/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "malloc_elem.h" #include "malloc_heap.h" #include "eal_memalloc.h" /* Free the memory space back to heap */ void rte_free(void *addr) { if (addr == NULL) return; if (malloc_heap_free(malloc_elem_from_data(addr)) < 0) RTE_LOG(ERR, EAL, "Error: Invalid memory\n"); } /* * Allocate memory on specified heap. */ void * rte_malloc_socket(const char *type, size_t size, unsigned int align, int socket_arg) { /* return NULL if size is 0 or alignment is not power-of-2 */ if (size == 0 || (align && !rte_is_power_of_2(align))) return NULL; /* if there are no hugepages and if we are not allocating from an * external heap, use memory from any socket available. checking for * socket being external may return -1 in case of invalid socket, but * that's OK - if there are no hugepages, it doesn't matter. */ if (rte_malloc_heap_socket_is_external(socket_arg) != 1 && !rte_eal_has_hugepages()) socket_arg = SOCKET_ID_ANY; return malloc_heap_alloc(type, size, socket_arg, 0, align == 0 ? 1 : align, 0, false); } /* * Allocate memory on default heap. */ void * rte_malloc(const char *type, size_t size, unsigned align) { return rte_malloc_socket(type, size, align, SOCKET_ID_ANY); } /* * Allocate zero'd memory on specified heap. */ void * rte_zmalloc_socket(const char *type, size_t size, unsigned align, int socket) { return rte_malloc_socket(type, size, align, socket); } /* * Allocate zero'd memory on default heap. */ void * rte_zmalloc(const char *type, size_t size, unsigned align) { return rte_zmalloc_socket(type, size, align, SOCKET_ID_ANY); } /* * Allocate zero'd memory on specified heap. */ void * rte_calloc_socket(const char *type, size_t num, size_t size, unsigned align, int socket) { return rte_zmalloc_socket(type, num * size, align, socket); } /* * Allocate zero'd memory on default heap. */ void * rte_calloc(const char *type, size_t num, size_t size, unsigned align) { return rte_zmalloc(type, num * size, align); } /* * Resize allocated memory. */ void * rte_realloc(void *ptr, size_t size, unsigned align) { if (ptr == NULL) return rte_malloc(NULL, size, align); struct malloc_elem *elem = malloc_elem_from_data(ptr); if (elem == NULL) { RTE_LOG(ERR, EAL, "Error: memory corruption detected\n"); return NULL; } size = RTE_CACHE_LINE_ROUNDUP(size), align = RTE_CACHE_LINE_ROUNDUP(align); /* check alignment matches first, and if ok, see if we can resize block */ if (RTE_PTR_ALIGN(ptr,align) == ptr && malloc_heap_resize(elem, size) == 0) return ptr; /* either alignment is off, or we have no room to expand, * so move data. */ void *new_ptr = rte_malloc(NULL, size, align); if (new_ptr == NULL) return NULL; const unsigned old_size = elem->size - MALLOC_ELEM_OVERHEAD; rte_memcpy(new_ptr, ptr, old_size < size ? old_size : size); rte_free(ptr); return new_ptr; } int rte_malloc_validate(const void *ptr, size_t *size) { const struct malloc_elem *elem = malloc_elem_from_data(ptr); if (!malloc_elem_cookies_ok(elem)) return -1; if (size != NULL) *size = elem->size - elem->pad - MALLOC_ELEM_OVERHEAD; return 0; } /* * Function to retrieve data for heap on given socket */ int rte_malloc_get_socket_stats(int socket, struct rte_malloc_socket_stats *socket_stats) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; int heap_idx, ret = -1; rte_rwlock_read_lock(&mcfg->memory_hotplug_lock); heap_idx = malloc_socket_to_heap_id(socket); if (heap_idx < 0) goto unlock; ret = malloc_heap_get_stats(&mcfg->malloc_heaps[heap_idx], socket_stats); unlock: rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock); return