/*- * BSD LICENSE * * Copyright(c) 2010-2016 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include /* for definition of RTE_CACHE_LINE_SIZE */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rte_hash.h" #include "rte_cuckoo_hash.h" #if defined(RTE_ARCH_X86) #include "rte_cuckoo_hash_x86.h" #endif TAILQ_HEAD(rte_hash_list, rte_tailq_entry); static struct rte_tailq_elem rte_hash_tailq = { .name = "RTE_HASH", }; EAL_REGISTER_TAILQ(rte_hash_tailq) struct rte_hash * rte_hash_find_existing(const char *name) { struct rte_hash *h = NULL; struct rte_tailq_entry *te; struct rte_hash_list *hash_list; hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list); rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK); TAILQ_FOREACH(te, hash_list, next) { h = (struct rte_hash *) te->data; if (strncmp(name, h->name, RTE_HASH_NAMESIZE) == 0) break; } rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK); if (te == NULL) { rte_errno = ENOENT; return NULL; } return h; } void rte_hash_set_cmp_func(struct rte_hash *h, rte_hash_cmp_eq_t func) { h->cmp_jump_table_idx = KEY_CUSTOM; h->rte_hash_custom_cmp_eq = func; } static inline int rte_hash_cmp_eq(const void *key1, const void *key2, const struct rte_hash *h) { if (h->cmp_jump_table_idx == KEY_CUSTOM) return h->rte_hash_custom_cmp_eq(key1, key2, h->key_len); else return cmp_jump_table[h->cmp_jump_table_idx](key1, key2, h->key_len); } struct rte_hash * rte_hash_create(const struct rte_hash_parameters *params) { struct rte_hash *h = NULL; struct rte_tailq_entry *te = NULL; struct rte_hash_list *hash_list; struct rte_ring *r = NULL; char hash_name[RTE_HASH_NAMESIZE]; void *k = NULL; void *buckets = NULL; char ring_name[RTE_RING_NAMESIZE]; unsigned num_key_slots; unsigned hw_trans_mem_support = 0; unsigned i; hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list); if (params == NULL) { RTE_LOG(ERR, HASH, "rte_hash_create has no parameters\n"); return NULL; } /* Check for valid parameters */ if ((params->entries > RTE_HASH_ENTRIES_MAX) || (params->entries < RTE_HASH_BUCKET_ENTRIES) || !rte_is_power_of_2(RTE_HASH_BUCKET_ENTRIES) || (params->key_len == 0)) { rte_errno = EINVAL; RTE_LOG(ERR, HASH, "rte_hash_create has invalid parameters\n"); return NULL; } /* Check extra flags field to check extra options. */ if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT) hw_trans_mem_support = 1; /* Store all keys and leave the first entry as a dummy entry for lookup_bulk */ if (hw_trans_mem_support) /* * Increase number of slots by total number of indices * that can be stored in the lcore caches * except for the first cache */ num_key_slots = params->entries + (RTE_MAX_LCORE - 1) * (LCORE_CACHE_SIZE - 1) + 1; else num_key_slots = params->entries + 1; snprintf(ring_name, sizeof(ring_name), "HT_%s", params->name); /* Create ring (Dummy slot index is not enqueued) */ r = rte_ring_create(ring_name, rte_align32pow2(num_key_slots), params->socket_id, 0); if (r == NULL) { RTE_LOG(ERR, HASH, "memory allocation failed\n"); goto err; } snprintf(hash_name, sizeof(hash_name), "HT_%s", params->name); rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* guarantee there's no existing: this is normally already checked * by ring creation above */ TAILQ_FOREACH(te, hash_list, next) { h = (struct rte_hash *) te->data; if (strncmp(params->name, h->name, RTE_HASH_NAMESIZE) == 0) break; } h = NULL; if (te != NULL) { rte_errno = EEXIST; te = NULL; goto err_unlock; } te = rte_zmalloc("HASH_TAILQ_ENTRY", sizeof(*te), 0); if (te == NULL) { RTE_LOG(ERR, HASH, "tailq entry allocation failed\n"); goto err_unlock; } h = (struct rte_hash *)rte_zmalloc_socket(hash_name, sizeof(struct rte_hash), RTE_CACHE_LINE_SIZE, params->socket_id); if (h == NULL) { RTE_LOG(ERR, HASH, "memory allocation failed\n"); goto err_unlock; } const uint32_t num_buckets = rte_align32pow2(params->entries) / RTE_HASH_BUCKET_ENTRIES; buckets = rte_zmalloc_socket(NULL, num_buckets * sizeof(struct rte_hash_bucket), RTE_CACHE_LINE_SIZE, params->socket_id); if (buckets == NULL) { RTE_LOG(ERR, HASH, "memory allocation failed\n"); goto err_unlock; } const uint32_t key_entry_size = sizeof(struct rte_hash_key) + params->key_len; const uint64_t key_tbl_size = (uint64_t) key_entry_size * num_key_slots; k = rte_zmalloc_socket(NULL, key_tbl_size, RTE_CACHE_LINE_SIZE, params->socket_id); if (k == NULL) { RTE_LOG(ERR, HASH, "memory allocation failed\n"); goto err_unlock; } /* * If x86 architecture is used, select appropriate compare function, * which may use x86 intrinsics, otherwise use memcmp */ #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64) /* Select function to compare keys */ switch (params->key_len) { case 16: h->cmp_jump_table_idx = KEY_16_BYTES; break; case 32: h->cmp_jump_table_idx = KEY_32_BYTES; break; case 48: h->cmp_jump_table_idx = KEY_48_BYTES; break; case 64: h->cmp_jump_table_idx = KEY_64_BYTES; break; case 80: h->cmp_jump_table_idx = KEY_80_BYTES; break; case 96: h->cmp_jump_table_idx = KEY_96_BYTES; break; case 112: h->cmp_jump_table_idx = KEY_112_BYTES; break; case 128: h->cmp_jump_table_idx = KEY_128_BYTES; break; default: /* If key is not multiple of 16, use generic memcmp */ h->cmp_jump_table_idx = KEY_OTHER_BYTES; } #else h->cmp_jump_table_idx = KEY_OTHER_BYTES; #endif if (hw_trans_mem_support) { h->local_free_slots = rte_zmalloc_socket(NULL, sizeof(struct lcore_cache) * RTE_MAX_LCORE, RTE_CACHE_LINE_SIZE, params->socket_id); } /* Setup hash context */ snprintf(h->name, sizeof(h->name), "%s", params->name); h->entries = params->entries; h->key_len = params->key_len; h->key_entry_size = key_entry_size; h->hash_func_init_val = params->hash_func_init_val; h->num_buckets = num_buckets; h->bucket_bitmask = h->num_buckets - 1; h->buckets = buckets; h->hash_func = (params->hash_func == NULL) ? DEFAULT_HASH_FUNC : params->hash_func; h->key_store = k; h->free_slots = r; h->hw_trans_mem_support = hw_trans_mem_support; #if defined(RTE_ARCH_X86) if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2)) h->sig_cmp_fn = RTE_HASH_COMPARE_AVX2; else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE2)) h->sig_cmp_fn = RTE_HASH_COMPARE_SSE; else #endif h->sig_cmp_fn = RTE_HASH_COMPARE_SCALAR; /* Turn on multi-writer only with explicit flat from user and TM * support. */ if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD) { if (h->hw_trans_mem_support) { h->add_key = ADD_KEY_MULTIWRITER_TM; } else { h->add_key = ADD_KEY_MULTIWRITER; h->multiwriter_lock = rte_malloc(NULL, sizeof(rte_spinlock_t), RTE_CACHE_LINE_SIZE); if (h->multiwriter_lock == NULL) goto err_unlock; rte_spinlock_init(h->multiwriter_lock); } } else h->add_key = ADD_KEY_SINGLEWRITER; /* Populate free slots ring. Entry zero is reserved for key misses. */ for (i = 1; i < num_key_slots; i++) rte_ring_sp_enqueue(r, (void *)((uintptr_t) i)); te->data = (void *) h; TAILQ_INSERT_TAIL(hash_list, te, next); rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); return h; err_unlock: rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); err: rte_ring_free(r); rte_free(te); rte_free(h); rte_free(buckets); rte_free(k); return NULL; } void rte_hash_free(struct rte_hash *h) { struct rte_tailq_entry *te; struct rte_hash_list *hash_list; if (h == NULL) return; hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list); rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* find out tailq entry */ TAILQ_FOREACH(te, hash_list, next) { if (te->data == (void *) h) break; } if (te == NULL) { rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); return; } TAILQ_REMOVE(hash_list, te, next); rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); if (h->hw_trans_mem_support) rte_free(h->local_free_slots); if (h->add_key == ADD_KEY_MULTIWRITER) rte_free(h->multiwriter_lock); rte_ring_free(h->free_slots); rte_free(h->key_store); rte_free(h->buckets); rte_free(h); rte_free(te); } hash_sig_t rte_hash_hash(const struct rte_hash *h, const void *key) { /* calc hash result by key */ return h->hash_func(key, h->key_len, h->hash_func_init_val); } /* Calc the secondary hash value from the primary hash value of a given key */ static inline hash_sig_t rte_hash_secondary_hash(const hash_sig_t primary_hash) { static const unsigned all_bits_shift = 12; static const unsigned alt_bits_xor = 0x5bd1e995; uint32_t tag = primary_hash >> all_bits_shift; return primary_hash ^ ((tag + 1) * alt_bits_xor); } void rte_hash_reset(struct rte_hash *h) { void *ptr; uint32_t tot_ring_cnt, i; if (h == NULL) return; memset(h->buckets, 0, h->num_buckets * sizeof(struct rte_hash_bucket)); memset(h->key_store, 0, h->key_entry_size * (h->entries + 1)); /* clear the free ring */ while (rte_ring_dequeue(h->free_slots, &ptr) == 0) rte_pause(); /* Repopulate the free slots ring. Entry zero is reserved for key misses */ if (h->hw_trans_mem_support) tot_ring_cnt = h->entries + (RTE_MAX_LCORE - 1) * (LCORE_CACHE_SIZE - 1); else tot_ring_cnt = h->entries; for (i = 1; i < tot_ring_cnt + 1; i++) rte_ring_sp_enqueue(h->free_slots, (void *)((uintptr_t) i)); if (h->hw_trans_mem_support) { /* Reset local caches per lcore */ for (i = 0; i < RTE_MAX_LCORE; i++) h->local_free_slots[i].len = 0; } } /* Search for an entry that can be pushed to its alternative location */ static inline int make_space_bucket(const struct rte_hash *h, struct rte_hash_bucket *bkt, unsigned int *nr_pushes) { unsigned i, j; int ret; uint32_t next_bucket_idx; struct rte_hash_bucket *next_bkt[RTE_HASH_BUCKET_ENTRIES]; /* * Push existing item (search for bucket with space in * alternative locations) to its alternative location */ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { /* Search for space in alternative locations */ next_bucket_idx = bkt->sig_alt[i] & h->bucket_bitmask; next_bkt[i] = &h->buckets[next_bucket_idx]; for (j = 0; j < RTE_HASH_BUCKET_ENTRIES; j++) { if (next_bkt[i]->key_idx[j] == EMPTY_SLOT) break; } if (j != RTE_HASH_BUCKET_ENTRIES) break; } /* Alternative location has spare room (end of recursive function) */ if (i != RTE_HASH_BUCKET_ENTRIES) { next_bkt[i]->sig_alt[j] = bkt->sig_current[i]; next_bkt[i]->sig_current[j] = bkt->sig_alt[i]; next_bkt[i]->key_idx[j] = bkt->key_idx[i]; return i; } /* Pick entry that has not been pushed yet */ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) if (bkt->flag[i] == 0) break; /* All entries have been pushed, so entry cannot be added */ if (i == RTE_HASH_BUCKET_ENTRIES || ++(*nr_pushes) > RTE_HASH_MAX_PUSHES) return -ENOSPC; /* Set flag to indicate that this entry is going to be pushed */ bkt->flag[i] = 1; /* Need room in alternative bucket to insert the pushed entry */ ret = make_space_bucket(h, next_bkt[i], nr_pushes); /* * After recursive function. * Clear flags and insert the pushed entry * in its alternative location if successful, * or return error */ bkt->flag[i] = 0; if (ret >= 0) { next_bkt[i]->sig_alt[ret] = bkt->sig_current[i]; next_bkt[i]->sig_current[ret] = bkt->sig_alt[i]; next_bkt[i]->key_idx[ret] = bkt->key_idx[i]; return