/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2016 Intel Corporation * Copyright(c) 2018 Arm Limited */ #include #include #include #include #include #include #include #include /* for definition of RTE_CACHE_LINE_SIZE */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rte_hash.h" #include "rte_cuckoo_hash.h" #define FOR_EACH_BUCKET(CURRENT_BKT, START_BUCKET) \ for (CURRENT_BKT = START_BUCKET; \ CURRENT_BKT != NULL; \ CURRENT_BKT = CURRENT_BKT->next) TAILQ_HEAD(rte_hash_list, rte_tailq_entry); static struct rte_tailq_elem rte_hash_tailq = { .name = "RTE_HASH", }; EAL_REGISTER_TAILQ(rte_hash_tailq) struct rte_hash * rte_hash_find_existing(const char *name) { struct rte_hash *h = NULL; struct rte_tailq_entry *te; struct rte_hash_list *hash_list; hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list); rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK); TAILQ_FOREACH(te, hash_list, next) { h = (struct rte_hash *) te->data; if (strncmp(name, h->name, RTE_HASH_NAMESIZE) == 0) break; } rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK); if (te == NULL) { rte_errno = ENOENT; return NULL; } return h; } static inline struct rte_hash_bucket * rte_hash_get_last_bkt(struct rte_hash_bucket *lst_bkt) { while (lst_bkt->next != NULL) lst_bkt = lst_bkt->next; return lst_bkt; } void rte_hash_set_cmp_func(struct rte_hash *h, rte_hash_cmp_eq_t func) { h->cmp_jump_table_idx = KEY_CUSTOM; h->rte_hash_custom_cmp_eq = func; } static inline int rte_hash_cmp_eq(const void *key1, const void *key2, const struct rte_hash *h) { if (h->cmp_jump_table_idx == KEY_CUSTOM) return h->rte_hash_custom_cmp_eq(key1, key2, h->key_len); else return cmp_jump_table[h->cmp_jump_table_idx](key1, key2, h->key_len); } /* * We use higher 16 bits of hash as the signature value stored in table. * We use the lower bits for the primary bucket * location. Then we XOR primary bucket location and the signature * to get the secondary bucket location. This is same as * proposed in Bin Fan, et al's paper * "MemC3: Compact and Concurrent MemCache with Dumber Caching and * Smarter Hashing". The benefit to use * XOR is that one could derive the alternative bucket location * by only using the current bucket location and the signature. */ static inline uint16_t get_short_sig(const hash_sig_t hash) { return hash >> 16; } static inline uint32_t get_prim_bucket_index(const struct rte_hash *h, const hash_sig_t hash) { return hash & h->bucket_bitmask; } static inline uint32_t get_alt_bucket_index(const struct rte_hash *h, uint32_t cur_bkt_idx, uint16_t sig) { return (cur_bkt_idx ^ sig) & h->bucket_bitmask; } struct rte_hash * rte_hash_create(const struct rte_hash_parameters *params) { struct rte_hash *h = NULL; struct rte_tailq_entry *te = NULL; struct rte_hash_list *hash_list; struct rte_ring *r = NULL; struct rte_ring *r_ext = NULL; char hash_name[RTE_HASH_NAMESIZE]; void *k = NULL; void *buckets = NULL; void *buckets_ext = NULL; char ring_name[RTE_RING_NAMESIZE]; char ext_ring_name[RTE_RING_NAMESIZE]; unsigned num_key_slots; unsigned i; unsigned int hw_trans_mem_support = 0, use_local_cache = 0; unsigned int ext_table_support = 0; unsigned int readwrite_concur_support = 0; unsigned int writer_takes_lock = 0; unsigned int no_free_on_del = 0; uint32_t *tbl_chng_cnt = NULL; unsigned int readwrite_concur_lf_support = 0; rte_hash_function default_hash_func = (rte_hash_function)rte_jhash; hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list); if (params == NULL) { RTE_LOG(ERR, HASH, "rte_hash_create has no parameters\n"); return NULL; } /* Check for valid parameters */ if ((params->entries > RTE_HASH_ENTRIES_MAX) || (params->entries < RTE_HASH_BUCKET_ENTRIES) || (params->key_len == 0)) { rte_errno = EINVAL; RTE_LOG(ERR, HASH, "rte_hash_create has invalid parameters\n"); return NULL; } /* Validate correct usage of extra options */ if ((params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY) && (params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY_LF)) { rte_errno = EINVAL; RTE_LOG(ERR, HASH, "rte_hash_create: choose rw concurrency or " "rw concurrency lock free\n"); return NULL; } if ((params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY_LF) && (params->extra_flag & RTE_HASH_EXTRA_FLAGS_EXT_TABLE)) { rte_errno = EINVAL; RTE_LOG(ERR, HASH, "rte_hash_create: extendable bucket " "feature not supported with rw concurrency " "lock free\n"); return NULL; } /* Check extra flags field to check extra options. */ if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT) hw_trans_mem_support = 1; if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD) { use_local_cache = 1; writer_takes_lock = 1; } if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY) { readwrite_concur_support = 1; writer_takes_lock = 1; } if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_EXT_TABLE) ext_table_support = 1; if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_NO_FREE_ON_DEL) no_free_on_del = 1; if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY_LF) { readwrite_concur_lf_support = 1; /* Enable not freeing internal memory/index on delete */ no_free_on_del = 1; } /* Store all keys and leave the first entry as a dummy entry for lookup_bulk */ if (use_local_cache) /* * Increase number of slots by total number of indices * that can be stored in the lcore caches * except for the first cache */ num_key_slots = params->entries + (RTE_MAX_LCORE - 1) * (LCORE_CACHE_SIZE - 1) + 1; else num_key_slots = params->entries + 1; snprintf(ring_name, sizeof(ring_name), "HT_%s", params->name); /* Create ring (Dummy slot index is not enqueued) */ r = rte_ring_create(ring_name, rte_align32pow2(num_key_slots), params->socket_id, 0); if (r == NULL) { RTE_LOG(ERR, HASH, "memory allocation failed\n"); goto err; } const uint32_t num_buckets = rte_align32pow2(params->entries) / RTE_HASH_BUCKET_ENTRIES; /* Create ring for extendable buckets. */ if (ext_table_support) { snprintf(ext_ring_name, sizeof(ext_ring_name), "HT_EXT_%s", params->name); r_ext = rte_ring_create(ext_ring_name, rte_align32pow2(num_buckets + 1), params->socket_id, 0); if (r_ext == NULL) { RTE_LOG(ERR, HASH, "ext buckets memory allocation " "failed\n"); goto err; } } snprintf(hash_name, sizeof(hash_name), "HT_%s", params->name); rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* guarantee there's no existing: this is normally already checked * by ring creation above */ TAILQ_FOREACH(te, hash_list, next) { h = (struct rte_hash *) te->data; if (strncmp(params->name, h->name, RTE_HASH_NAMESIZE) == 0) break; } h = NULL; if (te != NULL) { rte_errno = EEXIST; te = NULL; goto err_unlock; } te = rte_zmalloc("HASH_TAILQ_ENTRY", sizeof(*te), 0); if (te == NULL) { RTE_LOG(ERR, HASH, "tailq