/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #ifndef _RTE_ETHER_H_ #define _RTE_ETHER_H_ /** * @file * * Ethernet Helpers in RTE */ #ifdef __cplusplus extern "C" { #endif #include #include #include #include #include #include #define ETHER_ADDR_LEN 6 /**< Length of Ethernet address. */ #define ETHER_TYPE_LEN 2 /**< Length of Ethernet type field. */ #define ETHER_CRC_LEN 4 /**< Length of Ethernet CRC. */ #define ETHER_HDR_LEN \ (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN) /**< Length of Ethernet header. */ #define ETHER_MIN_LEN 64 /**< Minimum frame len, including CRC. */ #define ETHER_MAX_LEN 1518 /**< Maximum frame len, including CRC. */ #define ETHER_MTU \ (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN) /**< Ethernet MTU. */ #define ETHER_MAX_VLAN_FRAME_LEN \ (ETHER_MAX_LEN + 4) /**< Maximum VLAN frame length, including CRC. */ #define ETHER_MAX_JUMBO_FRAME_LEN \ 0x3F00 /**< Maximum Jumbo frame length, including CRC. */ #define ETHER_MAX_VLAN_ID 4095 /**< Maximum VLAN ID. */ #define ETHER_MIN_MTU 68 /**< Minimum MTU for IPv4 packets, see RFC 791. */ /** * Ethernet address: * A universally administered address is uniquely assigned to a device by its * manufacturer. The first three octets (in transmission order) contain the * Organizationally Unique Identifier (OUI). The following three (MAC-48 and * EUI-48) octets are assigned by that organization with the only constraint * of uniqueness. * A locally administered address is assigned to a device by a network * administrator and does not contain OUIs. * See http://standards.ieee.org/regauth/groupmac/tutorial.html */ struct ether_addr { uint8_t addr_bytes[ETHER_ADDR_LEN]; /**< Addr bytes in tx order */ } __attribute__((__packed__)); #define ETHER_LOCAL_ADMIN_ADDR 0x02 /**< Locally assigned Eth. address. */ #define ETHER_GROUP_ADDR 0x01 /**< Multicast or broadcast Eth. address. */ /** * Check if two Ethernet addresses are the same. * * @param ea1 * A pointer to the first ether_addr structure containing * the ethernet address. * @param ea2 * A pointer to the second ether_addr structure containing * the ethernet address. * * @return * True (1) if the given two ethernet address are the same; * False (0) otherwise. */ static inline int is_same_ether_addr(const struct ether_addr *ea1, const struct ether_addr *ea2) { int i; for (i = 0; i < ETHER_ADDR_LEN; i++) if (ea1->addr_bytes[i] != ea2->addr_bytes[i]) return 0; return 1; } /** * Check if an Ethernet address is filled with zeros. * * @param ea * A pointer to a ether_addr structure containing the ethernet address * to check. * @return * True (1) if the given ethernet address is filled with zeros; * false (0) otherwise. */ static inline int is_zero_ether_addr(const struct ether_addr *ea) { int i; for (i = 0; i < ETHER_ADDR_LEN; i++) if (ea->addr_bytes[i] != 0x00) return 0; return 1; } /** * Check if an Ethernet address is a unicast address. * * @param ea * A pointer to a ether_addr structure containing the ethernet address * to check. * @return * True (1) if the given ethernet address is a unicast address; * false (0) otherwise. */ static inline int is_unicast_ether_addr(const struct ether_addr *ea) { return (ea->addr_bytes[0] & ETHER_GROUP_ADDR) == 0; } /** * Check if an Ethernet address is a multicast address. * * @param ea * A pointer to a ether_addr structure containing the ethernet address * to check. * @return * True (1) if the given ethernet address is a multicast address; * false (0) otherwise. */ static inline int is_multicast_ether_addr(const struct ether_addr *ea) { return ea->addr_bytes[0] & ETHER_GROUP_ADDR; } /** * Check if an Ethernet address is a broadcast address. * * @param ea * A pointer to a ether_addr structure containing the ethernet address * to check. * @return * True (1) if the given ethernet address is a