ret; } /* * Function to dump contents of all heaps */ void __rte_experimental rte_malloc_dump_heaps(FILE *f) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; unsigned int idx; rte_rwlock_read_lock(&mcfg->memory_hotplug_lock); for (idx = 0; idx < RTE_MAX_HEAPS; idx++) { fprintf(f, "Heap id: %u\n", idx); malloc_heap_dump(&mcfg->malloc_heaps[idx], f); } rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock); } int rte_malloc_heap_get_socket(const char *name) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; struct malloc_heap *heap = NULL; unsigned int idx; int ret; if (name == NULL || strnlen(name, RTE_HEAP_NAME_MAX_LEN) == 0 || strnlen(name, RTE_HEAP_NAME_MAX_LEN) == RTE_HEAP_NAME_MAX_LEN) { rte_errno = EINVAL; return -1; } rte_rwlock_read_lock(&mcfg->memory_hotplug_lock); for (idx = 0; idx < RTE_MAX_HEAPS; idx++) { struct malloc_heap *tmp = &mcfg->malloc_heaps[idx]; if (!strncmp(name, tmp->name, RTE_HEAP_NAME_MAX_LEN)) { heap = tmp; break; } } if (heap != NULL) { ret = heap->socket_id; } else { rte_errno = ENOENT; ret = -1; } rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock); return ret; } int rte_malloc_heap_socket_is_external(int socket_id) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; unsigned int idx; int ret = -1; if (socket_id == SOCKET_ID_ANY) return 0; rte_rwlock_read_lock(&mcfg->memory_hotplug_lock); for (idx = 0; idx < RTE_MAX_HEAPS; idx++) { struct malloc_heap *tmp = &mcfg->malloc_heaps[idx]; if ((int)tmp->socket_id == socket_id) { /* external memory always has large socket ID's */ ret = tmp->socket_id >= RTE_MAX_NUMA_NODES; break; } } rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock); return ret; } /* * Print stats on memory type. If type is NULL, info on all types is printed */ void rte_malloc_dump_stats(FILE *f, __rte_unused const char *type) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; unsigned int heap_id; struct rte_malloc_socket_stats sock_stats; rte_rwlock_read_lock(&mcfg->memory_hotplug_lock); /* Iterate through all initialised heaps */ for (heap_id = 0; heap_id < RTE_MAX_HEAPS; heap_id++) { struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id]; malloc_heap_get_stats(heap, &sock_stats); fprintf(f, "Heap id:%u\n", heap_id); fprintf(f, "\tHeap name:%s\n", heap->name); fprintf(f, "\tHeap_size:%zu,\n", sock_stats.heap_totalsz_bytes); fprintf(f, "\tFree_size:%zu,\n", sock_stats.heap_freesz_bytes); fprintf(f, "\tAlloc_size:%zu,\n", sock_stats.heap_allocsz_bytes); fprintf(f, "\tGreatest_free_size:%zu,\n", sock_stats.greatest_free_size); fprintf(f, "\tAlloc_count:%u,\n",sock_stats.alloc_count); fprintf(f, "\tFree_count:%u,\n", sock_stats.free_count); } rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock); return; } /* * TODO: Set limit to memory that can be allocated to memory type */ int rte_malloc_set_limit(__rte_unused const char *type, __rte_unused size_t max) { return 0; } /* * Return the IO address of a virtual address obtained through rte_malloc */ rte_iova_t rte_malloc_virt2iova(const void *addr) { const struct rte_memseg *ms; struct malloc_elem *elem = malloc_elem_from_data(addr); if (elem == NULL) return RTE_BAD_IOVA; if (!elem->msl->external && rte_eal_iova_mode() == RTE_IOVA_VA) return (uintptr_t) addr; ms = rte_mem_virt2memseg(addr, elem->msl); if (ms == NULL) return RTE_BAD_IOVA; if (ms->iova == RTE_BAD_IOVA) return RTE_BAD_IOVA; return ms->iova + RTE_PTR_DIFF(addr, ms->addr); } static struct malloc_heap * find_named_heap(const char *name) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; unsigned