i; } else return ret; } /* * Function called to enqueue back an index in the cache/ring, * as slot has not being used and it can be used in the * next addition attempt. */ static inline void enqueue_slot_back(const struct rte_hash *h, struct lcore_cache *cached_free_slots, void *slot_id) { if (h->hw_trans_mem_support) { cached_free_slots->objs[cached_free_slots->len] = slot_id; cached_free_slots->len++; } else rte_ring_sp_enqueue(h->free_slots, slot_id); } static inline int32_t __rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key, hash_sig_t sig, void *data) { hash_sig_t alt_hash; uint32_t prim_bucket_idx, sec_bucket_idx; unsigned i; struct rte_hash_bucket *prim_bkt, *sec_bkt; struct rte_hash_key *new_k, *k, *keys = h->key_store; void *slot_id = NULL; uint32_t new_idx; int ret; unsigned n_slots; unsigned lcore_id; struct lcore_cache *cached_free_slots = NULL; unsigned int nr_pushes = 0; if (h->add_key == ADD_KEY_MULTIWRITER) rte_spinlock_lock(h->multiwriter_lock); prim_bucket_idx = sig & h->bucket_bitmask; prim_bkt = &h->buckets[prim_bucket_idx]; rte_prefetch0(prim_bkt); alt_hash = rte_hash_secondary_hash(sig); sec_bucket_idx = alt_hash & h->bucket_bitmask; sec_bkt = &h->buckets[sec_bucket_idx]; rte_prefetch0(sec_bkt); /* Get a new slot for storing the new key */ if (h->hw_trans_mem_support) { lcore_id = rte_lcore_id(); cached_free_slots = &h->local_free_slots[lcore_id]; /* Try to get a free slot from the local cache */ if (cached_free_slots->len == 0) { /* Need to get another burst of free slots from global ring */ n_slots = rte_ring_mc_dequeue_burst(h->free_slots, cached_free_slots->objs, LCORE_CACHE_SIZE, NULL); if (n_slots == 0) { ret = -ENOSPC; goto failure; } cached_free_slots->len += n_slots; } /* Get a free slot from the local cache */ cached_free_slots->len--; slot_id = cached_free_slots->objs[cached_free_slots->len]; } else { if (rte_ring_sc_dequeue(h->free_slots, &slot_id) != 0) { ret = -ENOSPC; goto failure; } } new_k = RTE_PTR_ADD(keys, (uintptr_t)slot_id * h->key_entry_size); rte_prefetch0(new_k); new_idx = (uint32_t)((uintptr_t) slot_id); /* Check if key is already inserted in primary location */ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { if (prim_bkt->sig_current[i] == sig && prim_bkt->sig_alt[i] == alt_hash) { k = (struct rte_hash_key *) ((char *)keys + prim_bkt->key_idx[i] * h->key_entry_size); if (rte_hash_cmp_eq(key, k->key, h) == 0) { /* Enqueue index of free slot back in the ring. */ enqueue_slot_back(h, cached_free_slots, slot_id); /* Update data */ k->pdata = data; /* * Return index where key is stored, * subtracting the first dummy index */ ret = prim_bkt->key_idx[i] - 1; goto failure; } } } /* Check if key is already inserted in secondary location */ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { if (sec_bkt->sig_alt[i] == sig && sec_bkt->sig_current[i] == alt_hash) { k = (struct rte_hash_key *) ((char *)keys + sec_bkt->key_idx[i] * h->key_entry_size); if (rte_hash_cmp_eq(key, k->key, h) == 0) { /* Enqueue index of free slot back in the ring. */ enqueue_slot_back(h, cached_free_slots, slot_id); /* Update data */ k->pdata = data; /* * Return index where key is stored, * subtracting the first dummy index */ ret = sec_bkt->key_idx[i] - 1; goto failure; } } } /* Copy key */ rte_memcpy(new_k->key, key, h->key_len); new_k->pdata = data; #if defined(RTE_ARCH_X86) /* currently only x86 support HTM */ if (h->add_key == ADD_KEY_MULTIWRITER_TM) { ret = rte_hash_cuckoo_insert_mw_tm(prim_bkt, sig, alt_hash, new_idx); if (ret >= 0) return new_idx - 1; /* Primary