/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef RTE_EXEC_ENV_LINUXAPP #error "KNI is not supported" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "rte_kni_fifo.h" #define MAX_MBUF_BURST_NUM 32 /* Maximum number of ring entries */ #define KNI_FIFO_COUNT_MAX 1024 #define KNI_FIFO_SIZE (KNI_FIFO_COUNT_MAX * sizeof(void *) + \ sizeof(struct rte_kni_fifo)) #define KNI_REQUEST_MBUF_NUM_MAX 32 #define KNI_MEM_CHECK(cond) do { if (cond) goto kni_fail; } while (0) /** * KNI context */ struct rte_kni { char name[RTE_KNI_NAMESIZE]; /**< KNI interface name */ uint16_t group_id; /**< Group ID of KNI devices */ uint32_t slot_id; /**< KNI pool slot ID */ struct rte_mempool *pktmbuf_pool; /**< pkt mbuf mempool */ unsigned mbuf_size; /**< mbuf size */ struct rte_kni_fifo *tx_q; /**< TX queue */ struct rte_kni_fifo *rx_q; /**< RX queue */ struct rte_kni_fifo *alloc_q; /**< Allocated mbufs queue */ struct rte_kni_fifo *free_q; /**< To be freed mbufs queue */ /* For request & response */ struct rte_kni_fifo *req_q; /**< Request queue */ struct rte_kni_fifo *resp_q; /**< Response queue */ void * sync_addr; /**< Req/Resp Mem address */ struct rte_kni_ops ops; /**< operations for request */ uint8_t in_use : 1; /**< kni in use */ }; enum kni_ops_status { KNI_REQ_NO_REGISTER = 0, KNI_REQ_REGISTERED, }; /** * KNI memzone pool slot */ struct rte_kni_memzone_slot { uint32_t id; uint8_t in_use : 1; /**< slot in use */ /* Memzones */ const struct rte_memzone *m_ctx; /**< KNI ctx */ const struct rte_memzone *m_tx_q; /**< TX queue */ const struct rte_memzone *m_rx_q; /**< RX queue */ const struct rte_memzone *m_alloc_q; /**< Allocated mbufs queue */ const struct rte_memzone *m_free_q; /**< To be freed mbufs queue */ const struct rte_memzone *m_req_q; /**< Request queue */ const struct rte_memzone *m_resp_q; /**< Response queue */ const struct rte_memzone *m_sync_addr; /* Free linked list */ struct rte_kni_memzone_slot *next; /**< Next slot link.list */ }; /** * KNI memzone pool */ struct rte_kni_memzone_pool { uint8_t initialized : 1; /**< Global KNI pool init flag */ uint32_t max_ifaces; /**< Max. num of KNI ifaces */ struct rte_kni_memzone_slot *slots; /**< Pool slots */ rte_spinlock_t mutex; /**< alloc/release mutex */ /* Free memzone slots linked-list */ struct rte_kni_memzone_slot *free; /**< First empty slot */ struct rte_kni_memzone_slot *free_tail; /**< Last empty slot */ }; static void kni_free_mbufs(struct rte_kni *kni); static void kni_allocate_mbufs(struct rte_kni *kni); static volatile int kni_fd = -1; static struct rte_kni_memzone_pool kni_memzone_pool = { .initialized = 0, }; static const struct rte_memzone * kni_memzone_reserve(const char *name, size_t len, int socket_id, unsigned flags) { const struct rte_memzone *mz = rte_memzone_lookup(name); if (mz == NULL) mz = rte_memzone_reserve(name, len, socket_id, flags); return mz; } /* Pool mgmt */ static struct rte_kni_memzone_slot* kni_memzone_pool_alloc(void) { struct rte_kni_memzone_slot *slot; rte_spinlock_lock(&kni_memzone_pool.mutex); if (!kni_memzone_pool.free) { rte_spinlock_unlock(&kni_memzone_pool.mutex); return NULL; } slot = kni_memzone_pool.free; kni_memzone_pool.free = slot->next; slot->in_use = 1; if (!kni_memzone_pool.free) kni_memzone_pool.free_tail = NULL; rte_spinlock_unlock(&kni_memzone_pool.mutex); return slot; } static void kni_memzone_pool_release(struct rte_kni_memzone_slot *slot) { rte_spinlock_lock(&kni_memzone_pool.mutex); if (kni_memzone_pool.free) kni_memzone_pool.free_tail->next = slot; else kni_memzone_pool.free = slot; kni_memzone_pool.free_tail = slot; slot->next = NULL; slot->in_use = 0; rte_spinlock_unlock(&kni_memzone_pool.mutex); } /* Shall be called before any allocation happens */ void rte_kni_init(unsigned int max_kni_ifaces) { uint32_t i; struct rte_kni_memzone_slot *it; const struct rte_memzone *mz; #define OBJNAMSIZ 32 char obj_name[OBJNAMSIZ]; char mz_name[RTE_MEMZONE_NAMESIZE]; /* Immediately return if KNI is already initialized */ if (kni_memzone_pool.initialized) { RTE_LOG(WARNING, KNI, "Double call to rte_kni_init()"); return; } if (max_kni_ifaces == 0) { RTE_LOG(ERR, KNI, "Invalid number of max_kni_ifaces %d\n", max_kni_ifaces); RTE_LOG(ERR, KNI, "Unable to initialize KNI\n"); return; } /* Check FD and open */ if (kni_fd < 0) { kni_fd = open("/dev/" KNI_DEVICE, O_RDWR); if (kni_fd < 0) { RTE_LOG(ERR, KNI, "Can not open /dev/%s\n", KNI_DEVICE); return; } } /* Allocate slot objects */ kni_memzone_pool.slots = (struct rte_kni_memzone_slot *) rte_malloc(NULL, sizeof(struct rte_kni_memzone_slot) * max_kni_ifaces, 0); KNI_MEM_CHECK(kni_memzone_pool.slots == NULL); /* Initialize general pool variables */ kni_memzone_pool.initialized = 1; kni_memzone_pool.max_ifaces = max_kni_ifaces; kni_memzone_pool.free = &kni_memzone_pool.slots[0]; rte_spinlock_init(&kni_memzone_pool.mutex); /* Pre-allocate all memzones of all the slots; panic on error */ for (i = 0; i < max_kni_ifaces; i++) { /* Recover current slot */ it = &kni_memzone_pool.slots[i]; it->id = i; /* Allocate KNI context */ snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "KNI_INFO_%d", i); mz = kni_memzone_reserve(mz_name, sizeof(struct rte_kni), SOCKET_ID_ANY, 0); KNI_MEM_CHECK(mz == NULL); it->m_ctx = mz; /* TX RING */ snprintf(obj_name, OBJNAMSIZ, "kni_tx_%d", i); mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE, SOCKET_ID_ANY, 0); KNI_MEM_CHECK(mz == NULL); it->m_tx_q = mz; /* RX RING */ snprintf(obj_name, OBJNAMSIZ, "kni_rx_%d", i); mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE, SOCKET_ID_ANY, 0); KNI_MEM_CHECK(mz == NULL); it->m_rx_q = mz; /* ALLOC RING */ snprintf(obj_name, OBJNAMSIZ, "kni_alloc_%d", i); mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE, SOCKET_ID_ANY, 0); KNI_MEM_CHECK(mz == NULL); it->m_alloc_q = mz; /* FREE RING */ snprintf(obj_name, OBJNAMSIZ, "kni_free_%d", i); mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE, SOCKET_ID_ANY, 0); KNI_MEM_CHECK(mz == NULL); it->m_free_q = mz; /* Request RING */ snprintf(obj_name, OBJNAMSIZ, "kni_req_%d", i); mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE, SOCKET_ID_ANY, 0); KNI_MEM_CHECK(mz == NULL); it->m_req_q = mz; /* Response RING */ snprintf(obj_name, OBJNAMSIZ, "kni_resp_%d", i); mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE, SOCKET_ID_ANY, 0); KNI_MEM_CHECK(mz == NULL); it->m_resp_q = mz; /* Req/Resp sync mem area */ snprintf(obj_name, OBJNAMSIZ, "kni_sync_%d", i); mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE, SOCKET_ID_ANY, 0); KNI_MEM_CHECK(mz == NULL); it->m_sync_addr = mz; if ((i+1) == max_kni_ifaces) { it->next = NULL; kni_memzone_pool.free_tail = it; } else it->next = &kni_memzone_pool.slots[i+1]; } return; kni_fail: RTE_LOG(ERR, KNI, "Unable to allocate memory for max_kni_ifaces:%d." "Increase the amount of