES-CCM, first 18 bytes has to be reserved, * and actual AAD should start from byte 18 */ if (port_cparams[i].aead_algo == RTE_CRYPTO_AEAD_AES_CCM) memmove(port_cparams[i].aad.data + 18, port_cparams[i].aad.data, port_cparams[i].aad.length); } else port_cparams[i].aad.length = 0; if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_DECRYPT) port_cparams[i].hash_verify = 1; else port_cparams[i].hash_verify = 0; /* Set IV parameters */ options->aead_xform.aead.iv.offset = IV_OFFSET; options->aead_xform.aead.iv.length = options->aead_iv.length; } if (port_cparams[i].do_cipher) { port_cparams[i].cipher_iv.data = options->cipher_iv.data; port_cparams[i].cipher_iv.length = options->cipher_iv.length; if (!options->cipher_iv_param) generate_random_key(port_cparams[i].cipher_iv.data, port_cparams[i].cipher_iv.length); port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo; /* Set IV parameters */ options->cipher_xform.cipher.iv.offset = IV_OFFSET; options->cipher_xform.cipher.iv.length = options->cipher_iv.length; } session = initialize_crypto_session(options, port_cparams[i].dev_id); if (session == NULL) rte_exit(EXIT_FAILURE, "Failed to initialize crypto session\n"); port_cparams[i].session = session; RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id, port_cparams[i].dev_id); } l2fwd_crypto_options_print(options); /* * Initialize previous tsc timestamp before the loop, * to avoid showing the port statistics immediately, * so user can see the crypto information. */ prev_tsc = rte_rdtsc(); while (1) { cur_tsc = rte_rdtsc(); /* * Crypto device/TX burst queue drain */ diff_tsc = cur_tsc - prev_tsc; if (unlikely(diff_tsc > drain_tsc)) { /* Enqueue all crypto ops remaining in buffers */ for (i = 0; i < qconf->nb_crypto_devs; i++) { cparams = &port_cparams[i]; len = qconf->op_buf[cparams->dev_id].len; l2fwd_crypto_send_burst(qconf, len, cparams); qconf->op_buf[cparams->dev_id].len = 0; } /* Transmit all packets remaining in buffers */ for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { if (qconf->pkt_buf[portid].len == 0) continue; l2fwd_send_burst(&lcore_queue_conf[lcore_id], qconf->pkt_buf[portid].len, portid); qconf->pkt_buf[portid].len = 0; } /* if timer is enabled */ if (timer_period > 0) { /* advance the timer */ timer_tsc += diff_tsc; /* if timer has reached its timeout */ if (unlikely(timer_tsc >= (uint64_t)timer_period)) { /* do this only on master core */ if (lcore_id == rte_get_master_lcore() && options->refresh_period) { print_stats(); timer_tsc = 0; } } } prev_tsc = cur_tsc; } /* * Read packet from RX queues */ for (i = 0; i < qconf->nb_rx_ports; i++) { portid = qconf->rx_port_list[i]; cparams = &port_cparams[i]; nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, MAX_PKT_BURST); port_statistics[portid].rx += nb_rx; if (nb_rx) { /* * If we can't allocate a crypto_ops, then drop * the rest of the burst and dequeue and * process the packets to free offload structs */ if (rte_crypto_op_bulk_alloc( l2fwd_crypto_op_pool, RTE_CRYPTO_OP_TYPE_SYMMETRIC, ops_burst, nb_rx) != nb_rx) { for (j = 0; j < nb_rx; j++) rte_pktmbuf_free(pkts_burst[j]); nb_rx = 0; } /* Enqueue packets from Crypto device*/ for (j = 0; j < nb_rx; j++) { m = pkts_burst[j]; l2fwd_simple_crypto_enqueue(m, ops_burst[j], cparams); } } /* Dequeue packets from Crypto device */ do { nb_rx = rte_cryptodev_dequeue_burst( cparams->dev_id, cparams->qp_id, ops_burst, MAX_PKT_BURST); crypto_statistics[cparams->dev_id].dequeued += nb_rx; /* Forward crypto'd packets */ for (j = 0; j < nb_rx; j++) { m = ops_burst[j]->sym->m_src; rte_crypto_op_free(ops_burst[j]); l2fwd_simple_forward(m, portid, options); } } while (nb_rx == MAX_PKT_BURST); } } } static int l2fwd_launch_one_lcore(void *arg) { l2fwd_main_loop((struct l2fwd_crypto_options *)arg); return 0; } /* Display command line arguments usage */ static void l2fwd_crypto_usage(const char *prgname) { printf("%s [EAL options] --\n" " -p PORTMASK: hexadecimal bitmask of ports to configure\n" " -q NQ: number of queue (=ports) per lcore (default is 1)\n" " -s manage all ports from single lcore\n" " -T PERIOD: statistics will be refreshed each PERIOD seconds" " (0 to disable, 10 default, 86400 maximum)\n" " --cdev_type HW / SW / ANY\n" " --chain HASH_CIPHER / CIPHER_HASH / CIPHER_ONLY /" " HASH_ONLY / AEAD\n" " --cipher_algo ALGO\n" " --cipher_op ENCRYPT / DECRYPT\n" " --cipher_key KEY (bytes separated with \":\")\n" " --cipher_key_random_size SIZE: size of cipher key when generated randomly\n" " --cipher_iv IV (bytes separated with \":\")\n" " --cipher_iv_random_size SIZE: size of cipher IV when generated randomly\n" " --auth_algo ALGO\n" " --auth_op GENERATE / VERIFY\n" " --auth_key KEY (bytes separated with \":\")\n" " --auth_key_random_size SIZE: size of auth key when generated randomly\n" " --auth_iv IV (bytes separated with \":\")\n" " --auth_iv_random_size SIZE: size of auth IV when generated randomly\n" " --aead_algo ALGO\n" " --aead_op ENCRYPT / DECRYPT\n" " --aead_key KEY (bytes separated with \":\")\n" " --aead_key_random_size SIZE: size of AEAD key when generated randomly\n" " --aead_iv IV (bytes separated with \":\")\n" " --aead_iv_random_size SIZE: size of AEAD IV when generated randomly\n" " --aad AAD (bytes separated with \":\")\n" " --aad_random_size SIZE: size of AAD when generated randomly\n" " --digest_size SIZE: size of digest to be generated/verified\n" " --sessionless\n" " --cryptodev_mask MASK: hexadecimal bitmask of crypto devices to configure\n" " --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default)\n" " When enabled:\n" " - The source MAC address is replaced by the TX port MAC address\n" " - The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID\n", prgname); } /** Parse crypto device type command line