bucket full, need to make space for new entry */ ret = rte_hash_cuckoo_make_space_mw_tm(h, prim_bkt, sig, alt_hash, new_idx); if (ret >= 0) return new_idx - 1; /* Also search secondary bucket to get better occupancy */ ret = rte_hash_cuckoo_make_space_mw_tm(h, sec_bkt, sig, alt_hash, new_idx); if (ret >= 0) return new_idx - 1; } else { #endif for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { /* Check if slot is available */ if (likely(prim_bkt->key_idx[i] == EMPTY_SLOT)) { prim_bkt->sig_current[i] = sig; prim_bkt->sig_alt[i] = alt_hash; prim_bkt->key_idx[i] = new_idx; break; } } if (i != RTE_HASH_BUCKET_ENTRIES) { if (h->add_key == ADD_KEY_MULTIWRITER) rte_spinlock_unlock(h->multiwriter_lock); return new_idx - 1; } /* Primary bucket full, need to make space for new entry * After recursive function. * Insert the new entry in the position of the pushed entry * if successful or return error and * store the new slot back in the ring */ ret = make_space_bucket(h, prim_bkt, &nr_pushes); if (ret >= 0) { prim_bkt->sig_current[ret] = sig; prim_bkt->sig_alt[ret] = alt_hash; prim_bkt->key_idx[ret] = new_idx; if (h->add_key == ADD_KEY_MULTIWRITER) rte_spinlock_unlock(h->multiwriter_lock); return new_idx - 1; } #if defined(RTE_ARCH_X86) } #endif /* Error in addition, store new slot back in the ring and return error */ enqueue_slot_back(h, cached_free_slots, (void *)((uintptr_t) new_idx)); failure: if (h->add_key == ADD_KEY_MULTIWRITER) rte_spinlock_unlock(h->multiwriter_lock); return ret; } int32_t rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key, hash_sig_t sig) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_add_key_with_hash(h, key, sig, 0); } int32_t rte_hash_add_key(const struct rte_hash *h, const void *key) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), 0); } int rte_hash_add_key_with_hash_data(const struct rte_hash *h, const void *key, hash_sig_t sig, void *data) { int ret; RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); ret = __rte_hash_add_key_with_hash(h, key, sig, data); if (ret >= 0) return 0; else return ret; } int rte_hash_add_key_data(const struct rte_hash *h, const void *key, void *data) { int ret; RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); ret = __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), data); if (ret >= 0) return 0; else return ret; } static inline int32_t __rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key, hash_sig_t sig, void **data) { uint32_t bucket_idx; hash_sig_t alt_hash; unsigned i; struct rte_hash_bucket *bkt; struct rte_hash_key *k, *keys = h->key_store; bucket_idx = sig & h->bucket_bitmask; bkt = &h->buckets[bucket_idx]; /* Check if key is in primary location */ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { if (bkt->sig_current[i] == sig && bkt->key_idx[i] != EMPTY_SLOT) { k = (struct rte_hash_key *) ((char *)keys + bkt->key_idx[i] * h->key_entry_size); if (rte_hash_cmp_eq(key, k->key, h) == 0) { if (data != NULL) *data = k->pdata; /* * Return index where key is stored, * subtracting the first dummy index */ return bkt->key_idx[i] - 1; } } } /* Calculate secondary hash */ alt_hash = rte_hash_secondary_hash(sig); bucket_idx = alt_hash & h->bucket_bitmask; bkt = &h->buckets[bucket_idx]; /* Check if key is in secondary location */ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { if (bkt->sig_current[i] == alt_hash && bkt->sig_alt[i] == sig) { k = (struct rte_hash_key *) ((char *)keys + bkt->key_idx[i] * h->key_entry_size); if (rte_hash_cmp_eq(key, k->key, h) == 0) { if (data != NULL) *data = k->pdata; /* * Return index where key is stored, * subtracting the first dummy