hugepages memory\n", max_kni_ifaces); } struct rte_kni * rte_kni_alloc(struct rte_mempool *pktmbuf_pool, const struct rte_kni_conf *conf, struct rte_kni_ops *ops) { int ret; struct rte_kni_device_info dev_info; struct rte_kni *ctx; char intf_name[RTE_KNI_NAMESIZE]; const struct rte_memzone *mz; struct rte_kni_memzone_slot *slot = NULL; if (!pktmbuf_pool || !conf || !conf->name[0]) return NULL; /* Check if KNI subsystem has been initialized */ if (kni_memzone_pool.initialized != 1) { RTE_LOG(ERR, KNI, "KNI subsystem has not been initialized. Invoke rte_kni_init() first\n"); return NULL; } /* Get an available slot from the pool */ slot = kni_memzone_pool_alloc(); if (!slot) { RTE_LOG(ERR, KNI, "Cannot allocate more KNI interfaces; increase the number of max_kni_ifaces(current %d) or release unused ones.\n", kni_memzone_pool.max_ifaces); return NULL; } /* Recover ctx */ ctx = slot->m_ctx->addr; snprintf(intf_name, RTE_KNI_NAMESIZE, "%s", conf->name); if (ctx->in_use) { RTE_LOG(ERR, KNI, "KNI %s is in use\n", ctx->name); return NULL; } memset(ctx, 0, sizeof(struct rte_kni)); if (ops) memcpy(&ctx->ops, ops, sizeof(struct rte_kni_ops)); memset(&dev_info, 0, sizeof(dev_info)); dev_info.bus = conf->addr.bus; dev_info.devid = conf->addr.devid; dev_info.function = conf->addr.function; dev_info.vendor_id = conf->id.vendor_id; dev_info.device_id = conf->id.device_id; dev_info.core_id = conf->core_id; dev_info.force_bind = conf->force_bind; dev_info.group_id = conf->group_id; dev_info.mbuf_size = conf->mbuf_size; snprintf(ctx->name, RTE_KNI_NAMESIZE, "%s", intf_name); snprintf(dev_info.name, RTE_KNI_NAMESIZE, "%s", intf_name); RTE_LOG(INFO, KNI, "pci: %02x:%02x:%02x \t %02x:%02x\n", dev_info.bus, dev_info.devid, dev_info.function, dev_info.vendor_id, dev_info.device_id); /* TX RING */ mz = slot->m_tx_q; ctx->tx_q = mz->addr; kni_fifo_init(ctx->tx_q, KNI_FIFO_COUNT_MAX); dev_info.tx_phys = mz->phys_addr; /* RX RING */ mz = slot->m_rx_q; ctx->rx_q = mz->addr; kni_fifo_init(ctx->rx_q, KNI_FIFO_COUNT_MAX); dev_info.rx_phys = mz->phys_addr; /* ALLOC RING */ mz = slot->m_alloc_q; ctx->alloc_q = mz->addr; kni_fifo_init(ctx->alloc_q, KNI_FIFO_COUNT_MAX); dev_info.alloc_phys = mz->phys_addr; /* FREE RING */ mz = slot->m_free_q; ctx->free_q = mz->addr; kni_fifo_init(ctx->free_q, KNI_FIFO_COUNT_MAX); dev_info.free_phys = mz->phys_addr; /* Request RING */ mz = slot->m_req_q; ctx->req_q = mz->addr; kni_fifo_init(ctx->req_q, KNI_FIFO_COUNT_MAX); dev_info.req_phys = mz->phys_addr; /* Response RING */ mz = slot->m_resp_q; ctx->resp_q = mz->addr; kni_fifo_init(ctx->resp_q, KNI_FIFO_COUNT_MAX); dev_info.resp_phys = mz->phys_addr; /* Req/Resp sync mem area */ mz = slot->m_sync_addr; ctx->sync_addr = mz->addr; dev_info.sync_va = mz->addr; dev_info.sync_phys = mz->phys_addr; ctx->pktmbuf_pool = pktmbuf_pool; ctx->group_id = conf->group_id; ctx->slot_id = slot->id; ctx->mbuf_size = conf->mbuf_size; ret = ioctl(kni_fd, RTE_KNI_IOCTL_CREATE, &dev_info); KNI_MEM_CHECK(ret < 0); ctx->in_use = 1; /* Allocate mbufs and then put them into alloc_q */ kni_allocate_mbufs(ctx); return ctx; kni_fail: if (slot) kni_memzone_pool_release(&kni_memzone_pool.slots[slot->id]); return NULL; } static void kni_free_fifo(struct rte_kni_fifo *fifo) { int ret; struct rte_mbuf *pkt; do { ret = kni_fifo_get(fifo, (void **)&pkt, 1); if (ret) rte_pktmbuf_free(pkt); } while (ret); } static void * va2pa(struct