argument */ static int parse_cryptodev_type(enum cdev_type *type, char *optarg) { if (strcmp("HW", optarg) == 0) { *type = CDEV_TYPE_HW; return 0; } else if (strcmp("SW", optarg) == 0) { *type = CDEV_TYPE_SW; return 0; } else if (strcmp("ANY", optarg) == 0) { *type = CDEV_TYPE_ANY; return 0; } return -1; } /** Parse crypto chain xform command line argument */ static int parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg) { if (strcmp("CIPHER_HASH", optarg) == 0) { options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; return 0; } else if (strcmp("HASH_CIPHER", optarg) == 0) { options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER; return 0; } else if (strcmp("CIPHER_ONLY", optarg) == 0) { options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY; return 0; } else if (strcmp("HASH_ONLY", optarg) == 0) { options->xform_chain = L2FWD_CRYPTO_HASH_ONLY; return 0; } else if (strcmp("AEAD", optarg) == 0) { options->xform_chain = L2FWD_CRYPTO_AEAD; return 0; } return -1; } /** Parse crypto cipher algo option command line argument */ static int parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg) { if (rte_cryptodev_get_cipher_algo_enum(algo, optarg) < 0) { RTE_LOG(ERR, USER1, "Cipher algorithm specified " "not supported!\n"); return -1; } return 0; } /** Parse crypto cipher operation command line argument */ static int parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg) { if (strcmp("ENCRYPT", optarg) == 0) { *op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; return 0; } else if (strcmp("DECRYPT", optarg) == 0) { *op = RTE_CRYPTO_CIPHER_OP_DECRYPT; return 0; } printf("Cipher operation not supported!\n"); return -1; } /** Parse bytes from command line argument */ static int parse_bytes(uint8_t *data, char *input_arg, uint16_t max_size) { unsigned byte_count; char *token; errno = 0; for (byte_count = 0, token = strtok(input_arg, ":"); (byte_count < max_size) && (token != NULL); token = strtok(NULL, ":")) { int number = (int)strtol(token, NULL, 16); if (errno == EINVAL || errno == ERANGE || number > 0xFF) return -1; data[byte_count++] = (uint8_t)number; } return byte_count; } /** Parse size param*/ static int parse_size(int *size, const char *q_arg) { char *end = NULL; unsigned long n; /* parse hexadecimal string */ n = strtoul(q_arg, &end, 10); if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) n = 0; if (n == 0) { printf("invalid size\n"); return -1; } *size = n; return 0; } /** Parse crypto cipher operation command line argument */ static int parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg) { if (rte_cryptodev_get_auth_algo_enum(algo, optarg) < 0) { RTE_LOG(ERR, USER1, "Authentication algorithm specified " "not supported!\n"); return -1; } return 0; } static int parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg) { if (strcmp("VERIFY", optarg) == 0) { *op = RTE_CRYPTO_AUTH_OP_VERIFY; return 0; } else if (strcmp("GENERATE", optarg) == 0) { *op = RTE_CRYPTO_AUTH_OP_GENERATE; return 0; } printf("Authentication operation specified not supported!\n"); return -1; } static int parse_aead_algo(enum rte_crypto_aead_algorithm *algo, char *optarg) { if (rte_cryptodev_get_aead_algo_enum(algo, optarg) < 0) { RTE_LOG(ERR, USER1, "AEAD algorithm specified " "not supported!\n"); return -1; } return 0; } static int parse_aead_op(enum rte_crypto_aead_operation *op, char *optarg) { if (strcmp("ENCRYPT", optarg) == 0) { *op = RTE_CRYPTO_AEAD_OP_ENCRYPT; return 0; } else if (strcmp("DECRYPT", optarg) == 0) { *op = RTE_CRYPTO_AEAD_OP_DECRYPT; return 0; } printf("AEAD operation specified not supported!\n"); return -1; } static int parse_cryptodev_mask(struct l2fwd_crypto_options *options, const char *q_arg) { char *end = NULL; uint64_t pm; /* parse hexadecimal string */ pm = strtoul(q_arg, &end, 16); if ((pm == '\0') || (end == NULL) || (*end != '\0')) pm = 0; options->cryptodev_mask = pm; if (options->cryptodev_mask == 0) { printf("invalid cryptodev_mask specified\n"); return -1; } return 0; } /** Parse long options */ static int l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options, struct option *lgopts, int option_index) { int retval; if (strcmp(lgopts[option_index].name, "cdev_type") == 0) { retval = parse_cryptodev_type(&options->type, optarg); if (retval == 0) snprintf(options->string_type, MAX_STR_LEN, "%s", optarg); return retval; } else if (strcmp(lgopts[option_index].name, "chain") == 0) return parse_crypto_opt_chain(options, optarg); /* Cipher options */ else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0) return parse_cipher_algo(&options->cipher_xform.cipher.algo, optarg); else if (strcmp(lgopts[option_index].name, "cipher_op") == 0) return parse_cipher_op(&options->cipher_xform.cipher.op, optarg); else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) { options->ckey_param = 1; options->cipher_xform.cipher.key.length = parse_bytes(options->cipher_xform.cipher.key.data, optarg, MAX_KEY_SIZE); if (options->cipher_xform.cipher.key.length > 0) return 0; else return -1; } else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0) return parse_size(&options->ckey_random_size, optarg); else if (strcmp(lgopts[option_index].name, "cipher_iv") == 0) { options->cipher_iv_param = 1; options->cipher_iv.length = parse_bytes(options->cipher_iv.data, optarg, MAX_IV_SIZE); if (options->cipher_iv.length > 0) return 0; else return -1; } else if (strcmp(lgopts[option_index].name, "cipher_iv_random_size") == 0) return parse_size(&options->cipher_iv_random_size, optarg); /* Authentication options */ else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) { return parse_auth_algo(&options->auth_xform.auth.algo, optarg); } else if (strcmp(lgopts[option_index].name, "auth_op") == 0) return