/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _RTE_MEMCPY_X86_64_H_ #define _RTE_MEMCPY_X86_64_H_ /** * @file * * Functions for SSE/AVX/AVX2/AVX512 implementation of memcpy(). */ #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /** * Copy bytes from one location to another. The locations must not overlap. * * @note This is implemented as a macro, so it's address should not be taken * and care is needed as parameter expressions may be evaluated multiple times. * * @param dst * Pointer to the destination of the data. * @param src * Pointer to the source data. * @param n * Number of bytes to copy. * @return * Pointer to the destination data. */ static __rte_always_inline void * rte_memcpy(void *dst, const void *src, size_t n); #ifdef RTE_MACHINE_CPUFLAG_AVX512F #define ALIGNMENT_MASK 0x3F /** * AVX512 implementation below */ /** * Copy 16 bytes from one location to another, * locations should not overlap. */ static inline void rte_mov16(uint8_t *dst, const uint8_t *src) { __m128i xmm0; xmm0 = _mm_loadu_si128((const __m128i *)src); _mm_storeu_si128((__m128i *)dst, xmm0); } /** * Copy 32 bytes from one location to another, * locations should not overlap. */ static inline void rte_mov32(uint8_t *dst, const uint8_t *src) { __m256i ymm0; ymm0 = _mm256_loadu_si256((const __m256i *)src); _mm256_storeu_si256((__m256i *)dst, ymm0); } /** * Copy 64 bytes from one location to another, * locations should not overlap. */ static inline void rte_mov64(uint8_t *dst, const uint8_t *src) { __m512i zmm0; zmm0 = _mm512_loadu_si512((const void *)src); _mm512_storeu_si512((void *)dst, zmm0); } /** * Copy 128 bytes from one location to another, * locations should not overlap. */ static inline void rte_mov128(uint8_t *dst, const uint8_t *src) { rte_mov64(dst + 0 * 64, src + 0 * 64); rte_mov64(dst + 1 * 64, src + 1 * 64); } /** * Copy 256 bytes from one location to another, * locations should not overlap. */ static inline void rte_mov256(uint8_t *dst, const uint8_t *src) { rte_mov64(dst + 0 * 64, src + 0 * 64); rte_mov64(dst + 1 * 64, src + 1 * 64); rte_mov64(dst + 2 * 64, src + 2 * 64); rte_mov64(dst + 3 * 64, src + 3 * 64); } /** * Copy 128-byte blocks from one location to another, * locations should not overlap. */ static inline void rte_mov128blocks(uint8_t *dst, const uint8_t *src, size_t n) { __m512i zmm0, zmm1; while (n >= 128) { zmm0 = _mm512_loadu_si512((const void *)(src + 0 * 64)); n -= 128; zmm1 = _mm512_loadu_si512((const void *)(src + 1 * 64)); src = src + 128; _mm512_storeu_si512((void *)(dst + 0 * 64), zmm0); _mm512_storeu_si512((void *)(dst + 1 * 64), zmm1); dst = dst + 128; } } /** * Copy 512-byte blocks from one location to another, * locations should not overlap. */ static inline void rte_mov512blocks(uint8_t *dst, const uint8_t *src, size_t n) { __m512i zmm0, zmm1, zmm2, zmm3, zmm4, zmm5, zmm6, zmm7; while (n >= 512) { zmm0 = _mm512_loadu_si512((const void *)(src + 0 * 64)); n -= 512; zmm1 = _mm512_loadu_si512((const void *)(src + 1 * 64)); zmm2 = _mm512_loadu_si512((const void *)(src + 2 * 64)); zmm3 = _mm512_loadu_si512((const void *)(src + 3 * 64)); zmm4 = _mm512_loadu_si512((const void *)(src + 4 * 64)); zmm5 = _mm512_loadu_si512((const void *)(src + 5 * 64)); zmm6 = _mm512_loadu_si512((const void *)(src + 6 * 64)); zmm7 = _mm512_loadu_si512((const void *)(src + 7 * 64)); src = src + 512; _mm512_storeu_si512((void *)(dst + 0 * 64), zmm0); _mm512_storeu_si512((void *)(dst + 1 * 64), zmm1); _mm512_storeu_si512((void *)(dst + 2 * 64), zmm2); _mm512_storeu_si512((void *)(dst + 3 * 64), zmm3); _mm512_storeu_si512((void *)(dst + 4 * 64), zmm4); _mm512_storeu_si512((void *)(dst + 5 * 64), zmm5); _mm512_storeu_si512((void *)(dst + 6 * 64), zmm6); _mm512_storeu_si512((void *)(dst + 7 * 64), zmm7); dst = dst + 512; } } static inline void * rte_memcpy_generic(void *dst, const void *src, size_t n) { uintptr_t dstu = (uintptr_t)dst; uintptr_t srcu = (uintptr_t)src; void *ret = dst; size_t dstofss; size_t bits; /** * Copy less than 16 bytes */ if (n < 16) { if (n & 0x01) { *(uint8_t *)dstu = *(const uint8_t *)srcu; srcu = (uintptr_t)((const uint8_t *)srcu + 1); dstu = (uintptr_t)((uint8_t *)dstu + 1); } if (n & 0x02) { *(uint16_t *)dstu = *(const uint16_t *)srcu; srcu = (uintptr_t)((const uint16_t *)srcu + 1); dstu = (uintptr_t)((uint16_t *)dstu + 1); } if (n & 0x04) { *(uint32_t *)dstu = *(const uint32_t *)srcu; srcu = (uintptr_t)((const uint32_t *)srcu + 1); dstu = (uintptr_t)((uint32_t *)dstu + 1); } if (n & 0x08) *(uint64_t *)dstu = *(const uint64_t *)srcu; return ret; } /** * Fast way when copy size doesn't exceed 512 bytes */ if (n <= 32) { rte_mov16((uint8_t *)dst, (const uint8_t *)src); rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n); return ret; } if (n <= 64) { rte_mov32((uint8_t *)dst, (const uint8_t *)src); rte_mov32((uint8_t *)dst - 32 + n, (const uint8_t *)src - 32 + n); return ret; } if (n <= 512) { if (n >= 256) { n -= 256; rte_mov256((uint8_t *)dst, (const uint8_t *)src); src = (const uint8_t *)src + 256; dst = (uint8_t *)dst + 256; } if (n >= 128) { n -= 128; rte_mov128((uint8_t *)dst, (const uint8_t *)src); src = (const uint8_t *)src + 128; dst = (uint8_t *)dst + 128; } COPY_BLOCK_128_BACK63: if (n > 64) { rte_mov64((uint8_t *)dst, (const uint8_t *)src); rte_mov64((uint8_t *)dst - 64 + n, (const uint8_t *)src - 64 + n); return ret; } if (n > 0) rte_mov64((uint8_t *)dst - 64 + n, (const uint8_t *)src - 64 + n); return ret; } /** * Make store aligned when copy size exceeds 512 bytes */ dstofss = ((uintptr_t)dst & 0x3F); if (dstofss > 0) { dstofss = 64 - dstofss; n -= dstofss; rte_mov64((uint8_t *)dst, (const uint8_t *)src); src = (const uint8_t *)src + dstofss; dst = (uint8_t *)dst + dstofss; } /** * Copy 512-byte blocks. * Use copy block function for better instruction order control, * which is important when load is unaligned. */ rte_mov512blocks((uint8_t *)dst, (const uint8_t *)src, n); bits = n; n = n & 511; bits -= n; src = (const uint8_t *)src + bits; dst = (uint8_t *)dst + bits; /** * Copy 128-byte blocks. * Use copy block function for better instruction order control, * which is important when load is unaligned. */ if (n >= 128) { rte_mov128blocks((uint8_t *)dst, (const uint8_t *)src, n); bits = n; n = n & 127; bits -= n; src = (const uint8_t *)src + bits; dst = (uint8_t *)dst + bits; } /** * Copy whatever left */ goto COPY_BLOCK_128_BACK63; } #elif defined RTE_MACHINE_CPUFLAG_AVX2 #define ALIGNMENT_MASK 0x1F /** * AVX2 implementation below */ /** * Copy 16 bytes from one location to another, * locations should not overlap. */ static inline void rte_mov16(uint8_t *dst, const uint8_t *src) { __m128i