/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2015 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "main.h" #include "rte_vhost.h" #include "vxlan.h" #include "vxlan_setup.h" #define IPV4_HEADER_LEN 20 #define UDP_HEADER_LEN 8 #define VXLAN_HEADER_LEN 8 #define IP_VERSION 0x40 #define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */ #define IP_DEFTTL 64 /* from RFC 1340. */ #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN) #define IP_DN_FRAGMENT_FLAG 0x0040 /* Used to compare MAC addresses. */ #define MAC_ADDR_CMP 0xFFFFFFFFFFFFULL /* Configurable number of RX/TX ring descriptors */ #define RTE_TEST_RX_DESC_DEFAULT 1024 #define RTE_TEST_TX_DESC_DEFAULT 512 /* Default inner VLAN ID */ #define INNER_VLAN_ID 100 /* VXLAN device */ struct vxlan_conf vxdev; struct ipv4_hdr app_ip_hdr[VXLAN_N_PORTS]; struct ether_hdr app_l2_hdr[VXLAN_N_PORTS]; /* local VTEP IP address */ uint8_t vxlan_multicast_ips[2][4] = { {239, 1, 1, 1 }, {239, 1, 2, 1 } }; /* Remote VTEP IP address */ uint8_t vxlan_overlay_ips[2][4] = { {192, 168, 10, 1}, {192, 168, 30, 1} }; /* Remote VTEP MAC address */ uint8_t peer_mac[6] = {0x00, 0x11, 0x01, 0x00, 0x00, 0x01}; /* VXLAN RX filter type */ uint8_t tep_filter_type[] = {RTE_TUNNEL_FILTER_IMAC_TENID, RTE_TUNNEL_FILTER_IMAC_IVLAN_TENID, RTE_TUNNEL_FILTER_OMAC_TENID_IMAC,}; /* Options for configuring ethernet port */ static struct rte_eth_conf port_conf = { .rxmode = { .split_hdr_size = 0, }, .txmode = { .mq_mode = ETH_MQ_TX_NONE, .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_SCTP_CKSUM | DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_MULTI_SEGS | DEV_TX_OFFLOAD_VXLAN_TNL_TSO), }, }; /** * The one or two device(s) that belongs to the same tenant ID can * be assigned in a VM. */ const uint16_t tenant_id_conf[] = { 1000, 1000, 1001, 1001, 1002, 1002, 1003, 1003, 1004, 1004, 1005, 1005, 1006, 1006, 1007, 1007, 1008, 1008, 1009, 1009, 1010, 1010, 1011, 1011, 1012, 1012, 1013, 1013, 1014, 1014, 1015, 1015, 1016, 1016, 1017, 1017, 1018, 1018, 1019, 1019, 1020, 1020, 1021, 1021, 1022, 1022, 1023, 1023, 1024, 1024, 1025, 1025, 1026, 1026, 1027, 1027, 1028, 1028, 1029, 1029, 1030, 1030, 1031, 1031, }; /** * Initialises a given port using global settings and with the rx buffers * coming from the mbuf_pool passed as parameter */ int vxlan_port_init(uint16_t port, struct rte_mempool *mbuf_pool) { int retval; uint16_t q; struct rte_eth_dev_info dev_info; uint16_t rx_rings, tx_rings = (uint16_t)rte_lcore_count(); uint16_t rx_ring_size = RTE_TEST_RX_DESC_DEFAULT; uint16_t tx_ring_size = RTE_TEST_TX_DESC_DEFAULT; struct rte_eth_udp_tunnel tunnel_udp; struct rte_eth_rxconf *rxconf; struct rte_eth_txconf *txconf; struct vxlan_conf *pconf = &vxdev; struct rte_eth_conf local_port_conf = port_conf; pconf->dst_port = udp_port; rte_eth_dev_info_get(port, &dev_info); if (dev_info.max_rx_queues > MAX_QUEUES) { rte_exit(EXIT_FAILURE, "please define MAX_QUEUES no less than %u in %s\n", dev_info.max_rx_queues, __FILE__); } rxconf = &dev_info.default_rxconf; txconf = &dev_info.default_txconf; if (!rte_eth_dev_is_valid_port(port)) return -1; rx_rings = nb_devices; if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; /* Configure ethernet device. */ retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &local_port_conf); if (retval != 0) return retval; retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &rx_ring_size, &tx_ring_size); if (retval != 0) return retval; /* Setup the queues. */ rxconf->offloads = local_port_conf.rxmode.offloads; for (q = 0; q < rx_rings; q++) { retval = rte_eth_rx_queue_setup(port, q, rx_ring_size, rte_eth_dev_socket_id(port), rxconf, mbuf_pool); if (retval < 0) return retval; } txconf->offloads = local_port_conf.txmode.offloads; for (q = 0; q < tx_rings; q++) { retval = rte_eth_tx_queue_setup(port, q, tx_ring_size, rte_eth_dev_socket_id(port), txconf); if (retval < 0) return retval; } /* Start the device. */ retval = rte_eth_dev_start(port); if (retval < 0) return retval; /* Configure UDP port for UDP tunneling */ tunnel_udp.udp_port = udp_port; tunnel_udp.prot_type = RTE_TUNNEL_TYPE_VXLAN; retval = rte_eth_dev_udp_tunnel_port_add(port, &tunnel_udp); if (retval < 0) return retval; rte_eth_macaddr_get(port, &ports_eth_addr[port]); RTE_LOG(INFO, PORT, "Port %u MAC: %02"PRIx8" %02"PRIx8" %02"PRIx8 " %02"PRIx8" %02"PRIx8" %02"PRIx8"\n", port, ports_eth_addr[port].addr_bytes[0], ports_eth_addr[port].addr_bytes[1], ports_eth_addr[port].addr_bytes[2], ports_eth_addr[port].addr_bytes[3], ports_eth_addr[port].addr_bytes[4], ports_eth_addr[port].addr_bytes[5]); if (tso_segsz != 0) { struct rte_eth_dev_info dev_info; rte_eth_dev_info_get(port, &dev_info); if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) == 0) RTE_LOG(WARNING, PORT, "hardware TSO offload is not supported\n"); } return 0; } static int vxlan_rx_process(struct rte_mbuf *pkt) { int ret = 0; if (rx_decap) ret = decapsulation(pkt); return ret; } static void vxlan_tx_process(uint8_t queue_id, struct rte_mbuf *pkt) { if (tx_encap) encapsulation(pkt, queue_id); return; } /* * This function learns the MAC address of the device and set init * L2 header and L3 header info. */ int vxlan_link(struct vhost_dev *vdev, struct rte_mbuf *m) { int i, ret; struct ether_hdr *pkt_hdr; uint64_t portid = vdev->vid; struct ipv4_hdr *ip; struct rte_eth_tunnel_filter_conf tunnel_filter_conf; if (unlikely(portid >= VXLAN_N_PORTS)) { RTE_LOG(INFO, VHOST_DATA, "(%d) WARNING: Not configuring device," "as already have %d ports for VXLAN.", vdev->vid, VXLAN_N_PORTS); return -1; } /* Learn MAC address of guest device from packet */ pkt_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); if (is_same_ether_addr(&(pkt_hdr->s_addr), &vdev->mac_address)) { RTE_LOG(INFO, VHOST_DATA, "(%d) WARNING: This device is using an existing" " MAC address and has not been registered.\n", vdev->vid); return -1; } for (i = 0; i < ETHER_ADDR_LEN; i++) { vdev->mac_address.addr_bytes[i] = vxdev.port[portid].vport_mac.addr_bytes[i] = pkt_hdr->s_addr.addr_bytes[i]; vxdev.port[portid].peer_mac.addr_bytes[i] = peer_mac[i]; } memset(&tunnel_filter_conf, 0, sizeof(struct rte_eth_tunnel_filter_conf)); ether_addr_copy(&ports_eth_addr[0], &tunnel_filter_conf.outer_mac); tunnel_filter_conf.filter_type = tep_filter_type[filter_idx]; /* inner MAC */ ether_addr_copy(&vdev->mac_address, &tunnel_filter_conf.inner_mac); tunnel_filter_conf.queue_id = vdev->rx_q; tunnel_filter_conf.tenant_id = tenant_id_conf[vdev->rx_q]; if (tep_filter_type[filter_idx] == RTE_TUNNEL_FILTER_IMAC_IVLAN_TENID) tunnel_filter_conf.inner_vlan = INNER_VLAN_ID; tunnel_filter_conf.tunnel_type = RTE_TUNNEL_TYPE_VXLAN; ret = rte_eth_dev_filter_ctrl(ports[0], RTE_ETH_FILTER_TUNNEL, RTE_ETH_FILTER_ADD, &tunnel_filter_conf); if (ret) { RTE_LOG(ERR, VHOST_DATA, "%d Failed to add device MAC address to cloud filter\n", vdev->rx_q); return -1; } /* Print out inner MAC and VNI info. */ RTE_LOG(INFO, VHOST_DATA, "(%d) MAC_ADDRESS %02x:%02x:%02x:%02x:%02x:%02x and VNI %d