index */ return bkt->key_idx[i] - 1; } } } return -ENOENT; } int32_t rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key, hash_sig_t sig) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_lookup_with_hash(h, key, sig, NULL); } int32_t rte_hash_lookup(const struct rte_hash *h, const void *key) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), NULL); } int rte_hash_lookup_with_hash_data(const struct rte_hash *h, const void *key, hash_sig_t sig, void **data) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_lookup_with_hash(h, key, sig, data); } int rte_hash_lookup_data(const struct rte_hash *h, const void *key, void **data) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), data); } static inline void remove_entry(const struct rte_hash *h, struct rte_hash_bucket *bkt, unsigned i) { unsigned lcore_id, n_slots; struct lcore_cache *cached_free_slots; bkt->sig_current[i] = NULL_SIGNATURE; bkt->sig_alt[i] = NULL_SIGNATURE; if (h->hw_trans_mem_support) { lcore_id = rte_lcore_id(); cached_free_slots = &h->local_free_slots[lcore_id]; /* Cache full, need to free it. */ if (cached_free_slots->len == LCORE_CACHE_SIZE) { /* Need to enqueue the free slots in global ring. */ n_slots = rte_ring_mp_enqueue_burst(h->free_slots, cached_free_slots->objs, LCORE_CACHE_SIZE, NULL); cached_free_slots->len -= n_slots; } /* Put index of new free slot in cache. */ cached_free_slots->objs[cached_free_slots->len] = (void *)((uintptr_t)bkt->key_idx[i]); cached_free_slots->len++; } else { rte_ring_sp_enqueue(h->free_slots, (void *)((uintptr_t)bkt->key_idx[i])); } } static inline int32_t __rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key, hash_sig_t sig) { uint32_t bucket_idx; hash_sig_t alt_hash; unsigned i; struct rte_hash_bucket *bkt; struct rte_hash_key *k, *keys = h->key_store; int32_t ret; bucket_idx = sig & h->bucket_bitmask; bkt = &h->buckets[bucket_idx]; /* Check if key is in primary location */ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { if (bkt->sig_current[i] == sig && bkt->key_idx[i] != EMPTY_SLOT) { k = (struct rte_hash_key *) ((char *)keys + bkt->key_idx[i] * h->key_entry_size); if (rte_hash_cmp_eq(key, k->key, h) == 0) { remove_entry(h, bkt, i); /* * Return index where key is stored, * subtracting the first dummy index */ ret = bkt->key_idx[i] - 1; bkt->key_idx[i] = EMPTY_SLOT; return ret; } } } /* Calculate secondary hash */ alt_hash = rte_hash_secondary_hash(sig); bucket_idx = alt_hash & h->bucket_bitmask; bkt = &h->buckets[bucket_idx]; /* Check if key is in secondary location */ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { if (bkt->sig_current[i] == alt_hash && bkt->key_idx[i] != EMPTY_SLOT) { k = (struct rte_hash_key *) ((char *)keys + bkt->key_idx[i] * h->key_entry_size); if (rte_hash_cmp_eq(key, k->key, h) == 0) { remove_entry(h, bkt, i); /* * Return index where key is stored, * subtracting the first dummy index */ ret = bkt->key_idx[i] - 1; bkt->key_idx[i] = EMPTY_SLOT; return ret; } } } return -ENOENT; } int32_t rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key, hash_sig_t sig) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_del_key_with_hash(h, key, sig); } int32_t rte_hash_del_key(const struct rte_hash *h, const void *key) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_del_key_with_hash(h, key, rte_hash_hash(h, key)); } int rte_hash_get_key_with_position(const struct rte_hash *h, const int32_t position, void **key) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); struct rte_hash_key *k, *keys = h->key_store; k = (struct rte_hash_key *) ((char *) keys + (position + 1) * h->key_entry_size); *key = k->key; if (position != __rte_hash_lookup_with_hash(h, *key, rte_hash_hash(h, *key), NULL)) { return -ENOENT; } return 0; } static inline void compare_signatures(uint32_t *prim_hash_matches, uint32_t *sec_hash_matches, const struct rte_hash_bucket *prim_bkt, const struct rte_hash_bucket *sec_bkt, hash_sig_t prim_hash, hash_sig_t sec_hash, enum rte_hash_sig_compare_function sig_cmp_fn) { unsigned int i; switch (sig_cmp_fn) { #ifdef RTE_MACHINE_CPUFLAG_AVX2 case RTE_HASH_COMPARE_AVX2: *prim_hash_matches = _mm256_movemask_ps((__m256)_mm256_cmpeq_epi32( _mm256_load_si256( (__m256i const *)prim_bkt->sig_current), _mm256_set1_epi32(prim_hash))); *sec_hash_matches = _mm256_movemask_ps((__m256)_mm256_cmpeq_epi32( _mm256_load_si256( (__m256i const *)sec_bkt->sig_current), _mm256_set1_epi32(sec_hash))); break; #endif #ifdef RTE_MACHINE_CPUFLAG_SSE2 case RTE_HASH_COMPARE_SSE: /* Compare the first 4 signatures in the bucket */ *prim_hash_matches = _mm_movemask_ps((__m128)_mm_cmpeq_epi16( _mm_load_si128( (__m128i const *)prim_bkt->sig_current), _mm_set1_epi32(prim_hash))); *prim_hash_matches |= (_mm_movemask_ps((__m128)_mm_cmpeq_epi16( _mm_load_si128( (__m128i const *)&prim_bkt->sig_current[4]), _mm_set1_epi32(prim_hash)))) << 4; /* Compare the first 4 signatures in the bucket */ *sec_hash_matches = _mm_movemask_ps((__m128)_mm_cmpeq_epi16( _mm_load_si128( (__m128i const *)sec_bkt->sig_current), _mm_set1_epi32(sec_hash))); *sec_hash_matches |= (_mm_movemask_ps((__m128)_mm_cmpeq_epi16( _mm_load_si128( (__m128i const *)&sec_bkt->sig_current[4]), _mm_set1_epi32(sec_hash)))) << 4; break; #endif default: for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { *prim_hash_matches |= ((prim_hash == prim_bkt->sig_current[i]) << i); *sec_hash_matches |= ((sec_hash == sec_bkt->sig_current[i]) << i); } } } #define PREFETCH_OFFSET 4 static inline void __rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys, int32_t num_keys, int32_t *positions, uint64_t *hit_mask, void *data[]) { uint64_t hits = 0; int32_t i; uint32_t prim_hash[RTE_HASH_LOOKUP_BULK_MAX]; uint32_t sec_hash[RTE_HASH_LOOKUP_BULK_MAX]; const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX]; const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX]; uint32_t prim_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0}; uint32_t sec_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0}; /* Prefetch first keys */ for (i = 0; i < PREFETCH_OFFSET && i < num_keys; i++) rte_prefetch0(keys[i]); /* * Prefetch rest of the keys, calculate primary and * secondary bucket and prefetch them */ for (i = 0; i < (num_keys - PREFETCH_OFFSET); i++) { rte_prefetch0(keys[i + PREFETCH_OFFSET]); prim_hash[i] = rte_hash_hash(h, keys[i]); sec_hash[i] = rte_hash_secondary_hash(prim_hash[i]); primary_bkt[i] = &h->buckets[prim_hash[i] & h->bucket_bitmask]; secondary_bkt[i] = &h->buckets[sec_hash[i] & h->bucket_bitmask]; rte_prefetch0(primary_bkt[i]); rte_prefetch0(secondary_bkt[i]); } /* Calculate and prefetch rest of the buckets */ for (; i < num_keys; i++) { prim_hash[i] = rte_hash_hash(h, keys[i]); sec_hash[i] = rte_hash_secondary_hash(prim_hash[i]); primary_bkt[i] = &h->buckets[prim_hash[i] & h->bucket_bitmask]; secondary_bkt[i] = &h->buckets[sec_hash[i] & h->bucket_bitmask]; rte_prefetch0(primary_bkt[i]); rte_prefetch0(secondary_bkt[i]); } /* Compare signatures and prefetch key slot of first hit */ for (i = 0; i < num_keys; i++) { compare_signatures(&prim_hitmask[i], &sec_hitmask[i], primary_bkt[i], secondary_bkt[i], prim_hash[i], sec_hash[i], h->sig_cmp_fn); if (prim_hitmask[i]) { uint32_t first_hit = __builtin_ctzl(prim_hitmask[i]); uint32_t