broadcast address; * false (0) otherwise. */ static inline int is_broadcast_ether_addr(const struct ether_addr *ea) { const unaligned_uint16_t *ea_words = (const unaligned_uint16_t *)ea; return (ea_words[0] == 0xFFFF && ea_words[1] == 0xFFFF && ea_words[2] == 0xFFFF); } /** * Check if an Ethernet address is a universally assigned address. * * @param ea * A pointer to a ether_addr structure containing the ethernet address * to check. * @return * True (1) if the given ethernet address is a universally assigned address; * false (0) otherwise. */ static inline int is_universal_ether_addr(const struct ether_addr *ea) { return (ea->addr_bytes[0] & ETHER_LOCAL_ADMIN_ADDR) == 0; } /** * Check if an Ethernet address is a locally assigned address. * * @param ea * A pointer to a ether_addr structure containing the ethernet address * to check. * @return * True (1) if the given ethernet address is a locally assigned address; * false (0) otherwise. */ static inline int is_local_admin_ether_addr(const struct ether_addr *ea) { return (ea->addr_bytes[0] & ETHER_LOCAL_ADMIN_ADDR) != 0; } /** * Check if an Ethernet address is a valid address. Checks that the address is a * unicast address and is not filled with zeros. * * @param ea * A pointer to a ether_addr structure containing the ethernet address * to check. * @return * True (1) if the given ethernet address is valid; * false (0) otherwise. */ static inline int is_valid_assigned_ether_addr(const struct ether_addr *ea) { return is_unicast_ether_addr(ea) && (!is_zero_ether_addr(ea)); } /** * Generate a random Ethernet address that is locally administered * and not multicast. * @param addr * A pointer to Ethernet address. */ static inline void eth_random_addr(uint8_t *addr) { uint64_t rand = rte_rand(); uint8_t *p = (uint8_t *)&rand; rte_memcpy(addr, p, ETHER_ADDR_LEN); addr[0] &= (uint8_t)~ETHER_GROUP_ADDR; /* clear multicast bit */ addr[0] |= ETHER_LOCAL_ADMIN_ADDR; /* set local assignment bit */ } /** * Fast copy an Ethernet address. * * @param ea_from * A pointer to a ether_addr structure holding the Ethernet address to copy. * @param ea_to * A pointer to a ether_addr structure where to copy the Ethernet address. */ static inline void ether_addr_copy(const struct ether_addr *ea_from, struct ether_addr *ea_to) { #ifdef __INTEL_COMPILER uint16_t *from_words = (uint16_t *)(ea_from->addr_bytes); uint16_t *to_words = (uint16_t *)(ea_to->addr_bytes); to_words[0] = from_words[0]; to_words[1] = from_words[1]; to_words[2] = from_words[2]; #else /* * Use the common way, because of a strange gcc warning. */ *ea_to = *ea_from; #endif } #define ETHER_ADDR_FMT_SIZE 18 /** * Format 48bits Ethernet address in pattern xx:xx:xx:xx:xx:xx. * * @param buf * A pointer to buffer contains the formatted MAC address. * @param size * The format buffer size. * @param eth_addr * A pointer to a ether_addr structure. */ static inline void ether_format_addr(char *buf, uint16_t size, const struct ether_addr *eth_addr) { snprintf(buf, size, "%02X:%02X:%02X:%02X:%02X:%02X", eth_addr->addr_bytes[0], eth_addr->addr_bytes[1], eth_addr->addr_bytes[2], eth_addr->addr_bytes[3], eth_addr->addr_bytes[4], eth_addr->addr_bytes[5]); } /** * Ethernet header: Contains the destination address, source address * and frame type. */ struct ether_hdr { struct ether_addr d_addr; /**< Destination address. */ struct ether_addr s_addr; /**< Source address. */ uint16_t ether_type; /**< Frame type. */ } __attribute__((__packed__)); /** * Ethernet VLAN Header. * Contains the 16-bit VLAN Tag Control Identifier and the Ethernet type * of the encapsulated frame. */ struct vlan_hdr { uint16_t vlan_tci; /**< Priority (3) + CFI (1) + Identifier Code (12) */ uint16_t eth_proto;/**< Ethernet type of encapsulated frame. */ } __attribute__((__packed__)); /** * VXLAN protocol