xmm0; xmm0 = _mm_loadu_si128((const __m128i *)src); _mm_storeu_si128((__m128i *)dst, xmm0); } /** * Copy 32 bytes from one location to another, * locations should not overlap. */ static inline void rte_mov32(uint8_t *dst, const uint8_t *src) { __m256i ymm0; ymm0 = _mm256_loadu_si256((const __m256i *)src); _mm256_storeu_si256((__m256i *)dst, ymm0); } /** * Copy 64 bytes from one location to another, * locations should not overlap. */ static inline void rte_mov64(uint8_t *dst, const uint8_t *src) { rte_mov32((uint8_t *)dst + 0 * 32, (const uint8_t *)src + 0 * 32); rte_mov32((uint8_t *)dst + 1 * 32, (const uint8_t *)src + 1 * 32); } /** * Copy 128 bytes from one location to another, * locations should not overlap. */ static inline void rte_mov128(uint8_t *dst, const uint8_t *src) { rte_mov32((uint8_t *)dst + 0 * 32, (const uint8_t *)src + 0 * 32); rte_mov32((uint8_t *)dst + 1 * 32, (const uint8_t *)src + 1 * 32); rte_mov32((uint8_t *)dst + 2 * 32, (const uint8_t *)src + 2 * 32); rte_mov32((uint8_t *)dst + 3 * 32, (const uint8_t *)src + 3 * 32); } /** * Copy 128-byte blocks from one location to another, * locations should not overlap. */ static inline void rte_mov128blocks(uint8_t *dst, const uint8_t *src, size_t n) { __m256i ymm0, ymm1, ymm2, ymm3; while (n >= 128) { ymm0 = _mm256_loadu_si256((const __m256i *)((const uint8_t *)src + 0 * 32)); n -= 128; ymm1 = _mm256_loadu_si256((const __m256i *)((const uint8_t *)src + 1 * 32)); ymm2 = _mm256_loadu_si256((const __m256i *)((const uint8_t *)src + 2 * 32)); ymm3 = _mm256_loadu_si256((const __m256i *)((const uint8_t *)src + 3 * 32)); src = (const uint8_t *)src + 128; _mm256_storeu_si256((__m256i *)((uint8_t *)dst + 0 * 32), ymm0); _mm256_storeu_si256((__m256i *)((uint8_t *)dst + 1 * 32), ymm1); _mm256_storeu_si256((__m256i *)((uint8_t *)dst + 2 * 32), ymm2); _mm256_storeu_si256((__m256i *)((uint8_t *)dst + 3 * 32), ymm3); dst = (uint8_t *)dst + 128; } } static inline void * rte_memcpy_generic(void *dst, const void *src, size_t n) { uintptr_t dstu = (uintptr_t)dst; uintptr_t srcu = (uintptr_t)src; void *ret = dst; size_t dstofss; size_t bits; /** * Copy less than 16 bytes */ if (n < 16) { if (n & 0x01) { *(uint8_t *)dstu = *(const uint8_t *)srcu; srcu = (uintptr_t)((const uint8_t *)srcu + 1); dstu = (uintptr_t)((uint8_t *)dstu + 1); } if (n & 0x02) { *(uint16_t *)dstu = *(const uint16_t *)srcu; srcu = (uintptr_t)((const uint16_t *)srcu + 1); dstu = (uintptr_t)((uint16_t *)dstu + 1); } if (n & 0x04) { *(uint32_t *)dstu = *(const uint32_t *)srcu; srcu = (uintptr_t)((const uint32_t *)srcu + 1); dstu = (uintptr_t)((uint32_t *)dstu + 1); } if (n & 0x08) { *(uint64_t *)dstu = *(const uint64_t *)srcu; } return ret; } /** * Fast way when copy size doesn't exceed 256 bytes */ if (n <= 32) { rte_mov16((uint8_t *)dst, (const uint8_t *)src); rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n); return ret; } if (n <= 48) { rte_mov16((uint8_t *)dst, (const uint8_t *)src); rte_mov16((uint8_t *)dst + 16, (const uint8_t *)src + 16); rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n); return ret; } if (n <= 64) { rte_mov32((uint8_t *)dst, (const uint8_t *)src); rte_mov32((uint8_t *)dst - 32 + n, (const uint8_t *)src - 32 + n); return ret; } if (n <= 256) { if (n >= 128) { n -= 128; rte_mov128((uint8_t *)dst, (const uint8_t *)src); src = (const uint8_t *)src + 128; dst = (uint8_t *)dst + 128; } COPY_BLOCK_128_BACK31: if (n >= 64) { n -= 64; rte_mov64((uint8_t *)dst, (const uint8_t *)src); src = (const uint8_t *)src + 64; dst = (uint8_t *)dst + 64; } if (n > 32) { rte_mov32((uint8_t *)dst, (const uint8_t *)src); rte_mov32((uint8_t *)dst - 32 + n, (const uint8_t *)src - 32 + n); return ret; } if (n > 0) { rte_mov32((uint8_t *)dst - 32 + n, (const uint8_t *)src - 32 + n); } return ret; } /** * Make store aligned when copy size exceeds 256 bytes */ dstofss = (uintptr_t)dst & 0x1F; if (dstofss > 0) { dstofss = 32 - dstofss; n -= dstofss; rte_mov32((uint8_t *)dst, (const uint8_t *)src); src = (const uint8_t *)src + dstofss; dst = (uint8_t *)dst + dstofss; } /** * Copy 128-byte blocks */ rte_mov128blocks((uint8_t *)dst, (const uint8_t *)src, n); bits = n; n = n & 127; bits -= n; src = (const uint8_t *)src + bits; dst = (uint8_t *)dst + bits; /** * Copy whatever left */ goto COPY_BLOCK_128_BACK31; } #else /* RTE_MACHINE_CPUFLAG */ #define ALIGNMENT_MASK 0x0F /** * SSE & AVX implementation below */ /** * Copy 16 bytes from one location to another, * locations should not overlap. */ static inline void rte_mov16(uint8_t *dst, const uint8_t *src) { __m128i xmm0; xmm0 = _mm_loadu_si128((const __m128i *)(const __m128i *)src); _mm_storeu_si128((__m128i *)dst, xmm0); } /** * Copy 32 bytes from one location to another, * locations should not overlap. */ static inline void rte_mov32(uint8_t *dst, const uint8_t *src) { rte_mov16((uint8_t *)dst + 0 * 16, (const uint8_t *)src + 0 * 16); rte_mov16((uint8_t *)dst + 1 * 16, (const uint8_t *)src + 1 * 16); } /** * Copy 64 bytes from one location to another, * locations should not overlap. */ static inline void rte_mov64(uint8_t *dst, const uint8_t *src) { rte_mov16((uint8_t *)dst + 0 * 16, (const uint8_t *)src + 0 * 16); rte_mov16((uint8_t *)dst + 1 * 16, (const uint8_t *)src + 1 * 16); rte_mov16((uint8_t *)dst + 2 * 16, (const uint8_t *)src + 2 * 16); rte_mov16((uint8_t *)dst + 3 * 16, (const uint8_t *)src + 3 * 16); } /** * Copy 128 bytes from one location to another, * locations should not overlap. */ static inline void rte_mov128(uint8_t *dst, const uint8_t *src) { rte_mov16((uint8_t *)dst + 0 * 16, (const uint8_t *)src + 0 * 16); rte_mov16((uint8_t *)dst + 1 * 16, (const uint8_t *)src + 1 * 16); rte_mov16((uint8_t *)dst + 2 * 16, (const uint8_t *)src + 2 * 16); rte_mov16((uint8_t *)dst + 3 * 16, (const uint8_t *)src + 3 * 16); rte_mov16((uint8_t *)dst + 4 * 16, (const uint8_t *)src + 4 * 16); rte_mov16((uint8_t *)dst + 5 * 16, (const uint8_t *)src + 5 * 16); rte_mov16((uint8_t *)dst + 6 * 16, (const uint8_t *)src + 6 * 16); rte_mov16((uint8_t *)dst + 7 * 16, (const uint8_t *)src + 7 * 16); } /** * Copy 256 bytes from one location to another, * locations should not overlap. */ static inline void rte_mov256(uint8_t *dst, const uint8_t *src) { rte_mov16((uint8_t *)dst + 0 * 16, (const uint8_t *)src + 0 * 16); rte_mov16((uint8_t *)dst + 1 * 16, (const uint8_t *)src + 1 * 16); rte_mov16((uint8_t *)dst + 2 * 16, (const uint8_t *)src + 2 * 16); rte_mov16((uint8_t *)dst + 3 * 16, (const uint8_t *)src + 3 * 16); rte_mov16((uint8_t *)dst + 4 * 16, (const uint8_t *)src + 4 * 16); rte_mov16((uint8_t *)dst + 5 * 16, (const uint8_t *)src + 5 * 16); rte_mov16((uint8_t *)dst + 6 * 