/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "malloc_elem.h" #include "malloc_heap.h" /* Free the memory space back to heap */ void rte_free(void *addr) { if (addr == NULL) return; if (malloc_heap_free(malloc_elem_from_data(addr)) < 0) RTE_LOG(ERR, EAL, "Error: Invalid memory\n"); } /* * Allocate memory on specified heap. */ void * rte_malloc_socket(const char *type, size_t size, unsigned int align, int socket_arg) { /* return NULL if size is 0 or alignment is not power-of-2 */ if (size == 0 || (align && !rte_is_power_of_2(align))) return NULL; if (!rte_eal_has_hugepages()) socket_arg = SOCKET_ID_ANY; /* Check socket parameter */ if (socket_arg >= RTE_MAX_NUMA_NODES) return NULL; return malloc_heap_alloc(type, size, socket_arg, 0, align == 0 ? 1 : align, 0, false); } /* * Allocate memory on default heap. */ void * rte_malloc(const char *type, size_t size, unsigned align) { return rte_malloc_socket(type, size, align, SOCKET_ID_ANY); } /* * Allocate zero'd memory on specified heap. */ void * rte_zmalloc_socket(const char *type, size_t size, unsigned align, int socket) { return rte_malloc_socket(type, size, align, socket); } /* * Allocate zero'd memory on default heap. */ void * rte_zmalloc(const char *type, size_t size, unsigned align) { return rte_zmalloc_socket(type, size, align, SOCKET_ID_ANY); } /* * Allocate zero'd memory on specified heap. */ void * rte_calloc_socket(const char *type, size_t num, size_t size, unsigned align, int socket) { return rte_zmalloc_socket(type, num * size, align, socket); } /* * Allocate zero'd memory on default heap. */ void * rte_calloc(const char *type, size_t num, size_t size, unsigned align) { return rte_zmalloc(type, num * size, align); } /* * Resize allocated memory. */ void * rte_realloc(void *ptr, size_t size, unsigned align) { if (ptr == NULL) return rte_malloc(NULL, size, align); struct malloc_elem *elem = malloc_elem_from_data(ptr); if (elem == NULL) { RTE_LOG(ERR, EAL, "Error: memory corruption detected\n"); return NULL; } size = RTE_CACHE_LINE_ROUNDUP(size), align = RTE_CACHE_LINE_ROUNDUP(align); /* check alignment matches first, and if ok, see if we can resize block */ if (RTE_PTR_ALIGN(ptr,align) == ptr && malloc_heap_resize(elem, size) == 0) return ptr; /* either alignment is off, or we have no room to expand, * so move data. */ void *new_ptr = rte_malloc(NULL, size, align); if (new_ptr == NULL) return NULL; const unsigned old_size = elem->size - MALLOC_ELEM_OVERHEAD; rte_memcpy(new_ptr, ptr, old_size < size ? old_size : size); rte_free(ptr); return new_ptr; } int rte_malloc_validate(const void *ptr, size_t *size) { const struct malloc_elem *elem = malloc_elem_from_data(ptr); if (!malloc_elem_cookies_ok(elem)) return -1; if (size != NULL) *size = elem->size - elem->pad - MALLOC_ELEM_OVERHEAD; return 0; } /* * Function to retrieve data for heap on given socket */ int rte_malloc_get_socket_stats(int socket, struct rte_malloc_socket_stats *socket_stats) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; if (socket >= RTE_MAX_NUMA_NODES || socket < 0) return -1; return malloc_heap_get_stats(&mcfg->malloc_heaps[socket], socket_stats); } /* * Function to dump contents of all heaps */ void __rte_experimental rte_malloc_dump_heaps(FILE *f) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; unsigned int idx; for (idx = 0; idx < rte_socket_count(); idx++) { unsigned int socket = rte_socket_id_by_idx(idx); fprintf(f, "Heap on socket %i:\n", socket); malloc_heap_dump(&mcfg->malloc_heaps[socket], f); } } /* * Print stats on memory type. If type is NULL, info on all types is printed */ void rte_malloc_dump_stats(FILE *f, __rte_unused const char *type) { unsigned int socket; struct rte_malloc_socket_stats sock_stats; /* Iterate through all initialised heaps */ for (socket=0; socket< RTE_MAX_NUMA_NODES; socket++) { if ((rte_malloc_get_socket_stats(socket, &sock_stats) < 0)) continue; fprintf(f, "Socket:%u\n", socket); fprintf(f, "\tHeap_size:%zu,\n", sock_stats.heap_totalsz_bytes); fprintf(f, "\tFree_size:%zu,\n", sock_stats.heap_freesz_bytes); fprintf(f, "\tAlloc_size:%zu,\n", sock_stats.heap_allocsz_bytes); fprintf(f, "\tGreatest_free_size:%zu,\n", sock_stats.greatest_free_size); fprintf(f, "\tAlloc_count:%u,\n",sock_stats.alloc_count); fprintf(f, "\tFree_count:%u,\n", sock_stats.free_count); } return; } /* * TODO: Set limit to memory that can be allocated to memory type */ int rte_malloc_set_limit(__rte_unused const char *type, __rte_unused size_t max) { return 0; } /* * Return the IO address of a virtual address obtained through rte_malloc */ rte_iova_t rte_malloc_virt2iova(const void *addr) { const struct rte_memseg *ms; struct malloc_elem *elem = malloc_elem_from_data(addr); if (elem == NULL) return RTE_BAD_IOVA; if (rte_eal_iova_mode() == RTE_IOVA_VA) return (uintptr_t) addr; ms = rte_mem_virt2memseg(addr, elem->msl); if (ms == NULL) return RTE_BAD_IOVA; if (ms->iova == RTE_BAD_IOVA) return RTE_BAD_IOVA; return ms->iova + RTE_PTR_DIFF(addr, ms->addr); }