rte_mbuf *m) { return (void *)((unsigned long)m - ((unsigned long)m->buf_addr - (unsigned long)m->buf_iova)); } static void obj_free(struct rte_mempool *mp __rte_unused, void *opaque, void *obj, unsigned obj_idx __rte_unused) { struct rte_mbuf *m = obj; void *mbuf_phys = opaque; if (va2pa(m) == mbuf_phys) rte_pktmbuf_free(m); } static void kni_free_fifo_phy(struct rte_mempool *mp, struct rte_kni_fifo *fifo) { void *mbuf_phys; int ret; do { ret = kni_fifo_get(fifo, &mbuf_phys, 1); if (ret) rte_mempool_obj_iter(mp, obj_free, mbuf_phys); } while (ret); } int rte_kni_release(struct rte_kni *kni) { struct rte_kni_device_info dev_info; uint32_t slot_id; uint32_t retry = 5; if (!kni || !kni->in_use) return -1; snprintf(dev_info.name, sizeof(dev_info.name), "%s", kni->name); if (ioctl(kni_fd, RTE_KNI_IOCTL_RELEASE, &dev_info) < 0) { RTE_LOG(ERR, KNI, "Fail to release kni device\n"); return -1; } /* mbufs in all fifo should be released, except request/response */ /* wait until all rxq packets processed by kernel */ while (kni_fifo_count(kni->rx_q) && retry--) usleep(1000); if (kni_fifo_count(kni->rx_q)) RTE_LOG(ERR, KNI, "Fail to free all Rx-q items\n"); kni_free_fifo_phy(kni->pktmbuf_pool, kni->alloc_q); kni_free_fifo(kni->tx_q); kni_free_fifo(kni->free_q); slot_id = kni->slot_id; /* Memset the KNI struct */ memset(kni, 0, sizeof(struct rte_kni)); /* Release memzone */ if (slot_id > kni_memzone_pool.max_ifaces) { RTE_LOG(ERR, KNI, "KNI pool: corrupted slot ID: %d, max: %d\n", slot_id, kni_memzone_pool.max_ifaces); return -1; } kni_memzone_pool_release(&kni_memzone_pool.slots[slot_id]); return 0; } int rte_kni_handle_request(struct rte_kni *kni) { unsigned ret; struct rte_kni_request *req; if (kni == NULL) return -1; /* Get request mbuf */ ret = kni_fifo_get(kni->req_q, (void **)&req, 1); if (ret != 1) return 0; /* It is OK of can not getting the request mbuf */ if (req != kni->sync_addr) { RTE_LOG(ERR, KNI, "Wrong req pointer %p\n", req); return -1; } /* Analyze the request and call the relevant actions for it */ switch (req->req_id) { case RTE_KNI_REQ_CHANGE_MTU: /* Change MTU */ if (kni->ops.change_mtu) req->result = kni->ops.change_mtu(kni->ops.port_id, req->new_mtu); break; case RTE_KNI_REQ_CFG_NETWORK_IF: /* Set network interface up/down */ if (kni->ops.config_network_if) req->result = kni->ops.config_network_if(\ kni->ops.port_id, req->if_up); break; default: RTE_LOG(ERR, KNI, "Unknown request id %u\n", req->req_id); req->result = -EINVAL; break; } /* Construct response mbuf and put it back to resp_q */ ret = kni_fifo_put(kni->resp_q, (void **)&req, 1); if (ret != 1) { RTE_LOG(ERR, KNI, "Fail to put the muf back to resp_q\n"); return -1; /* It is an error of can't putting the mbuf back */ } return 0; } unsigned rte_kni_tx_burst(struct rte_kni *kni, struct rte_mbuf **mbufs, unsigned num) { void *phy_mbufs[num]; unsigned int ret; unsigned int i; for (i = 0; i < num; i++) phy_mbufs[i] = va2pa(mbufs[i]); ret = kni_fifo_put(kni->rx_q, phy_mbufs, num); /* Get mbufs from free_q and then free them */ kni_free_mbufs(kni); return ret; } unsigned rte_kni_rx_burst(struct rte_kni *kni, struct rte_mbuf **mbufs, unsigned num) { unsigned ret = kni_fifo_get(kni->tx_q, (void **)mbufs, num); /* If buffers removed, allocate mbufs and then put them into alloc_q */ if (ret) kni_allocate_mbufs(kni); return ret; } static void kni_free_mbufs(struct rte_kni *kni) { int