registered\n", vdev->rx_q, vdev->mac_address.addr_bytes[0], vdev->mac_address.addr_bytes[1], vdev->mac_address.addr_bytes[2], vdev->mac_address.addr_bytes[3], vdev->mac_address.addr_bytes[4], vdev->mac_address.addr_bytes[5], tenant_id_conf[vdev->rx_q]); vxdev.port[portid].vport_id = portid; for (i = 0; i < 4; i++) { /* Local VTEP IP */ vxdev.port_ip |= vxlan_multicast_ips[portid][i] << (8 * i); /* Remote VTEP IP */ vxdev.port[portid].peer_ip |= vxlan_overlay_ips[portid][i] << (8 * i); } vxdev.out_key = tenant_id_conf[vdev->rx_q]; ether_addr_copy(&vxdev.port[portid].peer_mac, &app_l2_hdr[portid].d_addr); ether_addr_copy(&ports_eth_addr[0], &app_l2_hdr[portid].s_addr); app_l2_hdr[portid].ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4); ip = &app_ip_hdr[portid]; ip->version_ihl = IP_VHL_DEF; ip->type_of_service = 0; ip->total_length = 0; ip->packet_id = 0; ip->fragment_offset = IP_DN_FRAGMENT_FLAG; ip->time_to_live = IP_DEFTTL; ip->next_proto_id = IPPROTO_UDP; ip->hdr_checksum = 0; ip->src_addr = vxdev.port_ip; ip->dst_addr = vxdev.port[portid].peer_ip; /* Set device as ready for RX. */ vdev->ready = DEVICE_RX; return 0; } /** * Removes cloud filter. Ensures that nothing is adding buffers to the RX * queue before disabling RX on the device. */ void vxlan_unlink(struct vhost_dev *vdev) { unsigned i = 0, rx_count; int ret; struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; struct rte_eth_tunnel_filter_conf tunnel_filter_conf; if (vdev->ready == DEVICE_RX) { memset(&tunnel_filter_conf, 0, sizeof(struct rte_eth_tunnel_filter_conf)); ether_addr_copy(&ports_eth_addr[0], &tunnel_filter_conf.outer_mac); ether_addr_copy(&vdev->mac_address, &tunnel_filter_conf.inner_mac); tunnel_filter_conf.tenant_id = tenant_id_conf[vdev->rx_q]; tunnel_filter_conf.filter_type = tep_filter_type[filter_idx]; if (tep_filter_type[filter_idx] == RTE_TUNNEL_FILTER_IMAC_IVLAN_TENID) tunnel_filter_conf.inner_vlan = INNER_VLAN_ID; tunnel_filter_conf.queue_id = vdev->rx_q; tunnel_filter_conf.tunnel_type = RTE_TUNNEL_TYPE_VXLAN; ret = rte_eth_dev_filter_ctrl(ports[0], RTE_ETH_FILTER_TUNNEL, RTE_ETH_FILTER_DELETE, &tunnel_filter_conf); if (ret) { RTE_LOG(ERR, VHOST_DATA, "%d Failed to add device MAC address to cloud filter\n", vdev->rx_q); return; } for (i = 0; i < ETHER_ADDR_LEN; i++) vdev->mac_address.addr_bytes[i] = 0; /* Clear out the receive buffers */ rx_count = rte_eth_rx_burst(ports[0], (uint16_t)vdev->rx_q, pkts_burst, MAX_PKT_BURST); while (rx_count) { for (i = 0; i < rx_count; i++) rte_pktmbuf_free(pkts_burst[i]); rx_count = rte_eth_rx_burst(ports[0], (uint16_t)vdev->rx_q, pkts_burst, MAX_PKT_BURST); } vdev->ready = DEVICE_MAC_LEARNING; } } /* Transmit packets after encapsulating */ int vxlan_tx_pkts(uint16_t port_id, uint16_t queue_id, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { int ret = 0; uint16_t i; for (i = 0; i < nb_pkts; i++) vxlan_tx_process(queue_id, tx_pkts[i]); ret = rte_eth_tx_burst(port_id, queue_id, tx_pkts, nb_pkts); return ret; } /* Check for decapsulation and pass packets directly to VIRTIO device */ int vxlan_rx_pkts(int vid, struct rte_mbuf **pkts_burst, uint32_t rx_count) { uint32_t i = 0; uint32_t count = 0; int ret; struct rte_mbuf *pkts_valid[rx_count]; for (i = 0; i < rx_count; i++) { if (enable_stats) { rte_atomic64_add( &dev_statistics[vid].rx_bad_ip_csum, (pkts_burst[i]->ol_flags & PKT_RX_IP_CKSUM_BAD) != 0); rte_atomic64_add( &dev_statistics[vid].rx_bad_ip_csum, (pkts_burst[i]->ol_flags & PKT_RX_L4_CKSUM_BAD) != 0); } ret = vxlan_rx_process(pkts_burst[i]); if (unlikely(ret < 0)) continue; pkts_valid[count] = pkts_burst[i]; count++; } ret = rte_vhost_enqueue_burst(vid, VIRTIO_RXQ, pkts_valid, count); return ret; }