entry allocation failed\n"); goto err_unlock; } h = (struct rte_hash *)rte_zmalloc_socket(hash_name, sizeof(struct rte_hash), RTE_CACHE_LINE_SIZE, params->socket_id); if (h == NULL) { RTE_LOG(ERR, HASH, "memory allocation failed\n"); goto err_unlock; } buckets = rte_zmalloc_socket(NULL, num_buckets * sizeof(struct rte_hash_bucket), RTE_CACHE_LINE_SIZE, params->socket_id); if (buckets == NULL) { RTE_LOG(ERR, HASH, "buckets memory allocation failed\n"); goto err_unlock; } /* Allocate same number of extendable buckets */ if (ext_table_support) { buckets_ext = rte_zmalloc_socket(NULL, num_buckets * sizeof(struct rte_hash_bucket), RTE_CACHE_LINE_SIZE, params->socket_id); if (buckets_ext == NULL) { RTE_LOG(ERR, HASH, "ext buckets memory allocation " "failed\n"); goto err_unlock; } /* Populate ext bkt ring. We reserve 0 similar to the * key-data slot, just in case in future we want to * use bucket index for the linked list and 0 means NULL * for next bucket */ for (i = 1; i <= num_buckets; i++) rte_ring_sp_enqueue(r_ext, (void *)((uintptr_t) i)); } const uint32_t key_entry_size = RTE_ALIGN(sizeof(struct rte_hash_key) + params->key_len, KEY_ALIGNMENT); const uint64_t key_tbl_size = (uint64_t) key_entry_size * num_key_slots; k = rte_zmalloc_socket(NULL, key_tbl_size, RTE_CACHE_LINE_SIZE, params->socket_id); if (k == NULL) { RTE_LOG(ERR, HASH, "memory allocation failed\n"); goto err_unlock; } tbl_chng_cnt = rte_zmalloc_socket(NULL, sizeof(uint32_t), RTE_CACHE_LINE_SIZE, params->socket_id); if (tbl_chng_cnt == NULL) { RTE_LOG(ERR, HASH, "memory allocation failed\n"); goto err_unlock; } /* * If x86 architecture is used, select appropriate compare function, * which may use x86 intrinsics, otherwise use memcmp */ #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64) /* Select function to compare keys */ switch (params->key_len) { case 16: h->cmp_jump_table_idx = KEY_16_BYTES; break; case 32: h->cmp_jump_table_idx = KEY_32_BYTES; break; case 48: h->cmp_jump_table_idx = KEY_48_BYTES; break; case 64: h->cmp_jump_table_idx = KEY_64_BYTES; break; case 80: h->cmp_jump_table_idx = KEY_80_BYTES; break; case 96: h->cmp_jump_table_idx = KEY_96_BYTES; break; case 112: h->cmp_jump_table_idx = KEY_112_BYTES; break; case 128: h->cmp_jump_table_idx = KEY_128_BYTES; break; default: /* If key is not multiple of 16, use generic memcmp */ h->cmp_jump_table_idx = KEY_OTHER_BYTES; } #else h->cmp_jump_table_idx = KEY_OTHER_BYTES; #endif if (use_local_cache) { h->local_free_slots = rte_zmalloc_socket(NULL, sizeof(struct lcore_cache) * RTE_MAX_LCORE, RTE_CACHE_LINE_SIZE, params->socket_id); } /* Default hash function */ #if defined(RTE_ARCH_X86) default_hash_func = (rte_hash_function)rte_hash_crc; #elif defined(RTE_ARCH_ARM64) if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_CRC32)) default_hash_func = (rte_hash_function)rte_hash_crc; #endif /* Setup hash context */ snprintf(h->name, sizeof(h->name), "%s", params->name); h->entries = params->entries; h->key_len = params->key_len; h->key_entry_size = key_entry_size; h->hash_func_init_val = params->hash_func_init_val; h->num_buckets = num_buckets; h->bucket_bitmask = h->num_buckets - 1; h->buckets = buckets; h->buckets_ext = buckets_ext; h->free_ext_bkts = r_ext; h->hash_func = (params->hash_func == NULL) ? default_hash_func : params->hash_func; h->key_store = k; h->free_slots = r; h->tbl_chng_cnt = tbl_chng_cnt; *h->tbl_chng_cnt = 0; h->hw_trans_mem_support = hw_trans_mem_support; h->use_local_cache = use_local_cache; h->readwrite_concur_support = readwrite_concur_support; h->ext_table_support = ext_table_support; h->writer_takes_lock = writer_takes_lock; h->no_free_on_del = no_free_on_del; h->readwrite_concur_lf_support = readwrite_concur_lf_support; #if defined(RTE_ARCH_X86) if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE2)) h->sig_cmp_fn = RTE_HASH_COMPARE_SSE; else #endif h->sig_cmp_fn = RTE_HASH_COMPARE_SCALAR; /* Writer threads need to take the lock when: * 1) RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY is enabled OR * 2) RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD is enabled */ if (h->writer_takes_lock) { h->readwrite_lock = rte_malloc(NULL, sizeof(rte_rwlock_t), RTE_CACHE_LINE_SIZE); if (h->readwrite_lock == NULL) goto err_unlock; rte_rwlock_init(h->readwrite_lock); } /* Populate free slots ring. Entry zero is reserved for key misses. */ for (i = 1; i < num_key_slots; i++) rte_ring_sp_enqueue(r, (void *)((uintptr_t) i)); te->data = (void *) h; TAILQ_INSERT_TAIL(hash_list, te, next); rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); return h; err_unlock: rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); err: rte_ring_free(r); rte_ring_free(r_ext); rte_free(te); rte_free(h); rte_free(buckets); rte_free(buckets_ext); rte_free(k); rte_free(tbl_chng_cnt); return NULL; } void rte_hash_free(struct rte_hash *h) { struct rte_tailq_entry *te; struct rte_hash_list *hash_list; if (h == NULL) return; hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list); rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* find out tailq entry */ TAILQ_FOREACH(te, hash_list, next) { if (te->data == (void *) h) break; } if (te == NULL) { rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); return; } TAILQ_REMOVE(hash_list, te, next); rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); if (h->use_local_cache) rte_free(h->local_free_slots); if (h->writer_takes_lock) rte_free(h->readwrite_lock); rte_ring_free(h->free_slots); rte_ring_free(h->free_ext_bkts); rte_free(h->key_store); rte_free(h->buckets); rte_free(h->buckets_ext); rte_free(h->tbl_chng_cnt); rte_free(h); rte_free(te); } hash_sig_t rte_hash_hash(const struct rte_hash *h, const void *key) { /* calc hash result by key */ return h->hash_func(key, h->key_len, h->hash_func_init_val); } int32_t rte_hash_count(const struct rte_hash *h) { uint32_t tot_ring_cnt, cached_cnt = 0; uint32_t i, ret; if (h == NULL) return -EINVAL; if (h->use_local_cache) { tot_ring_cnt = h->entries + (RTE_MAX_LCORE - 1) * (LCORE_CACHE_SIZE - 1); for (i = 0; i < RTE_MAX_LCORE; i++) cached_cnt += h->local_free_slots[i].len; ret = tot_ring_cnt - rte_ring_count(h->free_slots) - cached_cnt; } else { tot_ring_cnt = h->entries; ret = tot_ring_cnt - rte_ring_count(h->free_slots); } return ret; } /* Read write locks implemented using rte_rwlock */ static inline void __hash_rw_writer_lock(const struct rte_hash *h) { if (h->writer_takes_lock && h->hw_trans_mem_support) rte_rwlock_write_lock_tm(h->readwrite_lock); else if (h->writer_takes_lock) rte_rwlock_write_lock(h->readwrite_lock); } static inline void __hash_rw_reader_lock(const struct rte_hash *h) { if (h->readwrite_concur_support && h->hw_trans_mem_support) rte_rwlock_read_lock_tm(h->readwrite_lock); else if (h->readwrite_concur_support) rte_rwlock_read_lock(h->readwrite_lock); } static inline void __hash_rw_writer_unlock(const struct rte_hash *h) { if (h->writer_takes_lock && h->hw_trans_mem_support) rte_rwlock_write_unlock_tm(h->readwrite_lock); else if (h->writer_takes_lock) rte_rwlock_write_unlock(h->readwrite_lock); } static inline void __hash_rw_reader_unlock(const struct rte_hash *h) { if (h->readwrite_concur_support && h->hw_trans_mem_support) rte_rwlock_read_unlock_tm(h->readwrite_lock); else if (h->readwrite_concur_support) rte_rwlock_read_unlock(h->readwrite_lock); } void rte_hash_reset(struct rte_hash *h) { void *ptr; uint32_t tot_ring_cnt, i; if (h == NULL) return; __hash_rw_writer_lock(h); memset(h->buckets, 0, h->num_buckets * sizeof(struct rte_hash_bucket)); memset(h->key_store, 0, h->key_entry_size * (h->entries + 1)); *h->tbl_chng_cnt = 0; /* clear the free ring */ while (rte_ring_dequeue(h->free_slots, &ptr) == 0) continue; /* clear free extendable bucket ring and memory */ if (h->ext_table_support) { memset(h->buckets_ext, 0, h->num_buckets * sizeof(struct rte_hash_bucket)); while (rte_ring_dequeue(h->free_ext_bkts, &ptr) == 0) continue; } /* Repopulate the free slots ring. Entry zero is reserved for key misses */ if (h->use_local_cache) tot_ring_cnt = h->entries + (RTE_MAX_LCORE - 1) * (LCORE_CACHE_SIZE - 1); else tot_ring_cnt = h->entries; for (i = 1; i < tot_ring_cnt + 1; i++) rte_ring_sp_enqueue(h->free_slots, (void *)((uintptr_t) i)); /* Repopulate the free ext bkt ring. */ if (h->ext_table_support) { for (i = 1; i <= h->num_buckets; i++) rte_ring_sp_enqueue(h->free_ext_bkts, (void *)((uintptr_t) i)); } if (h->use_local_cache) { /* Reset local caches per lcore */ for (i = 0; i < RTE_MAX_LCORE; i++) h->local_free_slots[i].len = 0; } __hash_rw_writer_unlock(h); } /* * Function called to enqueue back an index in the cache/ring, * as slot has not being used and it can be used in the * next addition attempt. */ static inline void enqueue_slot_back(const struct rte_hash *h, struct lcore_cache *cached_free_slots, void *slot_id) { if (h->use_local_cache) { cached_free_slots->objs[cached_free_slots->len] = slot_id; cached_free_slots->len++; } else rte_ring_sp_enqueue(h->free_slots, slot_id); } /* Search a key from bucket and update its data. * Writer holds the lock before calling this. */ static inline int32_t search_and_update(const struct rte_hash *h, void *data, const void *key, struct rte_hash_bucket *bkt, uint16_t sig) { int i; struct rte_hash_key *k, *keys = h->key_store; for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { if (bkt->sig_current[i] == sig) { k = (struct rte_hash_key *) ((char *)keys + bkt->key_idx[i] * h->key_entry_size); if (rte_hash_cmp_eq(key, k->key, h) == 0) { /* 'pdata' acts as the synchronization point * when an existing hash entry is updated. * Key is not updated in this case. */ __atomic_store_n(&k->pdata, data, __ATOMIC_RELEASE); /* * Return index where key is stored, * subtracting the first dummy index */ return bkt->key_idx[i] - 1; } } } return -1; } /* Only tries to insert at one bucket (@prim_bkt) without trying to push * buckets around. * return 1 if matching existing key, return 0 if succeeds, return -1 for no * empty entry. */ static inline int32_t rte_hash_cuckoo_insert_mw(const struct rte_hash *h, struct rte_hash_bucket *prim_bkt, struct rte_hash_bucket *sec_bkt, const struct rte_hash_key *key, void *data, uint16_t sig, uint32_t new_idx, int32_t *ret_val) { unsigned int i; struct rte_hash_bucket *cur_bkt; int32_t ret; __hash_rw_writer_lock(h); /* Check if key was inserted after last check but before this * protected region in case of inserting duplicated keys. */ ret = search_and_update(h, data, key, prim_bkt, sig); if (ret != -1) { __hash_rw_writer_unlock(h); *ret_val = ret; return 1; } FOR_EACH_BUCKET(cur_bkt, sec_bkt) { ret = search_and_update(h, data, key, cur_bkt, sig); if (ret != -1) { __hash_rw_writer_unlock(h); *ret_val = ret; return 1; } } /* Insert new entry if there is room in the primary * bucket. */ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { /* Check if slot is available */ if (likely(prim_bkt->key_idx[i] == EMPTY_SLOT)) { prim_bkt->sig_current[i] = sig; /* Key can be of arbitrary length, so it is * not possible to store it atomically. * Hence the new key element's memory stores * (key as well as data) should be complete * before it is referenced. */ __atomic_store_n(&prim_bkt->key_idx[i], new_idx, __ATOMIC_RELEASE); break; } } __hash_rw_writer_unlock(h); if (i != RTE_HASH_BUCKET_ENTRIES) return 0; /* no empty entry */ return -1; } /* Shift buckets along provided cuckoo_path (@leaf and @leaf_slot) and fill * the path head with new entry (sig, alt_hash, new_idx) * return 1 if matched key found, return -1 if cuckoo path invalided and fail, * return 0 if succeeds. */ static inline int rte_hash_cuckoo_move_insert_mw(const struct rte_hash *h, struct rte_hash_bucket *bkt, struct rte_hash_bucket *alt_bkt, const struct rte_hash_key *key, void *data, struct queue_node *leaf, uint32_t leaf_slot, uint16_t sig, uint32_t new_idx, int32_t *ret_val) { uint32_t prev_alt_bkt_idx; struct rte_hash_bucket *cur_bkt; struct queue_node *prev_node, *curr_node = leaf; struct rte_hash_bucket *prev_bkt, *curr_bkt = leaf->bkt; uint32_t prev_slot, curr_slot = leaf_slot; int32_t ret; __hash_rw_writer_lock(h); /* In case empty slot was gone before entering protected region */ if (curr_bkt->key_idx[curr_slot] != EMPTY_SLOT) { __hash_rw_writer_unlock(h); return -1; } /* Check if key was inserted after last check but before this * protected region. */ ret = search_and_update(h, data, key, bkt, sig); if (ret != -1) { __hash_rw_writer_unlock(h); *ret_val = ret; return 1; } FOR_EACH_BUCKET(cur_bkt, alt_bkt) { ret = search_and_update(h, data, key, cur_bkt, sig); if (ret != -1) { __hash_rw_writer_unlock(h); *ret_val = ret; return 1; } } while (likely(curr_node->prev != NULL)) { prev_node = curr_node->prev; prev_bkt = prev_node->bkt; prev_slot = curr_node->prev_slot; prev_alt_bkt_idx = get_alt_bucket_index(h, prev_node->cur_bkt_idx, prev_bkt->sig_current[prev_slot]); if (unlikely(&h->buckets[prev_alt_bkt_idx] != curr_bkt)) { /* revert it to empty, otherwise duplicated keys */ __atomic_store_n(&curr_bkt->key_idx[curr_slot], EMPTY_SLOT, __ATOMIC_RELEASE); __hash_rw_writer_unlock(h); return -1; } if (h->readwrite_concur_lf_support) { /* Inform the previous move. The current move need * not be informed now as the current bucket entry * is present in both primary and secondary. * Since there is one writer, load acquires on * tbl_chng_cnt are not required. */ __atomic_store_n(h->tbl_chng_cnt, *h->tbl_chng_cnt + 1, __ATOMIC_RELEASE); /* The stores to sig_alt and sig_current should not * move above the store to tbl_chng_cnt. */ __atomic_thread_fence(__ATOMIC_RELEASE); } /* Need to swap current/alt sig to allow later * Cuckoo insert to move elements back to its * primary bucket if available */ curr_bkt->sig_current[curr_slot] = prev_bkt->sig_current[prev_slot]; /* Release the updated bucket entry */ __atomic_store_n(&curr_bkt->key_idx[curr_slot], prev_bkt->key_idx[prev_slot], __ATOMIC_RELEASE); curr_slot = prev_slot; curr_node = prev_node; curr_bkt = curr_node->bkt; } if (h->readwrite_concur_lf_support) { /* Inform the previous move. The current move need * not be informed now as the current bucket entry * is present in both primary and secondary. * Since there is one writer, load acquires on * tbl_chng_cnt are not required. */ __atomic_store_n(h->tbl_chng_cnt, *h->tbl_chng_cnt + 1, __ATOMIC_RELEASE); /* The stores to sig_alt and sig_current should not * move above the store to tbl_chng_cnt. */ __atomic_thread_fence(__ATOMIC_RELEASE); } curr_bkt->sig_current[curr_slot] = sig; /* Release the new bucket entry */ __atomic_store_n(&curr_bkt->key_idx[curr_slot], new_idx, __ATOMIC_RELEASE); __hash_rw_writer_unlock(h); return 0; } /* * Make space for new key, using bfs Cuckoo Search and Multi-Writer safe * Cuckoo */ static inline int rte_hash_cuckoo_make_space_mw(const struct rte_hash *h, struct rte_hash_bucket *bkt, struct rte_hash_bucket *sec_bkt, const struct rte_hash_key *key, void *data, uint16_t sig, uint32_t bucket_idx, uint32_t new_idx, int32_t *ret_val) { unsigned int i; struct queue_node queue[RTE_HASH_BFS_QUEUE_MAX_LEN]; struct queue_node *tail, *head; struct rte_hash_bucket *curr_bkt, *alt_bkt; uint32_t cur_idx, alt_idx; tail = queue; head = queue + 1; tail->bkt = bkt; tail->prev = NULL; tail->prev_slot = -1; tail->cur_bkt_idx = bucket_idx; /* Cuckoo bfs Search */ while (likely(tail != head && head < queue + RTE_HASH_BFS_QUEUE_MAX_LEN - RTE_HASH_BUCKET_ENTRIES)) { curr_bkt = tail->bkt; cur_idx = tail->cur_bkt_idx; for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { if (curr_bkt->key_idx[i] == EMPTY_SLOT) { int32_t ret = rte_hash_cuckoo_move_insert_mw(h, bkt, sec_bkt, key, data, tail, i, sig, new_idx, ret_val); if (likely(ret != -1)) return ret; } /* Enqueue new node and keep prev node info */ alt_idx = get_alt_bucket_index(h, cur_idx, curr_bkt->sig_current[i]); alt_bkt = &(h->buckets[alt_idx]); head->bkt = alt_bkt; head->cur_bkt_idx = alt_idx; head->prev = tail; head->prev_slot = i; head++; } tail++; } return -ENOSPC; } static inline int32_t __rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key, hash_sig_t sig, void *data) { uint16_t short_sig; uint32_t prim_bucket_idx, sec_bucket_idx; struct rte_hash_bucket *prim_bkt, *sec_bkt, *cur_bkt; struct rte_hash_key *new_k, *keys = h->key_store; void *slot_id = NULL; void *ext_bkt_id = NULL; uint32_t new_idx, bkt_id; int ret; unsigned n_slots; unsigned lcore_id; unsigned int i; struct lcore_cache *cached_free_slots = NULL; int32_t ret_val; struct rte_hash_bucket *last; short_sig = get_short_sig(sig); prim_bucket_idx = get_prim_bucket_index(h, sig); sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig); prim_bkt = &h->buckets[prim_bucket_idx]; sec_bkt = &h->buckets[sec_bucket_idx]; rte_prefetch0(prim_bkt); rte_prefetch0(sec_bkt); /* Check if key is already inserted in primary location */ __hash_rw_writer_lock(h); ret = search_and_update(h, data, key, prim_bkt, short_sig); if (ret != -1) { __hash_rw_writer_unlock(h); return ret; } /* Check if key is already inserted in secondary location */ FOR_EACH_BUCKET(cur_bkt, sec_bkt) { ret = search_and_update(h, data, key, cur_bkt, short_sig); if (ret != -1) { __hash_rw_writer_unlock(h); return ret; } } __hash_rw_writer_unlock(h); /* Did not find a match, so get a new slot for storing the new key */ if (h->use_local_cache) { lcore_id = rte_lcore_id(); cached_free_slots = &h->local_free_slots[lcore_id]; /* Try to get a free slot from the local cache */ if (cached_free_slots->len == 0) { /* Need to get another burst of free slots from global ring */ n_slots = rte_ring_mc_dequeue_burst(h->free_slots, cached_free_slots->objs, LCORE_CACHE_SIZE, NULL); if (n_slots == 0) { return -ENOSPC; } cached_free_slots->len += n_slots; } /* Get a free slot from the local cache */ cached_free_slots->len--; slot_id = cached_free_slots->objs[cached_free_slots->len]; } else { if (rte_ring_sc_dequeue(h->free_slots, &slot_id) != 0) { return -ENOSPC; } } new_k = RTE_PTR_ADD(keys, (uintptr_t)slot_id * h->key_entry_size); new_idx = (uint32_t)((uintptr_t) slot_id); /* Copy key */ memcpy(new_k->key, key, h->key_len); /* Key can be of arbitrary length, so it is not possible to store * it atomically. Hence the new key element's memory stores * (key as well as data) should be complete before it is referenced. * 'pdata' acts as the synchronization point when an existing hash * entry is updated. */ __atomic_store_n(&new_k->pdata, data, __ATOMIC_RELEASE); /* Find an empty slot and insert */ ret = rte_hash_cuckoo_insert_mw(h, prim_bkt, sec_bkt, key, data, short_sig, new_idx, &ret_val); if (ret == 0) return new_idx - 1; else if (ret == 1) { enqueue_slot_back(h, cached_free_slots, slot_id); return ret_val; } /* Primary bucket full, need to make space for new entry */ ret = rte_hash_cuckoo_make_space_mw(h, prim_bkt, sec_bkt, key, data, short_sig, prim_bucket_idx, new_idx, &ret_val); if (ret == 0) return new_idx - 1; else if (ret == 1) { enqueue_slot_back(h, cached_free_slots, slot_id); return ret_val; } /* Also search secondary bucket to get better occupancy */ ret = rte_hash_cuckoo_make_space_mw(h, sec_bkt, prim_bkt, key, data, short_sig, sec_bucket_idx, new_idx, &ret_val); if (ret == 0) return new_idx - 1; else if (ret == 1) { enqueue_slot_back(h, cached_free_slots, slot_id); return ret_val; } /* if ext table not enabled, we failed the insertion */ if (!h->ext_table_support) { enqueue_slot_back(h, cached_free_slots, slot_id); return ret; } /* Now we need to go through the extendable bucket. Protection is needed * to protect all extendable bucket processes. */ __hash_rw_writer_lock(h); /* We check for duplicates again since could be inserted before the lock */ ret = search_and_update(h, data, key, prim_bkt, short_sig); if (ret != -1) { enqueue_slot_back(h, cached_free_slots, slot_id); goto failure; } FOR_EACH_BUCKET(cur_bkt, sec_bkt) { ret = search_and_update(h, data, key, cur_bkt, short_sig); if (ret != -1) { enqueue_slot_back(h, cached_free_slots, slot_id); goto failure; } } /* Search sec and ext buckets to find an empty entry to insert. */ FOR_EACH_BUCKET(cur_bkt, sec_bkt) { for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { /* Check if slot is available */ if (likely(cur_bkt->key_idx[i] == EMPTY_SLOT)) { cur_bkt->sig_current[i] = short_sig; cur_bkt->key_idx[i] = new_idx; __hash_rw_writer_unlock(h); return new_idx - 1; } } } /* Failed to get an empty entry from extendable buckets. Link a new * extendable bucket. We first get a free bucket from ring. */ if (rte_ring_sc_dequeue(h->free_ext_bkts, &ext_bkt_id) != 0) { ret = -ENOSPC; goto failure; } bkt_id = (uint32_t)((uintptr_t)ext_bkt_id) - 1; /* Use the first location of the new bucket */ (h->buckets_ext[bkt_id]).sig_current[0] = short_sig; (h->buckets_ext[bkt_id]).key_idx[0] = new_idx; /* Link the new bucket to sec bucket linked list */ last = rte_hash_get_last_bkt(sec_bkt); last->next = &h->buckets_ext[bkt_id]; __hash_rw_writer_unlock(h); return new_idx - 1; failure: __hash_rw_writer_unlock(h); return ret; } int32_t rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key, hash_sig_t sig) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_add_key_with_hash(h, key, sig, 0); } int32_t rte_hash_add_key(const struct rte_hash *h, const void *key) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), 0); } int rte_hash_add_key_with_hash_data(const struct rte_hash *h, const void *key, hash_sig_t sig, void *data) { int ret; RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); ret = __rte_hash_add_key_with_hash(h, key, sig, data); if (ret >= 0) return 0; else return ret; } int rte_hash_add_key_data(const struct rte_hash *h, const void *key, void *data) { int ret; RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); ret = __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), data); if (ret >= 0) return 0; else return ret; } /* Search one bucket to find the match key - uses rw lock */ static inline int32_t search_one_bucket_l(const struct rte_hash *h, const void *key, uint16_t sig, void **data, const struct rte_hash_bucket *bkt) { int i; struct rte_hash_key *k, *keys = h->key_store; for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { if (bkt->sig_current[i] == sig && bkt->key_idx[i] != EMPTY_SLOT) { k = (struct rte_hash_key *) ((char *)keys + bkt->key_idx[i] * h->key_entry_size); if (rte_hash_cmp_eq(key, k->key, h) == 0) { if (data != NULL) *data = k->pdata; /* * Return index where key is stored, * subtracting the first dummy index */ return bkt->key_idx[i] - 1; } } } return -1; } /* Search one bucket to find the match key */ static inline int32_t search_one_bucket_lf(const struct rte_hash *h, const void *key, uint16_t sig, void **data, const struct rte_hash_bucket *bkt) { int i; uint32_t key_idx; void *pdata; struct rte_hash_key *k, *keys = h->key_store; for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { key_idx = __atomic_load_n(&bkt->key_idx[i], __ATOMIC_ACQUIRE); if (bkt->sig_current[i] == sig && key_idx != EMPTY_SLOT) { k = (struct rte_hash_key *) ((char *)keys + key_idx * h->key_entry_size); pdata = __atomic_load_n(&k->pdata, __ATOMIC_ACQUIRE); if (rte_hash_cmp_eq(key, k->key, h) == 0) { if (data != NULL) *data = pdata; /* * Return index where key is stored, * subtracting the first dummy index */ return key_idx - 1; } } } return -1; } static inline int32_t __rte_hash_lookup_with_hash_l(const struct rte_hash *h, const void *key, hash_sig_t sig, void **data) { uint32_t prim_bucket_idx, sec_bucket_idx; struct rte_hash_bucket *bkt, *cur_bkt; int ret; uint16_t short_sig; short_sig = get_short_sig(sig); prim_bucket_idx = get_prim_bucket_index(h, sig); sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig); bkt = &h->buckets[prim_bucket_idx]; __hash_rw_reader_lock(h); /* Check if key is in primary location */ ret = search_one_bucket_l(h, key, short_sig, data, bkt); if (ret != -1) { __hash_rw_reader_unlock(h); return ret; } /* Calculate secondary hash */ bkt = &h->buckets[sec_bucket_idx]; /* Check if key is in secondary location */ FOR_EACH_BUCKET(cur_bkt, bkt) { ret = search_one_bucket_l(h, key, short_sig, data, cur_bkt); if (ret != -1) { __hash_rw_reader_unlock(h); return ret; } } __hash_rw_reader_unlock(h); return -ENOENT; } static inline int32_t __rte_hash_lookup_with_hash_lf(const struct rte_hash *h, const void *key, hash_sig_t sig, void **data) { uint32_t prim_bucket_idx, sec_bucket_idx; struct rte_hash_bucket *bkt, *cur_bkt; uint32_t cnt_b, cnt_a; int ret; uint16_t short_sig; short_sig = get_short_sig(sig); prim_bucket_idx = get_prim_bucket_index(h, sig); sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig); do { /* Load the table change counter before the lookup * starts. Acquire semantics will make sure that * loads in search_one_bucket are not hoisted. */ cnt_b = __atomic_load_n(h->tbl_chng_cnt, __ATOMIC_ACQUIRE); /* Check if key is in primary location */ bkt = &h->buckets[prim_bucket_idx]; ret = search_one_bucket_lf(h, key, short_sig, data, bkt); if (ret != -1) { __hash_rw_reader_unlock(h); return ret; } /* Calculate secondary hash */ bkt = &h->buckets[sec_bucket_idx]; /* Check if key is in secondary location */ FOR_EACH_BUCKET(cur_bkt, bkt) { ret = search_one_bucket_lf(h, key, short_sig, data, cur_bkt); if (ret != -1) { __hash_rw_reader_unlock(h); return ret; } } /* The loads of sig_current in search_one_bucket * should not move below the load from tbl_chng_cnt. */ __atomic_thread_fence(__ATOMIC_ACQUIRE); /* Re-read the table change counter to check if the * table has changed during search. If yes, re-do * the search. * This load should not get hoisted. The load * acquires on cnt_b, key index in primary bucket * and key index in secondary bucket will make sure * that it does not get hoisted. */ cnt_a = __atomic_load_n(h->tbl_chng_cnt, __ATOMIC_ACQUIRE); } while (cnt_b != cnt_a); return -ENOENT; } static inline int32_t __rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key, hash_sig_t sig, void **data) { if (h->readwrite_concur_lf_support) return __rte_hash_lookup_with_hash_lf(h, key, sig, data); else return __rte_hash_lookup_with_hash_l(h, key, sig, data); } int32_t rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key, hash_sig_t sig) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_lookup_with_hash(h, key, sig, NULL); } int32_t rte_hash_lookup(const struct rte_hash *h, const void *key) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), NULL); } int rte_hash_lookup_with_hash_data(const struct rte_hash *h, const void *key, hash_sig_t sig, void **data) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_lookup_with_hash(h, key, sig, data); } int rte_hash_lookup_data(const struct rte_hash *h, const void *key, void **data) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), data); } static inline void remove_entry(const struct rte_hash *h, struct rte_hash_bucket *bkt, unsigned i) { unsigned lcore_id, n_slots; struct lcore_cache *cached_free_slots; if (h->use_local_cache) { lcore_id = rte_lcore_id(); cached_free_slots = &h->local_free_slots[lcore_id]; /* Cache full, need to free it. */ if (cached_free_slots->len == LCORE_CACHE_SIZE) { /* Need to enqueue the free slots in global ring. */ n_slots = rte_ring_mp_enqueue_burst(h->free_slots, cached_free_slots->objs, LCORE_CACHE_SIZE, NULL); ERR_IF_TRUE((n_slots == 0), "%s: could not enqueue free slots in global ring\n", __func__); cached_free_slots->len -= n_slots; } /* Put index of new free slot in cache. */ cached_free_slots->objs[cached_free_slots->len] = (void *)((uintptr_t)bkt->key_idx[i]); cached_free_slots->len++; } else { rte_ring_sp_enqueue(h->free_slots, (void *)((uintptr_t)bkt->key_idx[i])); } } /* Compact the linked list by moving key from last entry in linked list to the * empty slot. */ static inline void __rte_hash_compact_ll(struct rte_hash_bucket *cur_bkt, int pos) { int i; struct rte_hash_bucket *last_bkt; if (!cur_bkt->next) return; last_bkt = rte_hash_get_last_bkt(cur_bkt); for (i = RTE_HASH_BUCKET_ENTRIES - 1; i >= 0; i--) { if (last_bkt->key_idx[i] != EMPTY_SLOT) { cur_bkt->key_idx[pos] = last_bkt->key_idx[i]; cur_bkt->sig_current[pos] = last_bkt->sig_current[i]; last_bkt->sig_current[i] = NULL_SIGNATURE; last_bkt->key_idx[i] = EMPTY_SLOT; return; } } } /* Search one bucket and remove the matched key. * Writer is expected to hold the lock while calling this * function. */ static inline int32_t search_and_remove(const struct rte_hash *h, const void *key, struct rte_hash_bucket *bkt, uint16_t sig, int *pos) { struct rte_hash_key *k, *keys = h->key_store; unsigned int i; uint32_t key_idx; /* Check if key is in bucket */ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { key_idx = __atomic_load_n(&bkt->key_idx[i], __ATOMIC_ACQUIRE); if (bkt->sig_current[i] == sig && key_idx != EMPTY_SLOT) { k = (struct rte_hash_key *) ((char *)keys + key_idx * h->key_entry_size); if (rte_hash_cmp_eq(key, k->key, h) == 0) { bkt->sig_current[i] = NULL_SIGNATURE; /* Free the key store index if * no_free_on_del is disabled. */ if (!h->no_free_on_del) remove_entry(h, bkt, i); __atomic_store_n(&bkt->key_idx[i], EMPTY_SLOT, __ATOMIC_RELEASE); *pos = i; /* * Return index where key is stored, * subtracting the first dummy index */ return key_idx - 1; } } } return -1; } static inline int32_t __rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key, hash_sig_t sig) { uint32_t prim_bucket_idx, sec_bucket_idx; struct rte_hash_bucket *prim_bkt, *sec_bkt, *prev_bkt, *last_bkt; struct rte_hash_bucket *cur_bkt; int pos; int32_t ret, i; uint16_t short_sig; short_sig = get_short_sig(sig); prim_bucket_idx = get_prim_bucket_index(h, sig); sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig); prim_bkt = &h->buckets[prim_bucket_idx]; __hash_rw_writer_lock(h); /* look for key in primary bucket */ ret = search_and_remove(h, key, prim_bkt, short_sig, &pos); if (ret != -1) { __rte_hash_compact_ll(prim_bkt, pos); last_bkt = prim_bkt->next; prev_bkt = prim_bkt; goto return_bkt; } /* Calculate secondary hash */ sec_bkt = &h->buckets[sec_bucket_idx]; FOR_EACH_BUCKET(cur_bkt, sec_bkt) { ret = search_and_remove(h, key, cur_bkt, short_sig, &pos); if (ret != -1) { __rte_hash_compact_ll(cur_bkt, pos); last_bkt = sec_bkt->next; prev_bkt = sec_bkt; goto return_bkt; } } __hash_rw_writer_unlock(h); return -ENOENT; /* Search last bucket to see if empty to be recycled */ return_bkt: if (!last_bkt) { __hash_rw_writer_unlock(h); return ret; } while (last_bkt->next) { prev_bkt = last_bkt; last_bkt = last_bkt->next; } for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { if (last_bkt->key_idx[i] != EMPTY_SLOT) break; } /* found empty bucket and recycle */ if (i == RTE_HASH_BUCKET_ENTRIES) { prev_bkt->next = last_bkt->next = NULL; uint32_t index = last_bkt - h->buckets_ext + 1; rte_ring_sp_enqueue(h->free_ext_bkts, (void *)(uintptr_t)index); } __hash_rw_writer_unlock(h); return ret; } int32_t rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key, hash_sig_t sig) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_del_key_with_hash(h, key, sig); } int32_t rte_hash_del_key(const struct rte_hash *h, const void *key) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); return __rte_hash_del_key_with_hash(h, key, rte_hash_hash(h, key)); } int rte_hash_get_key_with_position(const struct rte_hash *h, const int32_t position, void **key) { RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL); struct rte_hash_key *k, *keys = h->key_store; k = (struct rte_hash_key *) ((char *) keys + (position + 1) * h->key_entry_size); *key = k->key; if (position != __rte_hash_lookup_with_hash(h, *key, rte_hash_hash(h, *key), NULL)) { return -ENOENT; } return 0; } int __rte_experimental rte_hash_free_key_with_position(const struct rte_hash *h, const int32_t position) { RETURN_IF_TRUE(((h == NULL) || (position == EMPTY_SLOT)), -EINVAL); unsigned int lcore_id, n_slots; struct lcore_cache *cached_free_slots; const int32_t total_entries = h->num_buckets * RTE_HASH_BUCKET_ENTRIES; /* Out of bounds */ if (position >= total_entries) return -EINVAL; if (h->use_local_cache) { lcore_id = rte_lcore_id(); cached_free_slots = &h->local_free_slots[lcore_id]; /* Cache full, need to free it. */ if (cached_free_slots->len == LCORE_CACHE_SIZE) { /* Need to enqueue the free slots in global ring. */ n_slots = rte_ring_mp_enqueue_burst(h->free_slots, cached_free_slots->objs, LCORE_CACHE_SIZE, NULL); RETURN_IF_TRUE((n_slots == 0), -EFAULT); cached_free_slots->len -= n_slots; } /* Put index of new free slot in cache. */ cached_free_slots->objs[cached_free_slots->len] = (void *)((uintptr_t)position); cached_free_slots->len++; } else { rte_ring_sp_enqueue(h->free_slots, (void *)((uintptr_t)position)); } return 0; } static inline void compare_signatures(uint32_t *prim_hash_matches, uint32_t *sec_hash_matches, const struct rte_hash_bucket *prim_bkt, const struct rte_hash_bucket *sec_bkt, uint16_t sig, enum rte_hash_sig_compare_function sig_cmp_fn) { unsigned int i; /* For match mask the first bit of every two bits indicates the match */ switch (sig_cmp_fn) { #ifdef RTE_MACHINE_CPUFLAG_SSE2 case RTE_HASH_COMPARE_SSE: /* Compare all signatures in the bucket */ *prim_hash_matches = _mm_movemask_epi8(_mm_cmpeq_epi16( _mm_load_si128( (__m128i const *)prim_bkt->sig_current), _mm_set1_epi16(sig))); /* Compare all signatures in the bucket */ *sec_hash_matches = _mm_movemask_epi8(_mm_cmpeq_epi16( _mm_load_si128( (__m128i const *)sec_bkt->sig_current), _mm_set1_epi16(sig))); break; #endif default: for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) { *prim_hash_matches |= ((sig == prim_bkt->sig_current[i]) << (i << 1)); *sec_hash_matches |= ((sig == sec_bkt->sig_current[i]) << (i << 1)); } } } #define PREFETCH_OFFSET 4 static inline void __rte_hash_lookup_bulk_l(const struct rte_hash *h, const void **keys, int32_t num_keys, int32_t *positions, uint64_t *hit_mask, void *data[]) { uint64_t hits = 0; int32_t i; int32_t ret; uint32_t prim_hash[RTE_HASH_LOOKUP_BULK_MAX]; uint32_t prim_index[RTE_HASH_LOOKUP_BULK_MAX]; uint32_t sec_index[RTE_HASH_LOOKUP_BULK_MAX]; uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX]; const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX]; const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX]; uint32_t prim_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0}; uint32_t sec_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0}; struct rte_hash_bucket *cur_bkt, *next_bkt; /* Prefetch first keys */ for (i = 0; i < PREFETCH_OFFSET && i < num_keys; i++) rte_prefetch0(keys[i]); /* * Prefetch rest of the keys, calculate primary and * secondary bucket and prefetch them */ for (i = 0; i < (num_keys - PREFETCH_OFFSET); i++) { rte_prefetch0(keys[i + PREFETCH_OFFSET]); prim_hash[i] = rte_hash_hash(h, keys[i]); sig[i] = get_short_sig(prim_hash[i]); prim_index[i] = get_prim_bucket_index(h, prim_hash[i]); sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]); primary_bkt[i] = &h->buckets[prim_index[i]]; secondary_bkt[i] = &h->buckets[sec_index[i]]; rte_prefetch0(primary_bkt[i]); rte_prefetch0(secondary_bkt[i]); } /* Calculate and prefetch rest of the buckets */ for (; i < num_keys; i++) { prim_hash[i] = rte_hash_hash(h, keys[i]); sig[i] = get_short_sig(prim_hash[i]); prim_index[i] = get_prim_bucket_index(h, prim_hash[i]); sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]); primary_bkt[i] = &h->buckets[prim_index[i]]; secondary_bkt[i] = &h->buckets[sec_index[i]]; rte_prefetch0(primary_bkt[i]); rte_prefetch0(secondary_bkt[i]); } __hash_rw_reader_lock(h); /* Compare signatures and prefetch key slot of first hit */ for (i = 0; i < num_keys; i++) { compare_signatures(&prim_hitmask[i], &sec_hitmask[i], primary_bkt[i], secondary_bkt[i], sig[i], h->sig_cmp_fn); if (prim_hitmask[i]) { uint32_t first_hit = __builtin_ctzl(prim_hitmask[i]) >> 1; uint32_t key_idx = primary_bkt[i]->key_idx[first_hit]; const struct rte_hash_key *key_slot = (const struct rte_hash_key *)( (const char *)h->key_store + key_idx * h->key_entry_size); rte_prefetch0(key_slot); continue; } if (sec_hitmask[i]) { uint32_t first_hit = __builtin_ctzl(sec_hitmask[i]) >> 1; uint32_t key_idx = secondary_bkt[i]->key_idx[first_hit]; const struct rte_hash_key *key_slot = (const struct rte_hash_key *)( (const char *)h->key_store + key_idx * h->key_entry_size); rte_prefetch0(key_slot); } } /* Compare keys, first hits in primary first */ for (i = 0; i < num_keys; i++) { positions[i] = -ENOENT; while (prim_hitmask[i]) { uint32_t hit_index = __builtin_ctzl(prim_hitmask[i]) >> 1; uint32_t key_idx = primary_bkt[i]->key_idx[hit_index]; const struct rte_hash_key *key_slot = (const struct rte_hash_key *)( (const char *)h->key_store + key_idx * h->key_entry_size); /* * If key index is 0, do not compare key, * as it is checking the dummy slot */ if (!!key_idx & !rte_hash_cmp_eq( key_slot->key, keys[i], h)) { if (data != NULL) data[i] = key_slot->pdata; hits |= 1ULL << i; positions[i] = key_idx - 1; goto next_key; } prim_hitmask[i] &= ~(3ULL << (hit_index << 1)); } while (sec_hitmask[i]) { uint32_t hit_index = __builtin_ctzl(sec_hitmask[i]) >> 1; uint32_t key_idx = secondary_bkt[i]->key_idx[hit_index]; const struct rte_hash_key *key_slot = (const struct rte_hash_key *)( (const char *)h->key_store + key_idx * h->key_entry_size); /* * If key index is 0, do not compare key, * as it is checking the dummy slot */ if (!!key_idx & !rte_hash_cmp_eq( key_slot->key, keys[i], h)) { if (data != NULL) data[i] = key_slot->pdata; hits |= 1ULL << i; positions[i] = key_idx - 1; goto next_key; } sec_hitmask[i] &= ~(3ULL << (hit_index << 1)); } next_key: continue; } /* all found, do not need to go through ext bkt */ if ((hits == ((1ULL << num_keys) - 1)) || !h->ext_table_support) { if (hit_mask != NULL) *hit_mask = hits; __hash_rw_reader_unlock(h); return; } /* need to check ext buckets for match */ for (i = 0; i < num_keys; i++) { if ((hits & (1ULL << i)) != 0) continue; next_bkt = secondary_bkt[i]->next; FOR_EACH_BUCKET(cur_bkt, next_bkt) { if (data != NULL) ret = search_one_bucket_l(h, keys[i], sig[i], &data[i], cur_bkt); else ret = search_one_bucket_l(h, keys[i], sig[i], NULL, cur_bkt); if (ret != -1) { positions[i] = ret; hits |= 1ULL << i; break; } } } __hash_rw_reader_unlock(h); if (hit_mask != NULL) *hit_mask = hits; } static inline void __rte_hash_lookup_bulk_lf(const struct rte_hash *h, const void **keys, int32_t num_keys, int32_t *positions, uint64_t *hit_mask, void *data[]) { uint64_t hits = 0; int32_t i; int32_t ret; uint32_t prim_hash[RTE_HASH_LOOKUP_BULK_MAX]; uint32_t prim_index[RTE_HASH_LOOKUP_BULK_MAX]; uint32_t sec_index[RTE_HASH_LOOKUP_BULK_MAX]; uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX]; const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX]; const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX]; uint32_t prim_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0}; uint32_t sec_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0}; struct rte_hash_bucket *cur_bkt, *next_bkt; void *pdata[RTE_HASH_LOOKUP_BULK_MAX]; uint32_t cnt_b, cnt_a; /* Prefetch first keys */ for (i = 0; i < PREFETCH_OFFSET && i < num_keys; i++) rte_prefetch0(keys[i]); /* * Prefetch rest of the keys, calculate primary and * secondary bucket and prefetch them */ for (i = 0; i < (num_keys - PREFETCH_OFFSET); i++) { rte_prefetch0(keys[i + PREFETCH_OFFSET]); prim_hash[i] = rte_hash_hash(h, keys[i]); sig[i] = get_short_sig(prim_hash[i]); prim_index[i] = get_prim_bucket_index(h, prim_hash[i]); sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]); primary_bkt[i] = &h->buckets[prim_index[i]]; secondary_bkt[i] = &h->buckets[sec_index[i]]; rte_prefetch0(primary_bkt[i]); rte_prefetch0(secondary_bkt[i]); } /* Calculate and prefetch rest of the buckets */ for (; i < num_keys; i++) { prim_hash[i] = rte_hash_hash(h, keys[i]); sig[i] = get_short_sig(prim_hash[i]); prim_index[i] = get_prim_bucket_index(h, prim_hash[i]); sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]); primary_bkt[i] = &h->buckets[prim_index[i]]; secondary_bkt[i] = &h->buckets[sec_index[i]]; rte_prefetch0(primary_bkt[i]); rte_prefetch0(secondary_bkt[i]); } do { /* Load the table change counter before the lookup * starts. Acquire semantics will make sure that * loads in compare_signatures are not hoisted. */ cnt_b = __atomic_load_n(h->tbl_chng_cnt, __ATOMIC_ACQUIRE); /* Compare signatures and prefetch key slot of first hit */ for (i = 0; i < num_keys; i++) { compare_signatures(&prim_hitmask[i], &sec_hitmask[i], primary_bkt[i], secondary_bkt[i], sig[i], h->sig_cmp_fn); if (prim_hitmask[i]) { uint32_t first_hit = __builtin_ctzl(prim_hitmask[i]) >> 1; uint32_t key_idx = primary_bkt[i]->key_idx[first_hit]; const struct rte_hash_key *key_slot = (const struct rte_hash_key *)( (const char *)h->key_store + key_idx * h->key_entry_size); rte_prefetch0(key_slot); continue; } if (sec_hitmask[i]) { uint32_t first_hit = __builtin_ctzl(sec_hitmask[i]) >> 1; uint32_t key_idx = secondary_bkt[i]->key_idx[first_hit]; const struct rte_hash_key *key_slot = (const struct rte_hash_key *)( (const char *)h->key_store + key_idx * h->key_entry_size); rte_prefetch0(key_slot); } } /* Compare keys, first hits in primary first */ for (i = 0; i < num_keys; i++) { positions[i] = -ENOENT; while (prim_hitmask[i]) { uint32_t hit_index = __builtin_ctzl(prim_hitmask[i]) >> 1; uint32_t key_idx = __atomic_load_n( &primary_bkt[i]->key_idx[hit_index], __ATOMIC_ACQUIRE); const struct rte_hash_key *key_slot = (const struct rte_hash_key *)( (const char *)h->key_store + key_idx * h->key_entry_size); if (key_idx != EMPTY_SLOT) pdata[i] = __atomic_load_n( &key_slot->pdata, __ATOMIC_ACQUIRE); /* * If key index is 0, do not compare key, * as it is checking the dummy slot */ if (!!key_idx & !rte_hash_cmp_eq( key_slot->key, keys[i], h)) { if (data != NULL) data[i] = pdata[i]; hits |= 1ULL << i; positions[i] = key_idx - 1; goto next_key; } prim_hitmask[i] &= ~(3ULL << (hit_index << 1)); } while (sec_hitmask[i]) { uint32_t hit_index = __builtin_ctzl(sec_hitmask[i]) >> 1; uint32_t key_idx = __atomic_load_n( &secondary_bkt[i]->key_idx[hit_index], __ATOMIC_ACQUIRE); const struct rte_hash_key *key_slot = (const struct rte_hash_key *)( (const char *)h->key_store + key_idx * h->key_entry_size); if (key_idx != EMPTY_SLOT) pdata[i] = __atomic_load_n( &key_slot->pdata, __ATOMIC_ACQUIRE); /* * If key index is 0, do not compare key, * as it is checking the dummy slot */ if (!!key_idx & !rte_hash_cmp_eq( key_slot->key, keys[i], h)) { if (data != NULL) data[i] = pdata[i]; hits |= 1ULL << i; positions[i] = key_idx - 1; goto next_key; } sec_hitmask[i] &= ~(3ULL << (hit_index << 1)); } next_key: continue; } /* The loads of sig_current in compare_signatures * should not move below the load from tbl_chng_cnt. */ __atomic_thread_fence(__ATOMIC_ACQUIRE); /* Re-read the table change counter to check if the * table has changed during search. If yes, re-do * the search. * This load should not get hoisted. The load * acquires on cnt_b, primary key index and secondary * key index will make sure that it does not get * hoisted. */ cnt_a = __atomic_load_n(h->tbl_chng_cnt, __ATOMIC_ACQUIRE); } while (cnt_b != cnt_a); /* all found, do not need to go through ext bkt */ if ((hits == ((1ULL << num_keys) - 1)) || !h->ext_table_support) { if (hit_mask != NULL) *hit_mask = hits; __hash_rw_reader_unlock(h); return; } /* need to check ext buckets for match */ for (i = 0; i < num_keys; i++) { if ((hits & (1ULL << i)) != 0) continue; next_bkt = secondary_bkt[i]->next; FOR_EACH_BUCKET(cur_bkt, next_bkt) { if (data != NULL) ret = search_one_bucket_lf(h, keys[i], sig[i], &data[i], cur_bkt); else ret = search_one_bucket_lf(h, keys[i], sig[i], NULL, cur_bkt); if (ret != -1) { positions[i] = ret; hits |= 1ULL << i; break; } } } if (hit_mask != NULL) *hit_mask = hits; } static inline void __rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys, int32_t num_keys, int32_t *positions, uint64_t *hit_mask, void *data[]) { if (h->readwrite_concur_lf_support) __rte_hash_lookup_bulk_lf(h, keys, num_keys, positions, hit_mask, data); else __rte_hash_lookup_bulk_l(h, keys, num_keys, positions, hit_mask, data); } int rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys, uint32_t num_keys, int32_t *positions) { RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) || (num_keys > RTE_HASH_LOOKUP_BULK_MAX) || (positions == NULL)), -EINVAL); __rte_hash_lookup_bulk(h, keys, num_keys, positions, NULL, NULL); return 0; } int rte_hash_lookup_bulk_data(const struct rte_hash *h, const void **keys, uint32_t num_keys, uint64_t *hit_mask, void *data[]) { RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) || (num_keys > RTE_HASH_LOOKUP_BULK_MAX) || (hit_mask == NULL)), -EINVAL); int32_t positions[num_keys]; __rte_hash_lookup_bulk(h, keys, num_keys, positions, hit_mask, data); /* Return number of hits */ return __builtin_popcountl(*hit_mask); } int32_t rte_hash_iterate(const struct rte_hash *h, const void **key, void **data, uint32_t *next) { uint32_t bucket_idx, idx, position; struct rte_hash_key *next_key; RETURN_IF_TRUE(((h == NULL) || (next == NULL)), -EINVAL); const uint32_t total_entries_main = h->num_buckets * RTE_HASH_BUCKET_ENTRIES; const uint32_t total_entries = total_entries_main << 1; /* Out of bounds of all buckets (both main table and ext table) */ if (*next >= total_entries_main) goto extend_table; /* Calculate bucket and index of current iterator */ bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES; idx = *next % RTE_HASH_BUCKET_ENTRIES; /* If current position is empty, go to the next one */ while ((position = __atomic_load_n(&h->buckets[bucket_idx].key_idx[idx], __ATOMIC_ACQUIRE)) == EMPTY_SLOT) { (*next)++; /* End of table */ if (*next == total_entries_main) goto extend_table; bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES; idx = *next % RTE_HASH_BUCKET_ENTRIES; } __hash_rw_reader_lock(h); next_key = (struct rte_hash_key *) ((char *)h->key_store + position * h->key_entry_size); /* Return key and data */ *key = next_key->key; *data = next_key->pdata; __hash_rw_reader_unlock(h); /* Increment iterator */ (*next)++; return position - 1; /* Begin to iterate extendable buckets */ extend_table: /* Out of total bound or if ext bucket feature is not enabled */ if (*next >= total_entries || !h->ext_table_support) return -ENOENT; bucket_idx = (*next - total_entries_main) / RTE_HASH_BUCKET_ENTRIES; idx = (*next - total_entries_main) % RTE_HASH_BUCKET_ENTRIES; while ((position = h->buckets_ext[bucket_idx].key_idx[idx]) == EMPTY_SLOT) { (*next)++; if (*next == total_entries) return -ENOENT; bucket_idx = (*next - total_entries_main) / RTE_HASH_BUCKET_ENTRIES; idx = (*next - total_entries_main) % RTE_HASH_BUCKET_ENTRIES; } __hash_rw_reader_lock(h); next_key = (struct rte_hash_key *) ((char *)h->key_store + position * h->key_entry_size); /* Return key and data */ *key = next_key->key; *data = next_key->pdata; __hash_rw_reader_unlock(h); /* Increment iterator */ (*next)++; return position - 1; }