16, (const uint8_t *)src + 6 * 16); rte_mov16((uint8_t *)dst + 7 * 16, (const uint8_t *)src + 7 * 16); rte_mov16((uint8_t *)dst + 8 * 16, (const uint8_t *)src + 8 * 16); rte_mov16((uint8_t *)dst + 9 * 16, (const uint8_t *)src + 9 * 16); rte_mov16((uint8_t *)dst + 10 * 16, (const uint8_t *)src + 10 * 16); rte_mov16((uint8_t *)dst + 11 * 16, (const uint8_t *)src + 11 * 16); rte_mov16((uint8_t *)dst + 12 * 16, (const uint8_t *)src + 12 * 16); rte_mov16((uint8_t *)dst + 13 * 16, (const uint8_t *)src + 13 * 16); rte_mov16((uint8_t *)dst + 14 * 16, (const uint8_t *)src + 14 * 16); rte_mov16((uint8_t *)dst + 15 * 16, (const uint8_t *)src + 15 * 16); } /** * Macro for copying unaligned block from one location to another with constant load offset, * 47 bytes leftover maximum, * locations should not overlap. * Requirements: * - Store is aligned * - Load offset is , which must be immediate value within [1, 15] * - For , make sure bit backwards & <16 - offset> bit forwards are available for loading * - , , must be variables * - __m128i ~ must be pre-defined */ #define MOVEUNALIGNED_LEFT47_IMM(dst, src, len, offset) \ __extension__ ({ \ size_t tmp; \ while (len >= 128 + 16 - offset) { \ xmm0 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 0 * 16)); \ len -= 128; \ xmm1 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 1 * 16)); \ xmm2 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 2 * 16)); \ xmm3 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 3 * 16)); \ xmm4 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 4 * 16)); \ xmm5 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 5 * 16)); \ xmm6 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 6 * 16)); \ xmm7 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 7 * 16)); \ xmm8 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 8 * 16)); \ src = (const uint8_t *)src + 128; \ _mm_storeu_si128((__m128i *)((uint8_t *)dst + 0 * 16), _mm_alignr_epi8(xmm1, xmm0, offset)); \ _mm_storeu_si128((__m128i *)((uint8_t *)dst + 1 * 16), _mm_alignr_epi8(xmm2, xmm1, offset)); \ _mm_storeu_si128((__m128i *)((uint8_t *)dst + 2 * 16), _mm_alignr_epi8(xmm3, xmm2, offset)); \ _mm_storeu_si128((__m128i *)((uint8_t *)dst + 3 * 16), _mm_alignr_epi8(xmm4, xmm3, offset)); \ _mm_storeu_si128((__m128i *)((uint8_t *)dst + 4 * 16), _mm_alignr_epi8(xmm5, xmm4, offset)); \ _mm_storeu_si128((__m128i *)((uint8_t *)dst + 5 * 16), _mm_alignr_epi8(xmm6, xmm5, offset)); \ _mm_storeu_si128((__m128i *)((uint8_t *)dst + 6 * 16), _mm_alignr_epi8(xmm7, xmm6, offset)); \ _mm_storeu_si128((__m128i *)((uint8_t *)dst + 7 * 16), _mm_alignr_epi8(xmm8, xmm7, offset)); \ dst = (uint8_t *)dst + 128; \ } \ tmp = len; \ len = ((len - 16 + offset) & 127) + 16 - offset; \ tmp -= len; \ src = (const uint8_t *)src + tmp; \ dst = (uint8_t *)dst + tmp; \ if (len >= 32 + 16 - offset) { \ while (len >= 32 + 16 - offset) { \ xmm0 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 0 * 16)); \ len -= 32; \ xmm1 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 1 * 16)); \ xmm2 = _mm_loadu_si128((const __m128i *)((const uint8_t *)src - offset + 2 * 16)); \ src = (const uint8_t *)src + 32; \ _mm_storeu_si128((__m128i *)((uint8_t *)dst + 0 * 16), _mm_alignr_epi8(xmm1, xmm0, offset)); \ _mm_storeu_si128((__m128i *)((uint8_t *)dst + 1 * 