int i; for (i = 0; i < RTE_MAX_HEAPS; i++) { struct malloc_heap *heap = &mcfg->malloc_heaps[i]; if (!strncmp(name, heap->name, RTE_HEAP_NAME_MAX_LEN)) return heap; } return NULL; } int rte_malloc_heap_memory_add(const char *heap_name, void *va_addr, size_t len, rte_iova_t iova_addrs[], unsigned int n_pages, size_t page_sz) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; struct malloc_heap *heap = NULL; unsigned int n; int ret; if (heap_name == NULL || va_addr == NULL || page_sz == 0 || !rte_is_power_of_2(page_sz) || strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) == 0 || strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) == RTE_HEAP_NAME_MAX_LEN) { rte_errno = EINVAL; return -1; } rte_rwlock_write_lock(&mcfg->memory_hotplug_lock); /* find our heap */ heap = find_named_heap(heap_name); if (heap == NULL) { rte_errno = ENOENT; ret = -1; goto unlock; } if (heap->socket_id < RTE_MAX_NUMA_NODES) { /* cannot add memory to internal heaps */ rte_errno = EPERM; ret = -1; goto unlock; } n = len / page_sz; if (n != n_pages && iova_addrs != NULL) { rte_errno = EINVAL; ret = -1; goto unlock; } rte_spinlock_lock(&heap->lock); ret = malloc_heap_add_external_memory(heap, va_addr, iova_addrs, n, page_sz); rte_spinlock_unlock(&heap->lock); unlock: rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock); return ret; } int rte_malloc_heap_memory_remove(const char *heap_name, void *va_addr, size_t len) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; struct malloc_heap *heap = NULL; int ret; if (heap_name == NULL || va_addr == NULL || len == 0 || strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) == 0 || strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) == RTE_HEAP_NAME_MAX_LEN) { rte_errno = EINVAL; return -1; } rte_rwlock_write_lock(&mcfg->memory_hotplug_lock); /* find our heap */ heap = find_named_heap(heap_name); if (heap == NULL) { rte_errno = ENOENT; ret = -1; goto unlock; } if (heap->socket_id < RTE_MAX_NUMA_NODES) { /* cannot remove memory from internal heaps */ rte_errno = EPERM; ret = -1; goto unlock; } rte_spinlock_lock(&heap->lock); ret = malloc_heap_remove_external_memory(heap, va_addr, len); rte_spinlock_unlock(&heap->lock); unlock: rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock); return ret; } struct sync_mem_walk_arg { void *va_addr; size_t len; int result; bool attach; }; static int sync_mem_walk(const struct rte_memseg_list *msl, void *arg) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; struct sync_mem_walk_arg *wa = arg; size_t len = msl->page_sz * msl->memseg_arr.len; if (msl->base_va == wa->va_addr && len == wa->len) { struct rte_memseg_list *found_msl; int msl_idx, ret; /* msl is const */ msl_idx = msl - mcfg->memsegs; found_msl = &mcfg->memsegs[msl_idx]; if (wa->attach) { ret = rte_fbarray_attach(&found_msl->memseg_arr); } else { /* notify all subscribers that a memory area is about to * be removed */ eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, msl->base_va, msl->len); ret = rte_fbarray_detach(&found_msl->memseg_arr); } if (ret < 0) { wa->result = -rte_errno; } else { /* notify all subscribers that a new memory area was * added */ if (wa->attach) eal_memalloc_mem_event_notify( RTE_MEM_EVENT_ALLOC, msl->base_va, msl->len); wa->result = 0; } return 1; } return 0; } static int sync_memory(const char *heap_name, void *va_addr, size_t len, bool attach) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; struct malloc_heap *heap = NULL; struct sync_mem_walk_arg wa; int ret; if (heap_name == NULL || va_addr == NULL || len == 0 || strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) == 0 || strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) == RTE_HEAP_NAME_MAX_LEN) { rte_errno = EINVAL; return -1; } rte_rwlock_read_lock(&mcfg->memory_hotplug_lock); /* find our heap */ heap = find_named_heap(heap_name); if (heap == NULL) { rte_errno = ENOENT; ret = -1; goto unlock; } /* we shouldn't be able to sync to internal heaps */ if (heap->socket_id < RTE_MAX_NUMA_NODES) { rte_errno = EPERM; ret = -1; goto unlock; } /* find corresponding memseg list to sync to */ wa.va_addr = va_addr; wa.len = len; wa.result = -ENOENT; /* fail unless explicitly told to succeed */ wa.attach = attach; /* we're already holding a read lock */ rte_memseg_list_walk_thread_unsafe(sync_mem_walk, &wa); if (wa.result < 0) { rte_errno = -wa.result; ret = -1; } else { /* notify all subscribers that a new memory area was added */ if (attach) eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC, va_addr, len); ret = 0; } unlock: rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock); return ret; } int rte_malloc_heap_memory_attach(const char *heap_name, void *va_addr, size_t len) { return sync_memory(heap_name, va_addr, len, true); } int rte_malloc_heap_memory_detach(const char *heap_name, void *va_addr, size_t len) { return sync_memory(heap_name, va_addr, len, false); } int rte_malloc_heap_create(const char *heap_name) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; struct malloc_heap *heap = NULL; int i, ret; if (heap_name == NULL || strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) == 0 || strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) == RTE_HEAP_NAME_MAX_LEN) { rte_errno = EINVAL; return -1; } /* check if there is space in the heap list, or if heap with this name * already exists. */ rte_rwlock_write_lock(&mcfg->memory_hotplug_lock); for (i = 0; i < RTE_MAX_HEAPS; i++) { struct malloc_heap *tmp = &mcfg->malloc_heaps[i]; /* existing heap */ if (strncmp(heap_name, tmp->name, RTE_HEAP_NAME_MAX_LEN) == 0) { RTE_LOG(ERR, EAL, "Heap %s already exists\n", heap_name); rte_errno = EEXIST; ret = -1; goto unlock; } /* empty heap */ if (strnlen(tmp->name, RTE_HEAP_NAME_MAX_LEN) == 0) { heap = tmp; break; } } if (heap == NULL) { RTE_LOG(ERR, EAL, "Cannot create new heap: no space\n"); rte_errno = ENOSPC; ret = -1; goto unlock; } /* we're sure that we can create a new heap, so do it */ ret = malloc_heap_create(heap, heap_name); unlock: rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock); return ret; } int rte_malloc_heap_destroy(const char *heap_name) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; struct malloc_heap *heap = NULL; int ret; if (heap_name == NULL || strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) == 0 || strnlen(heap_name, RTE_HEAP_NAME_MAX_LEN) == RTE_HEAP_NAME_MAX_LEN) { rte_errno = EINVAL; return -1; } rte_rwlock_write_lock(&mcfg->memory_hotplug_lock); /* start from non-socket heaps */ heap = find_named_heap(heap_name); if (heap == NULL) { RTE_LOG(ERR, EAL, "Heap %s not found\n", heap_name); rte_errno = ENOENT; ret = -1; goto unlock; } /* we shouldn't be able to destroy internal heaps */ if (heap->socket_id < RTE_MAX_NUMA_NODES) { rte_errno = EPERM; ret = -1; goto unlock; } /* sanity checks done, now we can destroy the heap */ rte_spinlock_lock(&heap->lock); ret = malloc_heap_destroy(heap); /* if we failed, lock is still active */ if (ret < 0) rte_spinlock_unlock(&heap->lock); unlock: rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock); return ret; }