parse_auth_op(&options->auth_xform.auth.op, optarg); else if (strcmp(lgopts[option_index].name, "auth_key") == 0) { options->akey_param = 1; options->auth_xform.auth.key.length = parse_bytes(options->auth_xform.auth.key.data, optarg, MAX_KEY_SIZE); if (options->auth_xform.auth.key.length > 0) return 0; else return -1; } else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) { return parse_size(&options->akey_random_size, optarg); } else if (strcmp(lgopts[option_index].name, "auth_iv") == 0) { options->auth_iv_param = 1; options->auth_iv.length = parse_bytes(options->auth_iv.data, optarg, MAX_IV_SIZE); if (options->auth_iv.length > 0) return 0; else return -1; } else if (strcmp(lgopts[option_index].name, "auth_iv_random_size") == 0) return parse_size(&options->auth_iv_random_size, optarg); /* AEAD options */ else if (strcmp(lgopts[option_index].name, "aead_algo") == 0) { return parse_aead_algo(&options->aead_xform.aead.algo, optarg); } else if (strcmp(lgopts[option_index].name, "aead_op") == 0) return parse_aead_op(&options->aead_xform.aead.op, optarg); else if (strcmp(lgopts[option_index].name, "aead_key") == 0) { options->aead_key_param = 1; options->aead_xform.aead.key.length = parse_bytes(options->aead_xform.aead.key.data, optarg, MAX_KEY_SIZE); if (options->aead_xform.aead.key.length > 0) return 0; else return -1; } else if (strcmp(lgopts[option_index].name, "aead_key_random_size") == 0) return parse_size(&options->aead_key_random_size, optarg); else if (strcmp(lgopts[option_index].name, "aead_iv") == 0) { options->aead_iv_param = 1; options->aead_iv.length = parse_bytes(options->aead_iv.data, optarg, MAX_IV_SIZE); if (options->aead_iv.length > 0) return 0; else return -1; } else if (strcmp(lgopts[option_index].name, "aead_iv_random_size") == 0) return parse_size(&options->aead_iv_random_size, optarg); else if (strcmp(lgopts[option_index].name, "aad") == 0) { options->aad_param = 1; options->aad.length = parse_bytes(options->aad.data, optarg, MAX_AAD_SIZE); if (options->aad.length > 0) return 0; else return -1; } else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) { return parse_size(&options->aad_random_size, optarg); } else if (strcmp(lgopts[option_index].name, "digest_size") == 0) { return parse_size(&options->digest_size, optarg); } else if (strcmp(lgopts[option_index].name, "sessionless") == 0) { options->sessionless = 1; return 0; } else if (strcmp(lgopts[option_index].name, "cryptodev_mask") == 0) return parse_cryptodev_mask(options, optarg); else if (strcmp(lgopts[option_index].name, "mac-updating") == 0) { options->mac_updating = 1; return 0; } else if (strcmp(lgopts[option_index].name, "no-mac-updating") == 0) { options->mac_updating = 0; return 0; } return -1; } /** Parse port mask */ static int l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options, const char *q_arg) { char *end = NULL; unsigned long pm; /* parse hexadecimal string */ pm = strtoul(q_arg, &end, 16); if ((pm == '\0') || (end == NULL) || (*end != '\0')) pm = 0; options->portmask = pm; if (options->portmask == 0) { printf("invalid portmask specified\n"); return -1; } return pm; } /** Parse number of queues */ static int l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options, const char *q_arg) { char *end = NULL; unsigned long n; /* parse hexadecimal string */ n = strtoul(q_arg, &end, 10); if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) n = 0; else if (n >= MAX_RX_QUEUE_PER_LCORE) n = 0; options->nb_ports_per_lcore = n; if (options->nb_ports_per_lcore == 0) { printf("invalid number of ports selected\n"); return -1; } return 0; } /** Parse timer period */ static int l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options, const char *q_arg) { char *end = NULL; unsigned long n; /* parse number string */ n = (unsigned)strtol(q_arg, &end, 10); if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) n = 0; if (n >= MAX_TIMER_PERIOD) { printf("Warning refresh period specified %lu is greater than " "max value %lu! using max value", n, MAX_TIMER_PERIOD); n = MAX_TIMER_PERIOD; } options->refresh_period = n * 1000 * TIMER_MILLISECOND; return 0; } /** Generate default options for application */ static void l2fwd_crypto_default_options(struct l2fwd_crypto_options *options) { options->portmask = 0xffffffff; options->nb_ports_per_lcore = 1; options->refresh_period = 10000; options->single_lcore = 0; options->sessionless = 0; options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH; /* Cipher Data */ options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; options->cipher_xform.next = NULL; options->ckey_param = 0; options->ckey_random_size = -1; options->cipher_xform.cipher.key.length = 0; options->cipher_iv_param = 0; options->cipher_iv_random_size = -1; options->cipher_iv.length = 0; options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; /* Authentication Data */ options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; options->auth_xform.next = NULL; options->akey_param = 0; options->akey_random_size = -1; options->auth_xform.auth.key.length = 0; options->auth_iv_param = 0; options->auth_iv_random_size = -1; options->auth_iv.length = 0; options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC; options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; /* AEAD Data */ options->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD; options->aead_xform.next = NULL; options->aead_key_param = 0; options->aead_key_random_size = -1; options->aead_xform.aead.key.length = 0; options->aead_iv_param = 0; options->aead_iv_random_size = -1; options->aead_iv.length = 0; options->aead_xform.aead.algo = RTE_CRYPTO_AEAD_AES_GCM; options->aead_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT; options->aad_param = 0; options->aad_random_size = -1; options->aad.length = 0; options->digest_size = -1; options->type = CDEV_TYPE_ANY; options->cryptodev_mask = UINT64_MAX; options->mac_updating = 1; } static void display_cipher_info(struct l2fwd_crypto_options *options) { printf("\n---- Cipher information ---\n"); printf("Algorithm: %s\n", rte_crypto_cipher_algorithm_strings[options->cipher_xform.cipher.algo]); rte_hexdump(stdout, "Cipher key:", options->cipher_xform.cipher.key.data, options->cipher_xform.cipher.key.length); rte_hexdump(stdout, "IV:", options->cipher_iv.data, options->cipher_iv.length); } static void display_auth_info(struct l2fwd_crypto_options *options) { printf("\n---- Authentication information ---\n"); printf("Algorithm: %s\n", rte_crypto_auth_algorithm_strings[options->auth_xform.auth.algo]); rte_hexdump(stdout, "Auth key:", options->auth_xform.auth.key.data, options->auth_xform.auth.key.length); rte_hexdump(stdout, "IV:", options->auth_iv.data, options->auth_iv.length); } static void display_aead_info(struct l2fwd_crypto_options *options) { printf("\n---- AEAD information ---\n"); printf("Algorithm: %s\n", rte_crypto_aead_algorithm_strings[options->aead_xform.aead.algo]); rte_hexdump(stdout, "AEAD key:", options->aead_xform.aead.key.data, options->aead_xform.aead.key.length); rte_hexdump(stdout, "IV:", options->aead_iv.data, options->aead_iv.length); rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length); } static void l2fwd_crypto_options_print(struct l2fwd_crypto_options *options) { char string_cipher_op[MAX_STR_LEN]; char string_auth_op[MAX_STR_LEN]; char string_aead_op[MAX_STR_LEN]; if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) strcpy(string_cipher_op, "Encrypt"); else strcpy(string_cipher_op, "Decrypt"); if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) strcpy(string_auth_op, "Auth generate"); else strcpy(string_auth_op, "Auth verify"); if (options->aead_xform.aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) strcpy(string_aead_op, "Authenticated encryption"); else strcpy(string_aead_op, "Authenticated decryption"); printf("Options:-\nn"); printf("portmask: %x\n", options->portmask); printf("ports per lcore: %u\n", options->nb_ports_per_lcore); printf("refresh period : %u\n", options->refresh_period); printf("single lcore mode: %s\n", options->single_lcore ? "enabled" : "disabled"); printf("stats_printing: %s\n", options->refresh_period == 0 ? "disabled" : "enabled"); printf("sessionless crypto: %s\n", options->sessionless ? "enabled" : "disabled"); if (options->ckey_param && (options->ckey_random_size != -1)) printf("Cipher key already parsed, ignoring size of random key\n"); if (options->akey_param && (options->akey_random_size != -1)) printf("Auth key already parsed, ignoring size of random key\n"); if (options->cipher_iv_param && (options->cipher_iv_random_size != -1)) printf("Cipher IV already parsed, ignoring size of random IV\n"); if (options->auth_iv_param && (options->auth_iv_random_size != -1)) printf("Auth IV already parsed, ignoring size of random IV\n"); if (options->aad_param && (options->aad_random_size != -1)) printf("AAD already parsed, ignoring size of random AAD\n"); printf("\nCrypto chain: "); switch (options->xform_chain) { case L2FWD_CRYPTO_AEAD: printf("Input --> %s --> Output\n", string_aead_op); display_aead_info(options); break; case L2FWD_CRYPTO_CIPHER_HASH: printf("Input --> %s --> %s --> Output\n", string_cipher_op, string_auth_op); display_cipher_info(options); display_auth_info(options); break; case L2FWD_CRYPTO_HASH_CIPHER: printf("Input --> %s --> %s --> Output\n", string_auth_op, string_cipher_op); display_cipher_info(options); display_auth_info(options); break; case L2FWD_CRYPTO_HASH_ONLY: printf("Input --> %s --> Output\n", string_auth_op); display_auth_info(options); break; case L2FWD_CRYPTO_CIPHER_ONLY: printf("Input --> %s --> Output\n", string_cipher_op); display_cipher_info(options); break; } } /* Parse the argument given in the command line of the application */ static int l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options, int argc, char **argv) { int opt, retval, option_index; char **argvopt = argv, *prgname = argv[0]; static struct option lgopts[] = { { "sessionless", no_argument, 0, 0 }, { "cdev_type", required_argument, 0, 0 }, { "chain", required_argument, 0, 0 }, { "cipher_algo", required_argument, 0, 0 }, { "cipher_op", required_argument, 0, 0 }, { "cipher_key", required_argument, 0, 0 }, { "cipher_key_random_size", required_argument, 0, 0 }, { "cipher_iv", required_argument, 0, 0 }, { "cipher_iv_random_size", required_argument, 0, 0 }, { "auth_algo", required_argument, 0, 0 }, { "auth_op", required_argument, 0, 0 }, { "auth_key", required_argument, 0, 0 }, { "auth_key_random_size", required_argument, 0, 0 }, { "auth_iv", required_argument, 0, 0 }, { "auth_iv_random_size", required_argument, 0, 0 }, { "aead_algo", required_argument, 0, 0 }, { "aead_op", required_argument, 0, 0 }, { "aead_key", required_argument, 0, 0 }, { "aead_key_random_size", required_argument, 0, 0 }, { "aead_iv", required_argument, 0, 0 }, { "aead_iv_random_size", required_argument, 0, 0 }, { "aad", required_argument, 0, 0 }, { "aad_random_size", required_argument, 0, 0 }, { "digest_size", required_argument, 0, 0 }, { "sessionless", no_argument, 0, 0 }, { "cryptodev_mask", required_argument, 0, 0}, { "mac-updating", no_argument, 0, 0}, { "no-mac-updating", no_argument, 0, 0}, { NULL, 0, 0, 0 } }; l2fwd_crypto_default_options(options); while ((opt = getopt_long(argc, argvopt, "p:q:sT:", lgopts, &option_index)) != EOF) { switch (opt) { /* long options */ case 0: retval = l2fwd_crypto_parse_args_long_options(options, lgopts, option_index); if (retval < 0) { l2fwd_crypto_usage(prgname); return -1; } break; /* portmask */ case 'p': retval = l2fwd_crypto_parse_portmask(options, optarg); if (retval < 0) { l2fwd_crypto_usage(prgname); return -1; } break; /* nqueue */ case 'q': retval = l2fwd_crypto_parse_nqueue(options, optarg); if (retval < 0) { l2fwd_crypto_usage(prgname); return -1; } break; /* single */ case 's': options->single_lcore = 1; break; /* timer period */ case 'T': retval = l2fwd_crypto_parse_timer_period(options, optarg); if (retval < 0) { l2fwd_crypto_usage(prgname); return -1; } break; default: l2fwd_crypto_usage(prgname); return -1; } } if (optind >= 0) argv[optind-1] = prgname; retval = optind-1; optind = 1; /* reset getopt lib */ return retval; } /* Check the link status of all ports in up to 9s, and print them finally */ static void check_all_ports_link_status(uint16_t port_num, uint32_t port_mask) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ uint16_t portid; uint8_t count, all_ports_up, print_flag = 0; struct rte_eth_link link; printf("\nChecking link status"); fflush(stdout); for (count = 0; count <= MAX_CHECK_TIME; count++) { all_ports_up = 1; for (portid = 0; portid < port_num; portid++) { if ((port_mask & (1 << portid)) == 0) continue; memset(&link, 0, sizeof(link)); rte_eth_link_get_nowait(portid, &link); /* print link status if flag set */ if (print_flag == 1) { if (link.link_status) printf( "Port%d Link Up. Speed %u Mbps - %s\n", portid, link.link_speed, (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex\n")); else printf("Port %d Link Down\n", portid); continue; } /* clear all_ports_up flag if any link down */ if (link.link_status == ETH_LINK_DOWN) { all_ports_up = 0; break; } } /* after finally printing all link status, get out */ if (print_flag == 1) break; if (all_ports_up == 0) { printf("."); fflush(stdout); rte_delay_ms(CHECK_INTERVAL); } /* set the print_flag if all ports up or timeout */ if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { print_flag = 1; printf("done\n"); } } } /* Check if device has to be HW/SW or any */ static int check_type(const struct l2fwd_crypto_options *options, const struct rte_cryptodev_info *dev_info) { if (options->type == CDEV_TYPE_HW && (dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) return 0; if (options->type == CDEV_TYPE_SW && !(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED)) return 0; if (options->type == CDEV_TYPE_ANY) return 0; return -1; } static const struct rte_cryptodev_capabilities * check_device_support_cipher_algo(const struct l2fwd_crypto_options *options, const struct rte_cryptodev_info *dev_info, uint8_t cdev_id) { unsigned int i = 0; const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; enum rte_crypto_cipher_algorithm cap_cipher_algo; enum rte_crypto_cipher_algorithm opt_cipher_algo = options->cipher_xform.cipher.algo; while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { cap_cipher_algo = cap->sym.cipher.algo; if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) { if (cap_cipher_algo == opt_cipher_algo) { if (check_type(options, dev_info) == 0) break; } } cap = &dev_info->capabilities[++i]; } if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { printf("Algorithm %s not supported by cryptodev %u" " or device not of preferred type (%s)\n", rte_crypto_cipher_algorithm_strings[opt_cipher_algo], cdev_id, options->string_type); return NULL; } return cap; } static const struct rte_cryptodev_capabilities * check_device_support_auth_algo(const struct l2fwd_crypto_options *options, const struct rte_cryptodev_info *dev_info, uint8_t cdev_id) { unsigned int i = 0; const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; enum rte_crypto_auth_algorithm cap_auth_algo; enum rte_crypto_auth_algorithm opt_auth_algo = options->auth_xform.auth.algo; while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { cap_auth_algo = cap->sym.auth.algo; if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) { if (cap_auth_algo == opt_auth_algo) { if (check_type(options, dev_info) == 0) break; } } cap = &dev_info->capabilities[++i]; } if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { printf("Algorithm %s not supported by cryptodev %u" " or device not of preferred type (%s)\n", rte_crypto_auth_algorithm_strings[opt_auth_algo], cdev_id, options->string_type); return NULL; } return cap; } static const struct rte_cryptodev_capabilities * check_device_support_aead_algo(const struct l2fwd_crypto_options *options, const struct rte_cryptodev_info *dev_info, uint8_t cdev_id) { unsigned int i = 0; const struct rte_cryptodev_capabilities *cap = &dev_info->capabilities[0]; enum rte_crypto_aead_algorithm cap_aead_algo; enum rte_crypto_aead_algorithm opt_aead_algo = options->aead_xform.aead.algo; while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { cap_aead_algo = cap->sym.aead.algo; if (cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) { if (cap_aead_algo == opt_aead_algo) { if (check_type(options, dev_info) == 0) break; } } cap = &dev_info->capabilities[++i]; } if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) { printf("Algorithm %s not supported by cryptodev %u" " or device not of preferred type (%s)\n", rte_crypto_aead_algorithm_strings[opt_aead_algo], cdev_id, options->string_type); return NULL; } return cap; } /* Check if the device is enabled by cryptodev_mask */ static int check_cryptodev_mask(struct l2fwd_crypto_options *options, uint8_t cdev_id) { if (options->cryptodev_mask & (1 << cdev_id)) return 0; return -1; } static inline int check_supported_size(uint16_t length, uint16_t min, uint16_t max, uint16_t increment) { uint16_t supp_size; /* Single value */ if (increment == 0) { if (length == min) return 0; else return -1; } /* Range of values */ for (supp_size = min; supp_size <= max; supp_size += increment) { if (length == supp_size) return 0; } return -1; } static int check_iv_param(const struct rte_crypto_param_range *iv_range_size, unsigned int iv_param, int iv_random_size, uint16_t *iv_length) { /* * Check if length of provided IV is supported * by the algorithm chosen. */ if (iv_param) { if (check_supported_size(*iv_length, iv_range_size->min, iv_range_size->max, iv_range_size->increment) != 0) { printf("Unsupported IV length\n"); return -1; } /* * Check if length of IV to be randomly generated * is supported by the algorithm chosen. */ } else if (iv_random_size != -1) { if (check_supported_size(iv_random_size, iv_range_size->min, iv_range_size->max, iv_range_size->increment) != 0) { printf("Unsupported IV length\n"); return -1; } *iv_length = iv_random_size; /* No size provided, use minimum size. */ } else *iv_length = iv_range_size->min; return 0; } static int initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports, uint8_t *enabled_cdevs) { unsigned int cdev_id, cdev_count, enabled_cdev_count = 0; const struct rte_cryptodev_capabilities *cap; unsigned int sess_sz, max_sess_sz = 0; int retval; cdev_count = rte_cryptodev_count(); if (cdev_count == 0) { printf("No crypto devices available\n"); return -1; } for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) { sess_sz = rte_cryptodev_get_private_session_size(cdev_id); if (sess_sz > max_sess_sz) max_sess_sz = sess_sz; } for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports; cdev_id++) { struct rte_cryptodev_qp_conf qp_conf; struct rte_cryptodev_info dev_info; retval = rte_cryptodev_socket_id(cdev_id); if (retval < 0) { printf("Invalid crypto device id used\n"); return -1; } uint8_t socket_id = (uint8_t) retval; struct rte_cryptodev_config conf = { .nb_queue_pairs = 1, .socket_id = socket_id, }; if (check_cryptodev_mask(options, (uint8_t)cdev_id)) continue; rte_cryptodev_info_get(cdev_id, &dev_info); if (session_pool_socket[socket_id] == NULL) { char mp_name[RTE_MEMPOOL_NAMESIZE]; struct rte_mempool *sess_mp; snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, "sess_mp_%u", socket_id); /* * Create enough objects for session headers and * device private data */ sess_mp = rte_mempool_create(mp_name, MAX_SESSIONS * 2, max_sess_sz, SESSION_POOL_CACHE_SIZE, 0, NULL, NULL, NULL, NULL, socket_id, 0); if (sess_mp == NULL) { printf("Cannot create session pool on socket %d\n", socket_id); return -ENOMEM; } printf("Allocated session pool on socket %d\n", socket_id); session_pool_socket[socket_id] = sess_mp; } /* Set AEAD parameters */ if (options->xform_chain == L2FWD_CRYPTO_AEAD) { /* Check if device supports AEAD algo */ cap = check_device_support_aead_algo(options, &dev_info, cdev_id); if (cap == NULL) continue; options->block_size = cap->sym.aead.block_size; if (check_iv_param(&cap->sym.aead.iv_size, options->aead_iv_param, options->aead_iv_random_size, &options->aead_iv.length) < 0) continue; /* * Check if length of provided AEAD key is supported * by the algorithm chosen. */ if (options->aead_key_param) { if (check_supported_size( options->aead_xform.aead.key.length, cap->sym.aead.key_size.min, cap->sym.aead.key_size.max, cap->sym.aead.key_size.increment) != 0) { printf("Unsupported aead key length\n"); continue; } /* * Check if length of the aead key to be randomly generated * is supported by the algorithm chosen. */ } else if (options->aead_key_random_size != -1) { if (check_supported_size(options->aead_key_random_size, cap->sym.aead.key_size.min, cap->sym.aead.key_size.max, cap->sym.aead.key_size.increment) != 0) { printf("Unsupported aead key length\n"); continue; } options->aead_xform.aead.key.length = options->aead_key_random_size; /* No size provided, use minimum size. */ } else options->aead_xform.aead.key.length = cap->sym.aead.key_size.min; if (!options->aead_key_param) generate_random_key( options->aead_xform.aead.key.data, options->aead_xform.aead.key.length); /* * Check if length of provided AAD is supported * by the algorithm chosen. */ if (options->aad_param) { if (check_supported_size(options->aad.length, cap->sym.aead.aad_size.min, cap->sym.aead.aad_size.max, cap->sym.aead.aad_size.increment) != 0) { printf("Unsupported AAD length\n"); continue; } /* * Check if length of AAD to be randomly generated * is supported by the algorithm chosen. */ } else if (options->aad_random_size != -1) { if (check_supported_size(options->aad_random_size, cap->sym.aead.aad_size.min, cap->sym.aead.aad_size.max, cap->sym.aead.aad_size.increment) != 0) { printf("Unsupported AAD length\n"); continue; } options->aad.length = options->aad_random_size; /* No size provided, use minimum size. */ } else options->aad.length = cap->sym.auth.aad_size.min; options->aead_xform.aead.aad_length = options->aad.length; /* Check if digest size is supported by the algorithm. */ if (options->digest_size != -1) { if (check_supported_size(options->digest_size, cap->sym.aead.digest_size.min, cap->sym.aead.digest_size.max, cap->sym.aead.digest_size.increment) != 0) { printf("Unsupported digest length\n"); continue; } options->aead_xform.aead.digest_length = options->digest_size; /* No size provided, use minimum size. */ } else options->aead_xform.aead.digest_length = cap->sym.aead.digest_size.min; } /* Set cipher parameters */ if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) { /* Check if device supports cipher algo */ cap = check_device_support_cipher_algo(options, &dev_info, cdev_id); if (cap == NULL) continue; options->block_size = cap->sym.cipher.block_size; if (check_iv_param(&cap->sym.cipher.iv_size, options->cipher_iv_param, options->cipher_iv_random_size, &options->cipher_iv.length) < 0) continue; /* * Check if length of provided cipher key is supported * by the algorithm chosen. */ if (options->ckey_param) { if (check_supported_size( options->cipher_xform.cipher.key.length, cap->sym.cipher.key_size.min, cap->sym.cipher.key_size.max, cap->sym.cipher.key_size.increment) != 0) { printf("Unsupported cipher key length\n"); continue; } /* * Check if length of the cipher key to be randomly generated * is supported by the algorithm chosen. */ } else if (options->ckey_random_size != -1) { if (check_supported_size(options->ckey_random_size, cap->sym.cipher.key_size.min, cap->sym.cipher.key_size.max, cap->sym.cipher.key_size.increment) != 0) { printf("Unsupported cipher key length\n"); continue; } options->cipher_xform.cipher.key.length = options->ckey_random_size; /* No size provided, use minimum size. */ } else options->cipher_xform.cipher.key.length = cap->sym.cipher.key_size.min; if (!options->ckey_param) generate_random_key( options->cipher_xform.cipher.key.data, options->cipher_xform.cipher.key.length); } /* Set auth parameters */ if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH || options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER || options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) { /* Check if device supports auth algo */ cap = check_device_support_auth_algo(options, &dev_info, cdev_id); if (cap == NULL) continue; if (check_iv_param(&cap->sym.auth.iv_size, options->auth_iv_param, options->auth_iv_random_size, &options->auth_iv.length) < 0) continue; /* * Check if length of provided auth key is supported * by the algorithm chosen. */ if (options->akey_param) { if (check_supported_size( options->auth_xform.auth.key.length, cap->sym.auth.key_size.min, cap->sym.auth.key_size.max, cap->sym.auth.key_size.increment) != 0) { printf("Unsupported auth key length\n"); continue; } /* * Check if length of the auth key to be randomly generated * is supported by the algorithm chosen. */ } else if (options->akey_random_size != -1) { if (check_supported_size(options->akey_random_size, cap->sym.auth.key_size.min, cap->sym.auth.key_size.max, cap->sym.auth.key_size.increment) != 0) { printf("Unsupported auth key length\n"); continue; } options->auth_xform.auth.key.length = options->akey_random_size; /* No size provided, use minimum size. */ } else options->auth_xform.auth.key.length = cap->sym.auth.key_size.min; if (!options->akey_param) generate_random_key( options->auth_xform.auth.key.data, options->auth_xform.auth.key.length); /* Check if digest size is supported by the algorithm. */ if (options->digest_size != -1) { if (check_supported_size(options->digest_size, cap->sym.auth.digest_size.min, cap->sym.auth.digest_size.max, cap->sym.auth.digest_size.increment) != 0) { printf("Unsupported digest length\n"); continue; } options->auth_xform.auth.digest_length = options->digest_size; /* No size provided, use minimum size. */ } else options->auth_xform.auth.digest_length = cap->sym.auth.digest_size.min; } retval = rte_cryptodev_configure(cdev_id, &conf); if (retval < 0) { printf("Failed to configure cryptodev %u", cdev_id); return -1; } qp_conf.nb_descriptors = 2048; retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, socket_id, session_pool_socket[socket_id]); if (retval < 0) { printf("Failed to setup queue pair %u on cryptodev %u", 0, cdev_id); return -1; } retval = rte_cryptodev_start(cdev_id); if (retval < 0) { printf("Failed to start device %u: error %d\n", cdev_id, retval); return -1; } l2fwd_enabled_crypto_mask |= (((uint64_t)1) << cdev_id); enabled_cdevs[cdev_id] = 1; enabled_cdev_count++; } return enabled_cdev_count; } static int initialize_ports(struct l2fwd_crypto_options *options) { uint16_t last_portid, portid; unsigned enabled_portcount = 0; unsigned nb_ports = rte_eth_dev_count(); if (nb_ports == 0) { printf("No Ethernet ports - bye\n"); return -1; } /* Reset l2fwd_dst_ports */ for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) l2fwd_dst_ports[portid] = 0; for (last_portid = 0, portid = 0; portid < nb_ports; portid++) { int retval; /* Skip ports that are not enabled */ if ((options->portmask & (1 << portid)) == 0) continue; /* init port */ printf("Initializing port %u... ", portid); fflush(stdout); retval = rte_eth_dev_configure(portid, 1, 1, &port_conf); if (retval < 0) { printf("Cannot configure device: err=%d, port=%u\n", retval, portid); return -1; } retval = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd); if (retval < 0) { printf("Cannot adjust number of descriptors: err=%d, port=%u\n", retval, portid); return -1; } /* init one RX queue */ fflush(stdout); retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd, rte_eth_dev_socket_id(portid), NULL, l2fwd_pktmbuf_pool); if (retval < 0) { printf("rte_eth_rx_queue_setup:err=%d, port=%u\n", retval, portid); return -1; } /* init one TX queue on each port */ fflush(stdout); retval = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), NULL); if (retval < 0) { printf("rte_eth_tx_queue_setup:err=%d, port=%u\n", retval, portid); return -1; } /* Start device */ retval = rte_eth_dev_start(portid); if (retval < 0) { printf("rte_eth_dev_start:err=%d, port=%u\n", retval, portid); return -1; } rte_eth_promiscuous_enable(portid); rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]); printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n", portid, l2fwd_ports_eth_addr[portid].addr_bytes[0], l2fwd_ports_eth_addr[portid].addr_bytes[1], l2fwd_ports_eth_addr[portid].addr_bytes[2], l2fwd_ports_eth_addr[portid].addr_bytes[3], l2fwd_ports_eth_addr[portid].addr_bytes[4], l2fwd_ports_eth_addr[portid].addr_bytes[5]); /* initialize port stats */ memset(&port_statistics, 0, sizeof(port_statistics)); /* Setup port forwarding table */ if (enabled_portcount % 2) { l2fwd_dst_ports[portid] = last_portid; l2fwd_dst_ports[last_portid] = portid; } else { last_portid = portid; } l2fwd_enabled_port_mask |= (1 << portid); enabled_portcount++; } if (enabled_portcount == 1) { l2fwd_dst_ports[last_portid] = last_portid; } else if (enabled_portcount % 2) { printf("odd number of ports in portmask- bye\n"); return -1; } check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask); return enabled_portcount; } static void reserve_key_memory(struct l2fwd_crypto_options *options) { options->cipher_xform.cipher.key.data = rte_malloc("crypto key", MAX_KEY_SIZE, 0); if (options->cipher_xform.cipher.key.data == NULL) rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key"); options->auth_xform.auth.key.data = rte_malloc("auth key", MAX_KEY_SIZE, 0); if (options->auth_xform.auth.key.data == NULL) rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key"); options->aead_xform.aead.key.data = rte_malloc("aead key", MAX_KEY_SIZE, 0); if (options->aead_xform.aead.key.data == NULL) rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD key"); options->cipher_iv.data = rte_malloc("cipher iv", MAX_KEY_SIZE, 0); if (options->cipher_iv.data == NULL) rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher IV"); options->auth_iv.data = rte_malloc("auth iv", MAX_KEY_SIZE, 0); if (options->auth_iv.data == NULL) rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth IV"); options->aead_iv.data = rte_malloc("aead_iv", MAX_KEY_SIZE, 0); if (options->aead_iv.data == NULL) rte_exit(EXIT_FAILURE, "Failed to allocate memory for AEAD iv"); options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0); if (options->aad.data == NULL) rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD"); options->aad.phys_addr = rte_malloc_virt2iova(options->aad.data); } int main(int argc, char **argv) { struct lcore_queue_conf *qconf; struct l2fwd_crypto_options options; uint8_t nb_cryptodevs, cdev_id; uint16_t nb_ports, portid; unsigned lcore_id, rx_lcore_id; int ret, enabled_cdevcount, enabled_portcount; uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0}; /* init EAL */ ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); argc -= ret; argv += ret; /* reserve memory for Cipher/Auth key and IV */ reserve_key_memory(&options); /* parse application arguments (after the EAL ones) */ ret = l2fwd_crypto_parse_args(&options, argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n"); printf("MAC updating %s\n", options.mac_updating ? "enabled" : "disabled"); /* create the mbuf pool */ l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512, sizeof(struct rte_crypto_op), RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); if (l2fwd_pktmbuf_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); /* create crypto op pool */ l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool", RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, MAXIMUM_IV_LENGTH, rte_socket_id()); if (l2fwd_crypto_op_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n"); /* Enable Ethernet ports */ enabled_portcount = initialize_ports(&options); if (enabled_portcount < 1) rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n"); nb_ports = rte_eth_dev_count(); /* Initialize the port/queue configuration of each logical core */ for (rx_lcore_id = 0, qconf = NULL, portid = 0; portid < nb_ports; portid++) { /* skip ports that are not enabled */ if ((options.portmask & (1 << portid)) == 0) continue; if (options.single_lcore && qconf == NULL) { while (rte_lcore_is_enabled(rx_lcore_id) == 0) { rx_lcore_id++; if (rx_lcore_id >= RTE_MAX_LCORE) rte_exit(EXIT_FAILURE, "Not enough cores\n"); } } else if (!options.single_lcore) { /* get the lcore_id for this port */ while (rte_lcore_is_enabled(rx_lcore_id) == 0 || lcore_queue_conf[rx_lcore_id].nb_rx_ports == options.nb_ports_per_lcore) { rx_lcore_id++; if (rx_lcore_id >= RTE_MAX_LCORE) rte_exit(EXIT_FAILURE, "Not enough cores\n"); } } /* Assigned a new logical core in the loop above. */ if (qconf != &lcore_queue_conf[rx_lcore_id]) qconf = &lcore_queue_conf[rx_lcore_id]; qconf->rx_port_list[qconf->nb_rx_ports] = portid; qconf->nb_rx_ports++; printf("Lcore %u: RX port %u\n", rx_lcore_id, portid); } /* Enable Crypto devices */ enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount, enabled_cdevs); if (enabled_cdevcount < 0) rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n"); if (enabled_cdevcount < enabled_portcount) rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) " "has to be more or equal to number of ports (%d)\n", enabled_cdevcount, enabled_portcount); nb_cryptodevs = rte_cryptodev_count(); /* Initialize the port/cryptodev configuration of each logical core */ for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0; cdev_id < nb_cryptodevs && enabled_cdevcount; cdev_id++) { /* Crypto op not supported by crypto device */ if (!enabled_cdevs[cdev_id]) continue; if (options.single_lcore && qconf == NULL) { while (rte_lcore_is_enabled(rx_lcore_id) == 0) { rx_lcore_id++; if (rx_lcore_id >= RTE_MAX_LCORE) rte_exit(EXIT_FAILURE, "Not enough cores\n"); } } else if (!options.single_lcore) { /* get the lcore_id for this port */ while (rte_lcore_is_enabled(rx_lcore_id) == 0 || lcore_queue_conf[rx_lcore_id].nb_crypto_devs == options.nb_ports_per_lcore) { rx_lcore_id++; if (rx_lcore_id >= RTE_MAX_LCORE) rte_exit(EXIT_FAILURE, "Not enough cores\n"); } } /* Assigned a new logical core in the loop above. */ if (qconf != &lcore_queue_conf[rx_lcore_id]) qconf = &lcore_queue_conf[rx_lcore_id]; qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id; qconf->nb_crypto_devs++; enabled_cdevcount--; printf("Lcore %u: cryptodev %u\n", rx_lcore_id, (unsigned)cdev_id); } /* launch per-lcore init on every lcore */ rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options, CALL_MASTER); RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (rte_eal_wait_lcore(lcore_id) < 0) return -1; } return 0; }