16), _mm_alignr_epi8(xmm2, xmm1, offset)); \ dst = (uint8_t *)dst + 32; \ } \ tmp = len; \ len = ((len - 16 + offset) & 31) + 16 - offset; \ tmp -= len; \ src = (const uint8_t *)src + tmp; \ dst = (uint8_t *)dst + tmp; \ } \ }) /** * Macro for copying unaligned block from one location to another, * 47 bytes leftover maximum, * locations should not overlap. * Use switch here because the aligning instruction requires immediate value for shift count. * Requirements: * - Store is aligned * - Load offset is , which must be within [1, 15] * - For , make sure bit backwards & <16 - offset> bit forwards are available for loading * - , , must be variables * - __m128i ~ used in MOVEUNALIGNED_LEFT47_IMM must be pre-defined */ #define MOVEUNALIGNED_LEFT47(dst, src, len, offset) \ __extension__ ({ \ switch (offset) { \ case 0x01: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x01); break; \ case 0x02: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x02); break; \ case 0x03: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x03); break; \ case 0x04: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x04); break; \ case 0x05: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x05); break; \ case 0x06: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x06); break; \ case 0x07: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x07); break; \ case 0x08: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x08); break; \ case 0x09: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x09); break; \ case 0x0A: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x0A); break; \ case 0x0B: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x0B); break; \ case 0x0C: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x0C); break; \ case 0x0D: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x0D); break; \ case 0x0E: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x0E); break; \ case 0x0F: MOVEUNALIGNED_LEFT47_IMM(dst, src, n, 0x0F); break; \ default:; \ } \ }) static inline void * rte_memcpy_generic(void *dst, const void *src, size_t n) { __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8; uintptr_t dstu = (uintptr_t)dst; uintptr_t srcu = (uintptr_t)src; void *ret = dst; size_t dstofss; size_t srcofs; /** * Copy less than 16 bytes */ if (n < 16) { if (n & 0x01) { *(uint8_t *)dstu = *(const uint8_t *)srcu; srcu = (uintptr_t)((const uint8_t *)srcu + 1); dstu = (uintptr_t)((uint8_t *)dstu + 1); } if (n & 0x02) { *(uint16_t *)dstu = *(const uint16_t *)srcu; srcu = (uintptr_t)((const uint16_t *)srcu + 1); dstu = (uintptr_t)((uint16_t *)dstu + 1); } if (n & 0x04) { *(uint32_t *)dstu = *(const uint32_t *)srcu; srcu = (uintptr_t)((const uint32_t *)srcu + 1); dstu = (uintptr_t)((uint32_t *)dstu + 1); } if (n & 0x08) { *(uint64_t *)dstu = *(const uint64_t *)srcu; } return ret; } /** * Fast way when copy size doesn't exceed 512 bytes */ if (n <= 32) { rte_mov16((uint8_t *)dst, (const uint8_t *)src); rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n); return ret; } if (n <= 48) { rte_mov32((uint8_t *)dst, (const uint8_t *)src); rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n); return ret; } if (n <= 64) { rte_mov32((uint8_t *)dst, (const uint8_t *)src); rte_mov16((uint8_t *)dst + 32, (const uint8_t *)src + 32); rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n); return