key_idx = primary_bkt[i]->key_idx[first_hit]; const struct rte_hash_key *key_slot = (const struct rte_hash_key *)( (const char *)h->key_store + key_idx * h->key_entry_size); rte_prefetch0(key_slot); continue; } if (sec_hitmask[i]) { uint32_t first_hit = __builtin_ctzl(sec_hitmask[i]); uint32_t key_idx = secondary_bkt[i]->key_idx[first_hit]; const struct rte_hash_key *key_slot = (const struct rte_hash_key *)( (const char *)h->key_store + key_idx * h->key_entry_size); rte_prefetch0(key_slot); } } /* Compare keys, first hits in primary first */ for (i = 0; i < num_keys; i++) { positions[i] = -ENOENT; while (prim_hitmask[i]) { uint32_t hit_index = __builtin_ctzl(prim_hitmask[i]); uint32_t key_idx = primary_bkt[i]->key_idx[hit_index]; const struct rte_hash_key *key_slot = (const struct rte_hash_key *)( (const char *)h->key_store + key_idx * h->key_entry_size); /* * If key index is 0, do not compare key, * as it is checking the dummy slot */ if (!!key_idx & !rte_hash_cmp_eq(key_slot->key, keys[i], h)) { if (data != NULL) data[i] = key_slot->pdata; hits |= 1ULL << i; positions[i] = key_idx - 1; goto next_key; } prim_hitmask[i] &= ~(1 << (hit_index)); } while (sec_hitmask[i]) { uint32_t hit_index = __builtin_ctzl(sec_hitmask[i]); uint32_t key_idx = secondary_bkt[i]->key_idx[hit_index]; const struct rte_hash_key *key_slot = (const struct rte_hash_key *)( (const char *)h->key_store + key_idx * h->key_entry_size); /* * If key index is 0, do not compare key, * as it is checking the dummy slot */ if (!!key_idx & !rte_hash_cmp_eq(key_slot->key, keys[i], h)) { if (data != NULL) data[i] = key_slot->pdata; hits |= 1ULL << i; positions[i] = key_idx - 1; goto next_key; } sec_hitmask[i] &= ~(1 << (hit_index)); } next_key: continue; } if (hit_mask != NULL) *hit_mask = hits; } int rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys, uint32_t num_keys, int32_t *positions) { RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) || (num_keys > RTE_HASH_LOOKUP_BULK_MAX) || (positions == NULL)), -EINVAL); __rte_hash_lookup_bulk(h, keys, num_keys, positions, NULL, NULL); return 0; } int rte_hash_lookup_bulk_data(const struct rte_hash *h, const void **keys, uint32_t num_keys, uint64_t *hit_mask, void *data[]) { RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) || (num_keys > RTE_HASH_LOOKUP_BULK_MAX) || (hit_mask == NULL)), -EINVAL); int32_t positions[num_keys]; __rte_hash_lookup_bulk(h, keys, num_keys, positions, hit_mask, data); /* Return number of hits */ return __builtin_popcountl(*hit_mask); } int32_t rte_hash_iterate(const struct rte_hash *h, const void **key, void **data, uint32_t *next) { uint32_t bucket_idx, idx, position; struct rte_hash_key *next_key; RETURN_IF_TRUE(((h == NULL) || (next == NULL)), -EINVAL); const uint32_t total_entries = h->num_buckets * RTE_HASH_BUCKET_ENTRIES; /* Out of bounds */ if (*next >= total_entries) return -ENOENT; /* Calculate bucket and index of current iterator */ bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES; idx = *next % RTE_HASH_BUCKET_ENTRIES; /* If current position is empty, go to the next one */ while (h->buckets[bucket_idx].key_idx[idx] == EMPTY_SLOT) { (*next)++; /* End of table */ if (*next == total_entries) return -ENOENT; bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES; idx = *next % RTE_HASH_BUCKET_ENTRIES; } /* Get position of entry in key table */ position = h->buckets[bucket_idx].key_idx[idx]; next_key = (struct rte_hash_key *) ((char *)h->key_store + position * h->key_entry_size); /* Return key and data */ *key = next_key->key; *data = next_key->pdata; /* Increment iterator */ (*next)++; return position - 1; }