/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2016-2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common.h" /* Number of packets to attempt to read from queue */ #define PKT_READ_SIZE ((uint16_t)32) /* * Our node id number - tells us which rx queue to read, and NIC TX * queue to write to. */ static uint8_t node_id; #define MBQ_CAPACITY 32 /* maps input ports to output ports for packets */ static uint16_t output_ports[RTE_MAX_ETHPORTS]; /* buffers up a set of packet that are ready to send */ struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS]; /* shared data from server. We update statistics here */ static struct tx_stats *tx_stats; static struct filter_stats *filter_stats; /* * print a usage message */ static void usage(const char *progname) { printf("Usage: %s [EAL args] -- -n \n\n", progname); } /* * Convert the node id number from a string to an int. */ static int parse_node_num(const char *node) { char *end = NULL; unsigned long temp; if (node == NULL || *node == '\0') return -1; temp = strtoul(node, &end, 10); if (end == NULL || *end != '\0') return -1; node_id = (uint8_t)temp; return 0; } /* * Parse the application arguments to the node app. */ static int parse_app_args(int argc, char *argv[]) { int option_index, opt; char **argvopt = argv; const char *progname = NULL; static struct option lgopts[] = { /* no long options */ {NULL, 0, 0, 0 } }; progname = argv[0]; while ((opt = getopt_long(argc, argvopt, "n:", lgopts, &option_index)) != EOF) { switch (opt) { case 'n': if (parse_node_num(optarg) != 0) { usage(progname); return -1; } break; default: usage(progname); return -1; } } return 0; } /* * Tx buffer error callback */ static void flush_tx_error_callback(struct rte_mbuf **unsent, uint16_t count, void *userdata) { int i; uint16_t port_id = (uintptr_t)userdata; tx_stats->tx_drop[port_id] += count; /* free the mbufs which failed from transmit */ for (i = 0; i < count; i++) rte_pktmbuf_free(unsent[i]); } static void configure_tx_buffer(uint16_t port_id, uint16_t size) { int ret; /* Initialize TX buffers */ tx_buffer[port_id] = rte_zmalloc_socket("tx_buffer", RTE_ETH_TX_BUFFER_SIZE(size), 0, rte_eth_dev_socket_id(port_id)); if (tx_buffer[port_id] == NULL) rte_exit(EXIT_FAILURE, "Cannot allocate buffer for tx on port %u\n", port_id); rte_eth_tx_buffer_init(tx_buffer[port_id], size); ret = rte_eth_tx_buffer_set_err_callback(tx_buffer[port_id], flush_tx_error_callback, (void *)(intptr_t)port_id); if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot set error callback for tx buffer on port %u\n", port_id); } /* * set up output ports so that all traffic on port gets sent out * its paired port. Index using actual port numbers since that is * what comes in the mbuf structure. */ static void configure_output_ports(const struct shared_info *info) { int i; if (info->num_ports > RTE_MAX_ETHPORTS) rte_exit(EXIT_FAILURE, "Too many ethernet ports. " "RTE_MAX_ETHPORTS = %u\n", (unsigned int)RTE_MAX_ETHPORTS); for (i = 0; i < info->num_ports - 1; i += 2) { uint8_t p1 = info->id[i]; uint8_t p2 = info->id[i+1]; output_ports[p1] = p2; output_ports[p2] = p1; configure_tx_buffer(p1, MBQ_CAPACITY); configure_tx_buffer(p2, MBQ_CAPACITY); } } /* * Create the hash table that will contain the flows that * the node will handle, which will be used to decide if packet * is transmitted or dropped. */ static struct rte_hash * create_hash_table(const struct shared_info *info) { uint32_t num_flows_node = info->num_flows / info->num_nodes; char name[RTE_HASH_NAMESIZE]; struct rte_hash *h; /* create table */ struct rte_hash_parameters hash_params = { .entries = num_flows_node * 2, /* table load = 50% */ .key_len = sizeof(uint32_t), /* Store IPv4 dest IP address */ .socket_id = rte_socket_id(), .hash_func_init_val = 0, }; snprintf(name, sizeof(name), "hash_table_%d", node_id); hash_params.name = name; h = rte_hash_create(&hash_params); if (h == NULL) rte_exit(EXIT_FAILURE, "Problem creating the hash table for