ret; } if (n <= 128) { goto COPY_BLOCK_128_BACK15; } if (n <= 512) { if (n >= 256) { n -= 256; rte_mov128((uint8_t *)dst, (const uint8_t *)src); rte_mov128((uint8_t *)dst + 128, (const uint8_t *)src + 128); src = (const uint8_t *)src + 256; dst = (uint8_t *)dst + 256; } COPY_BLOCK_255_BACK15: if (n >= 128) { n -= 128; rte_mov128((uint8_t *)dst, (const uint8_t *)src); src = (const uint8_t *)src + 128; dst = (uint8_t *)dst + 128; } COPY_BLOCK_128_BACK15: if (n >= 64) { n -= 64; rte_mov64((uint8_t *)dst, (const uint8_t *)src); src = (const uint8_t *)src + 64; dst = (uint8_t *)dst + 64; } COPY_BLOCK_64_BACK15: if (n >= 32) { n -= 32; rte_mov32((uint8_t *)dst, (const uint8_t *)src); src = (const uint8_t *)src + 32; dst = (uint8_t *)dst + 32; } if (n > 16) { rte_mov16((uint8_t *)dst, (const uint8_t *)src); rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n); return ret; } if (n > 0) { rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n); } return ret; } /** * Make store aligned when copy size exceeds 512 bytes, * and make sure the first 15 bytes are copied, because * unaligned copy functions require up to 15 bytes * backwards access. */ dstofss = (uintptr_t)dst & 0x0F; if (dstofss > 0) { dstofss = 16 - dstofss + 16; n -= dstofss; rte_mov32((uint8_t *)dst, (const uint8_t *)src); src = (const uint8_t *)src + dstofss; dst = (uint8_t *)dst + dstofss; } srcofs = ((uintptr_t)src & 0x0F); /** * For aligned copy */ if (srcofs == 0) { /** * Copy 256-byte blocks */ for (; n >= 256; n -= 256) { rte_mov256((uint8_t *)dst, (const uint8_t *)src); dst = (uint8_t *)dst + 256; src = (const uint8_t *)src + 256; } /** * Copy whatever left */ goto COPY_BLOCK_255_BACK15; } /** * For copy with unaligned load */ MOVEUNALIGNED_LEFT47(dst, src, n, srcofs); /** * Copy whatever left */ goto COPY_BLOCK_64_BACK15; } #endif /* RTE_MACHINE_CPUFLAG */ static inline void * rte_memcpy_aligned(void *dst, const void *src, size_t n) { void *ret = dst; /* Copy size <= 16 bytes */ if (n < 16) { if (n & 0x01) { *(uint8_t *)dst = *(const uint8_t *)src; src = (const uint8_t *)src + 1; dst = (uint8_t *)dst + 1; } if (n & 0x02) { *(uint16_t *)dst = *(const uint16_t *)src; src = (const uint16_t *)src + 1; dst = (uint16_t *)dst + 1; } if (n & 0x04) { *(uint32_t *)dst = *(const uint32_t *)src; src = (const uint32_t *)src + 1; dst = (uint32_t *)dst + 1; } if (n & 0x08) *(uint64_t *)dst = *(const uint64_t *)src; return ret; } /* Copy 16 <= size <= 32 bytes */ if (n <= 32) { rte_mov16((uint8_t *)dst, (const uint8_t *)src); rte_mov16((uint8_t *)dst - 16 + n, (const uint8_t *)src - 16 + n); return ret; } /* Copy 32 < size <= 64 bytes */ if (n <= 64) { rte_mov32((uint8_t *)dst, (const uint8_t *)src); rte_mov32((uint8_t *)dst - 32 + n, (const uint8_t *)src - 32 + n); return ret; } /* Copy 64 bytes blocks */ for (; n >= 64; n -= 64) { rte_mov64((uint8_t *)dst, (const uint8_t *)src); dst = (uint8_t *)dst + 64; src = (const uint8_t *)src + 64; } /* Copy whatever left */ rte_mov64((uint8_t *)dst - 64 + n, (const uint8_t *)src - 64 + n); return ret; } static inline void * rte_memcpy(void *dst, const void *src, size_t n) { if (!(((uintptr_t)dst | (uintptr_t)src) & ALIGNMENT_MASK)) return rte_memcpy_aligned(dst, src, n); else return rte_memcpy_generic(dst, src, n); } #ifdef __cplusplus } #endif #endif /* _RTE_MEMCPY_X86_64_H_ */