i, ret; struct rte_mbuf *pkts[MAX_MBUF_BURST_NUM]; ret = kni_fifo_get(kni->free_q, (void **)pkts, MAX_MBUF_BURST_NUM); if (likely(ret > 0)) { for (i = 0; i < ret; i++) rte_pktmbuf_free(pkts[i]); } } static void kni_allocate_mbufs(struct rte_kni *kni) { int i, ret; struct rte_mbuf *pkts[MAX_MBUF_BURST_NUM]; void *phys[MAX_MBUF_BURST_NUM]; int allocq_free; RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pool) != offsetof(struct rte_kni_mbuf, pool)); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_addr) != offsetof(struct rte_kni_mbuf, buf_addr)); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, next) != offsetof(struct rte_kni_mbuf, next)); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_off) != offsetof(struct rte_kni_mbuf, data_off)); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != offsetof(struct rte_kni_mbuf, data_len)); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != offsetof(struct rte_kni_mbuf, pkt_len)); RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != offsetof(struct rte_kni_mbuf, ol_flags)); /* Check if pktmbuf pool has been configured */ if (kni->pktmbuf_pool == NULL) { RTE_LOG(ERR, KNI, "No valid mempool for allocating mbufs\n"); return; } allocq_free = (kni->alloc_q->read - kni->alloc_q->write - 1) \ & (MAX_MBUF_BURST_NUM - 1); for (i = 0; i < allocq_free; i++) { pkts[i] = rte_pktmbuf_alloc(kni->pktmbuf_pool); if (unlikely(pkts[i] == NULL)) { /* Out of memory */ RTE_LOG(ERR, KNI, "Out of memory\n"); break; } phys[i] = va2pa(pkts[i]); } /* No pkt mbuf allocated */ if (i <= 0) return; ret = kni_fifo_put(kni->alloc_q, phys, i); /* Check if any mbufs not put into alloc_q, and then free them */ if (ret >= 0 && ret < i && ret < MAX_MBUF_BURST_NUM) { int j; for (j = ret; j < i; j++) rte_pktmbuf_free(pkts[j]); } } struct rte_kni * rte_kni_get(const char *name) { uint32_t i; struct rte_kni_memzone_slot *it; struct rte_kni *kni; if (name == NULL || name[0] == '\0') return NULL; /* Note: could be improved perf-wise if necessary */ for (i = 0; i < kni_memzone_pool.max_ifaces; i++) { it = &kni_memzone_pool.slots[i]; if (it->in_use == 0) continue; kni = it->m_ctx->addr; if (strncmp(kni->name, name, RTE_KNI_NAMESIZE) == 0) return kni; } return NULL; } const char * rte_kni_get_name(const struct rte_kni *kni) { return kni->name; } static enum kni_ops_status kni_check_request_register(struct rte_kni_ops *ops) { /* check if KNI request ops has been registered*/ if( NULL == ops ) return KNI_REQ_NO_REGISTER; if((NULL == ops->change_mtu) && (NULL == ops->config_network_if)) return KNI_REQ_NO_REGISTER; return KNI_REQ_REGISTERED; } int rte_kni_register_handlers(struct rte_kni *kni,struct rte_kni_ops *ops) { enum kni_ops_status req_status; if (NULL == ops) { RTE_LOG(ERR, KNI, "Invalid KNI request operation.\n"); return -1; } if (NULL == kni) { RTE_LOG(ERR, KNI, "Invalid kni info.\n"); return -1; } req_status = kni_check_request_register(&kni->ops); if ( KNI_REQ_REGISTERED == req_status) { RTE_LOG(ERR, KNI, "The KNI request operation has already registered.\n"); return -1; } memcpy(&kni->ops, ops, sizeof(struct rte_kni_ops)); return 0; } int rte_kni_unregister_handlers(struct rte_kni *kni) { if (NULL == kni) { RTE_LOG(ERR, KNI, "Invalid kni info.\n"); return -1; } kni->ops.change_mtu = NULL; kni->ops.config_network_if = NULL; return 0; } void rte_kni_close(void) { if (kni_fd < 0) return; close(kni_fd); kni_fd = -1; }