node %d\n", node_id); return h; } static void populate_hash_table(const struct rte_hash *h, const struct shared_info *info) { unsigned int i; int32_t ret; uint32_t ip_dst; uint32_t num_flows_node = 0; uint64_t target_node; /* Add flows in table */ for (i = 0; i < info->num_flows; i++) { target_node = i % info->num_nodes; if (target_node != node_id) continue; ip_dst = rte_cpu_to_be_32(i); ret = rte_hash_add_key(h, (void *) &ip_dst); if (ret < 0) rte_exit(EXIT_FAILURE, "Unable to add entry %u " "in hash table\n", i); else num_flows_node++; } printf("Hash table: Adding 0x%x keys\n", num_flows_node); } /* * This function performs routing of packets * Just sends each input packet out an output port based solely on the input * port it arrived on. */ static inline void transmit_packet(struct rte_mbuf *buf) { int sent; const uint16_t in_port = buf->port; const uint16_t out_port = output_ports[in_port]; struct rte_eth_dev_tx_buffer *buffer = tx_buffer[out_port]; sent = rte_eth_tx_buffer(out_port, node_id, buffer, buf); if (sent) tx_stats->tx[out_port] += sent; } static inline void handle_packets(struct rte_hash *h, struct rte_mbuf **bufs, uint16_t num_packets) { struct ipv4_hdr *ipv4_hdr; uint32_t ipv4_dst_ip[PKT_READ_SIZE]; const void *key_ptrs[PKT_READ_SIZE]; unsigned int i; int32_t positions[PKT_READ_SIZE] = {0}; for (i = 0; i < num_packets; i++) { /* Handle IPv4 header.*/ ipv4_hdr = rte_pktmbuf_mtod_offset(bufs[i], struct ipv4_hdr *, sizeof(struct ether_hdr)); ipv4_dst_ip[i] = ipv4_hdr->dst_addr; key_ptrs[i] = &ipv4_dst_ip[i]; } /* Check if packets belongs to any flows handled by this node */ rte_hash_lookup_bulk(h, key_ptrs, num_packets, positions); for (i = 0; i < num_packets; i++) { if (likely(positions[i] >= 0)) { filter_stats->passed++; transmit_packet(bufs[i]); } else { filter_stats->drop++; /* Drop packet, as flow is not handled by this node */ rte_pktmbuf_free(bufs[i]); } } } /* * Application main function - loops through * receiving and processing packets. Never returns */ int main(int argc, char *argv[]) { const struct rte_memzone *mz; struct rte_ring *rx_ring; struct rte_hash *h; struct rte_mempool *mp; struct shared_info *info; int need_flush = 0; /* indicates whether we have unsent packets */ int retval; void *pkts[PKT_READ_SIZE]; uint16_t sent; retval = rte_eal_init(argc, argv); if (retval < 0) return -1; argc -= retval; argv += retval; if (parse_app_args(argc, argv) < 0) rte_exit(EXIT_FAILURE, "Invalid command-line arguments\n"); if (rte_eth_dev_count_avail() == 0) rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n"); rx_ring = rte_ring_lookup(get_rx_queue_name(node_id)); if (rx_ring == NULL) rte_exit(EXIT_FAILURE, "Cannot get RX ring - " "is server process running?\n"); mp = rte_mempool_lookup(PKTMBUF_POOL_NAME); if (mp == NULL) rte_exit(EXIT_FAILURE, "Cannot get mempool for mbufs\n"); mz = rte_memzone_lookup(MZ_SHARED_INFO); if (mz == NULL) rte_exit(EXIT_FAILURE, "Cannot get port info structure\n"); info = mz->addr; tx_stats = &(info->tx_stats[node_id]); filter_stats = &(info->filter_stats[node_id]); configure_output_ports(info); h = create_hash_table(info); populate_hash_table(h, info); RTE_LOG(INFO, APP, "Finished Process Init.\n"); printf("\nNode process %d handling packets\n", node_id); printf("[Press Ctrl-C to quit ...]\n"); for (;;) { uint16_t rx_pkts = PKT_READ_SIZE; uint16_t port; /* * Try dequeuing max possible packets first, if that fails, * get the most we can. Loop body should only execute once, * maximum */ while (rx_pkts > 0 && unlikely(rte_ring_dequeue_bulk(rx_ring, pkts, rx_pkts, NULL) == 0)) rx_pkts = (uint16_t)RTE_MIN(rte_ring_count(rx_ring), PKT_READ_SIZE); if (unlikely(rx_pkts == 0)) { if (need_flush) for (port = 0; port < info->num_ports; port++) { sent = rte_eth_tx_buffer_flush( info->id[port], node_id, tx_buffer[port]); if (unlikely(sent)) tx_stats->tx[port] += sent; } need_flush = 0; continue; } handle_packets(h, (struct rte_mbuf **)pkts, rx_pkts); need_flush = 1; } }