header. * Contains the 8-bit flag, 24-bit VXLAN Network Identifier and * Reserved fields (24 bits and 8 bits) */ struct vxlan_hdr { uint32_t vx_flags; /**< flag (8) + Reserved (24). */ uint32_t vx_vni; /**< VNI (24) + Reserved (8). */ } __attribute__((__packed__)); /* Ethernet frame types */ #define ETHER_TYPE_IPv4 0x0800 /**< IPv4 Protocol. */ #define ETHER_TYPE_IPv6 0x86DD /**< IPv6 Protocol. */ #define ETHER_TYPE_ARP 0x0806 /**< Arp Protocol. */ #define ETHER_TYPE_RARP 0x8035 /**< Reverse Arp Protocol. */ #define ETHER_TYPE_VLAN 0x8100 /**< IEEE 802.1Q VLAN tagging. */ #define ETHER_TYPE_QINQ 0x88A8 /**< IEEE 802.1ad QinQ tagging. */ #define ETHER_TYPE_ETAG 0x893F /**< IEEE 802.1BR E-Tag. */ #define ETHER_TYPE_1588 0x88F7 /**< IEEE 802.1AS 1588 Precise Time Protocol. */ #define ETHER_TYPE_SLOW 0x8809 /**< Slow protocols (LACP and Marker). */ #define ETHER_TYPE_TEB 0x6558 /**< Transparent Ethernet Bridging. */ #define ETHER_TYPE_LLDP 0x88CC /**< LLDP Protocol. */ #define ETHER_TYPE_MPLS 0x8847 /**< MPLS ethertype. */ #define ETHER_TYPE_MPLSM 0x8848 /**< MPLS multicast ethertype. */ #define ETHER_VXLAN_HLEN (sizeof(struct udp_hdr) + sizeof(struct vxlan_hdr)) /**< VXLAN tunnel header length. */ /** * VXLAN-GPE protocol header (draft-ietf-nvo3-vxlan-gpe-05). * Contains the 8-bit flag, 8-bit next-protocol, 24-bit VXLAN Network * Identifier and Reserved fields (16 bits and 8 bits). */ struct vxlan_gpe_hdr { uint8_t vx_flags; /**< flag (8). */ uint8_t reserved[2]; /**< Reserved (16). */ uint8_t proto; /**< next-protocol (8). */ uint32_t vx_vni; /**< VNI (24) + Reserved (8). */ } __attribute__((__packed__)); /* VXLAN-GPE next protocol types */ #define VXLAN_GPE_TYPE_IPV4 1 /**< IPv4 Protocol. */ #define VXLAN_GPE_TYPE_IPV6 2 /**< IPv6 Protocol. */ #define VXLAN_GPE_TYPE_ETH 3 /**< Ethernet Protocol. */ #define VXLAN_GPE_TYPE_NSH 4 /**< NSH Protocol. */ #define VXLAN_GPE_TYPE_MPLS 5 /**< MPLS Protocol. */ #define VXLAN_GPE_TYPE_GBP 6 /**< GBP Protocol. */ #define VXLAN_GPE_TYPE_VBNG 7 /**< vBNG Protocol. */ #define ETHER_VXLAN_GPE_HLEN (sizeof(struct udp_hdr) + \ sizeof(struct vxlan_gpe_hdr)) /**< VXLAN-GPE tunnel header length. */ /** * Extract VLAN tag information into mbuf * * Software version of VLAN stripping * * @param m * The packet mbuf. * @return * - 0: Success * - 1: not a vlan packet */ static inline int rte_vlan_strip(struct rte_mbuf *m) { struct ether_hdr *eh = rte_pktmbuf_mtod(m, struct ether_hdr *); struct vlan_hdr *vh; if (eh->ether_type != rte_cpu_to_be_16(ETHER_TYPE_VLAN)) return -1; vh = (struct vlan_hdr *)(eh + 1); m->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED; m->vlan_tci = rte_be_to_cpu_16(vh->vlan_tci); /* Copy ether header over rather than moving whole packet */ memmove(rte_pktmbuf_adj(m, sizeof(struct vlan_hdr)), eh, 2 * ETHER_ADDR_LEN); return 0; } /** * Insert VLAN tag into mbuf. * * Software version of VLAN unstripping * * @param m * The packet mbuf. * @return * - 0: On success * -EPERM: mbuf is is shared overwriting would be unsafe * -ENOSPC: not enough headroom in mbuf */ static inline int rte_vlan_insert(struct rte_mbuf **m) { struct ether_hdr *oh, *nh; struct vlan_hdr *vh; /* Can't insert header if mbuf is shared */ if (rte_mbuf_refcnt_read(*m) > 1) { struct rte_mbuf *copy; copy = rte_pktmbuf_clone(*m, (*m)->pool); if (unlikely(copy == NULL)) return -ENOMEM; rte_pktmbuf_free(*m); *m = copy; } oh = rte_pktmbuf_mtod(*m, struct ether_hdr *); nh = (struct ether_hdr *) rte_pktmbuf_prepend(*m, sizeof(struct vlan_hdr)); if (nh == NULL) return -ENOSPC; memmove(nh, oh, 2 * ETHER_ADDR_LEN); nh->ether_type = rte_cpu_to_be_16(ETHER_TYPE_VLAN); vh = (struct vlan_hdr *) (nh + 1); vh->vlan_tci = rte_cpu_to_be_16((*m)->vlan_tci); (*m)->ol_flags &= ~PKT_RX_VLAN_STRIPPED; return 0; } #ifdef __cplusplus } #endif #endif /* _RTE_ETHER_H_ */