/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2016 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iotlb.h" #include "vhost.h" #define MAX_PKT_BURST 32 #define MAX_BATCH_LEN 256 static __rte_always_inline bool rxvq_is_mergeable(struct virtio_net *dev) { return dev->features & (1ULL << VIRTIO_NET_F_MRG_RXBUF); } static bool is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring) { return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring; } static __rte_always_inline void * alloc_copy_ind_table(struct virtio_net *dev, struct vhost_virtqueue *vq, uint64_t desc_addr, uint64_t desc_len) { void *idesc; uint64_t src, dst; uint64_t len, remain = desc_len; idesc = rte_malloc(__func__, desc_len, 0); if (unlikely(!idesc)) return 0; dst = (uint64_t)(uintptr_t)idesc; while (remain) { len = remain; src = vhost_iova_to_vva(dev, vq, desc_addr, &len, VHOST_ACCESS_RO); if (unlikely(!src || !len)) { rte_free(idesc); return 0; } rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len); remain -= len; dst += len; desc_addr += len; } return idesc; } static __rte_always_inline void free_ind_table(void *idesc) { rte_free(idesc); } static __rte_always_inline void do_flush_shadow_used_ring_split(struct virtio_net *dev, struct vhost_virtqueue *vq, uint16_t to, uint16_t from, uint16_t size) { rte_memcpy(&vq->used->ring[to], &vq->shadow_used_split[from], size * sizeof(struct vring_used_elem)); vhost_log_cache_used_vring(dev, vq, offsetof(struct vring_used, ring[to]), size * sizeof(struct vring_used_elem)); } static __rte_always_inline void flush_shadow_used_ring_split(struct virtio_net *dev, struct vhost_virtqueue *vq) { uint16_t used_idx = vq->last_used_idx & (vq->size - 1); if (used_idx + vq->shadow_used_idx <= vq->size) { do_flush_shadow_used_ring_split(dev, vq, used_idx, 0, vq->shadow_used_idx); } else { uint16_t size; /* update used ring interval [used_idx, vq->size] */ size = vq->size - used_idx; do_flush_shadow_used_ring_split(dev, vq, used_idx, 0, size); /* update the left half used ring interval [0, left_size] */ do_flush_shadow_used_ring_split(dev, vq, 0, size, vq->shadow_used_idx - size); } vq->last_used_idx += vq->shadow_used_idx; rte_smp_wmb(); vhost_log_cache_sync(dev, vq); *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx; vq->shadow_used_idx = 0; vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx), sizeof(vq->used->idx)); } static __rte_always_inline void update_shadow_used_ring_split(struct vhost_virtqueue *vq, uint16_t desc_idx, uint32_t len) { uint16_t i = vq->shadow_used_idx++; vq->shadow_used_split[i].id = desc_idx; vq->shadow_used_split[i].len = len; } static __rte_always_inline void flush_shadow_used_ring_packed(struct virtio_net *dev, struct vhost_virtqueue *vq) { int i; uint16_t used_idx = vq->last_used_idx; /* Split loop in two to save memory barriers */ for (i = 0; i < vq->shadow_used_idx; i++) { vq->desc_packed[used_idx].id = vq->shadow_used_packed[i].id; vq->desc_packed[used_idx].len = vq->shadow_used_packed[i].len; used_idx += vq->shadow_used_packed[i].count; if (used_idx >= vq->size) used_idx -= vq->size; } rte_smp_wmb(); for (i = 0; i < vq->shadow_used_idx; i++) { uint16_t flags; if (vq->shadow_used_packed[i].len) flags = VRING_DESC_F_WRITE; else flags = 0; if (vq->used_wrap_counter) { flags |= VRING_DESC_F_USED; flags |= VRING_DESC_F_AVAIL; } else { flags &= ~VRING_DESC_F_USED; flags &= ~VRING_DESC_F_AVAIL; } vq->desc_packed[vq->last_used_idx].flags = flags; vhost_log_cache_used_vring(dev, vq, vq->last_used_idx * sizeof(struct vring_packed_desc), sizeof(struct vring_packed_desc)); vq->last_used_idx += vq->shadow_used_packed[i].count; if (vq->last_used_idx >= vq->size) { vq->used_wrap_counter ^= 1; vq->last_used_idx -= vq->size; } } rte_smp_wmb(); vq->shadow_used_idx = 0; vhost_log_cache_sync(dev, vq); } static __rte_always_inline void update_shadow_used_ring_packed(struct vhost_virtqueue *vq, uint16_t desc_idx, uint32_t len, uint16_t count) { uint16_t i = vq->shadow_used_idx++; vq->shadow_used_packed[i].id = desc_idx; vq->shadow_used_packed[i].len = len; vq->shadow_used_packed[i].count = count; } static inline void do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq) { struct batch_copy_elem *elem = vq->batch_copy_elems; uint16_t count = vq->batch_copy_nb_elems; int i; for (i = 0; i < count; i++) { rte_memcpy(elem[i].dst, elem[i].src, elem[i].len); vhost_log_cache_write(dev, vq, elem[i].log_addr, elem[i].len); PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0); } vq->batch_copy_nb_elems = 0; } static inline void do_data_copy_dequeue(struct vhost_virtqueue *vq) { struct batch_copy_elem *elem = vq->batch_copy_elems; uint16_t count = vq->batch_copy_nb_elems; int i; for (i = 0; i < count; i++) rte_memcpy(elem[i].dst, elem[i].src, elem[i].len); vq->batch_copy_nb_elems = 0; } /* avoid write operation when necessary, to lessen cache issues */ #define ASSIGN_UNLESS_EQUAL(var, val) do { \ if ((var) != (val)) \ (var) = (val); \ } while (0) static __rte_always_inline void virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr) { uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK; if (m_buf->ol_flags & PKT_TX_TCP_SEG) csum_l4 |= PKT_TX_TCP_CKSUM; if (csum_l4) { net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len; switch (csum_l4) { case PKT_TX_TCP_CKSUM: net_hdr->csum_offset = (offsetof(struct tcp_hdr, cksum)); break; case PKT_TX_UDP_CKSUM: net_hdr->csum_offset = (offsetof(struct udp_hdr, dgram_cksum)); break; case PKT_TX_SCTP_CKSUM: net_hdr->csum_offset = (offsetof(struct sctp_hdr, cksum)); break; } } else { ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0); ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0); ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0); } /* IP cksum verification cannot be bypassed, then calculate here */ if (m_buf->ol_flags & PKT_TX_IP_CKSUM) { struct ipv4_hdr *ipv4_hdr; ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *, m_buf->l2_len); ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); } if (m_buf->ol_flags & PKT_TX_TCP_SEG) { if (m_buf->ol_flags & PKT_TX_IPV4) net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4; else net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6; net_hdr->gso_size = m_buf->tso_segsz; net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len + m_buf->l4_len; } else if (m_buf->ol_flags & PKT_TX_UDP_SEG) { net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP; net_hdr->gso_size = m_buf->tso_segsz; net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len + m_buf->l4_len; } else { ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0); ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0); ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0); } } static __rte_always_inline int map_one_desc(struct virtio_net *dev, struct vhost_virtqueue *vq, struct buf_vector *buf_vec, uint16_t *vec_idx, uint64_t desc_iova, uint64_t desc_len, uint8_t perm) { uint16_t vec_id = *vec_idx; while (desc_len) { uint64_t desc_addr; uint64_t desc_chunck_len = desc_len; if (unlikely(vec_id >= BUF_VECTOR_MAX)) return -1; desc_addr = vhost_iova_to_vva(dev, vq, desc_iova, &desc_chunck_len, perm); if (unlikely(!desc_addr)) return -1; buf_vec[vec_id].buf_iova = desc_iova; buf_vec[vec_id].buf_addr = desc_addr; buf_vec[vec_id].buf_len = desc_chunck_len; desc_len -= desc_chunck_len; desc_iova += desc_chunck_len; vec_id++; } *vec_idx = vec_id; return 0; } static __rte_always_inline int fill_vec_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq, uint32_t avail_idx, uint16_t *vec_idx, struct buf_vector *buf_vec, uint16_t *desc_chain_head, uint32_t *desc_chain_len, uint8_t perm) { uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)]; uint16_t vec_id = *vec_idx; uint32_t len = 0; uint64_t dlen; uint32_t nr_descs = vq->size; uint32_t cnt = 0; struct vring_desc *descs = vq->desc; struct vring_desc *idesc = NULL; if (unlikely(idx >= vq->size)) return -1; *desc_chain_head = idx; if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) { dlen = vq->desc[idx].len; nr_descs = dlen / sizeof(struct vring_desc); if (unlikely(nr_descs > vq->size)) return -1; descs = (struct vring_desc *)(uintptr_t) vhost_iova_to_vva(dev, vq, vq->desc[idx].addr, &dlen, VHOST_ACCESS_RO); if (unlikely(!descs)) return -1; if (unlikely(dlen < vq->desc[idx].len)) { /* * The indirect desc table is not contiguous * in process VA space, we have to copy it. */ idesc = alloc_copy_ind_table(dev, vq, vq->desc[idx].addr, vq->desc[idx].len); if (unlikely(!idesc)) return -1; descs = idesc; } idx = 0; } while (1) { if (unlikely(idx >= nr_descs || cnt++ >= nr_descs)) { free_ind_table(idesc); return -1; } len += descs[idx].len; if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id, descs[idx].addr, descs[idx].len, perm))) { free_ind_table(idesc); return -1; } if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0) break; idx = descs[idx].next; } *desc_chain_len = len; *vec_idx = vec_id; if (unlikely(!!idesc)) free_ind_table(idesc); return 0; } /* * Returns -1 on fail, 0 on success */ static inline int reserve_avail_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq, uint32_t size, struct buf_vector *buf_vec, uint16_t *num_buffers, uint16_t avail_head, uint16_t *nr_vec) { uint16_t cur_idx; uint16_t vec_idx = 0; uint16_t max_tries, tries = 0; uint16_t head_idx = 0; uint32_t len = 0; *num_buffers = 0; cur_idx = vq->last_avail_idx; if (rxvq_is_mergeable(dev)) max_tries = vq->size - 1; else max_tries = 1; while (size > 0) { if (unlikely(cur_idx == avail_head)) return -1; /* * if we tried all available ring items, and still * can't get enough buf, it means something abnormal * happened. */ if (unlikely(++tries > max_tries)) return -1; if (unlikely(fill_vec_buf_split(dev, vq, cur_idx, &vec_idx, buf_vec, &head_idx, &len, VHOST_ACCESS_RW) < 0)) return -1; len = RTE_MIN(len, size); update_shadow_used_ring_split(vq, head_idx, len); size -= len; cur_idx++; *num_buffers += 1; } *nr_vec = vec_idx; return 0; } static __rte_always_inline int fill_vec_buf_packed_indirect(struct virtio_net *dev, struct vhost_virtqueue *vq, struct vring_packed_desc *desc, uint16_t *vec_idx, struct buf_vector *buf_vec, uint32_t *len, uint8_t perm) { uint16_t i; uint32_t nr_descs; uint16_t vec_id = *vec_idx; uint64_t dlen; struct vring_packed_desc *descs, *idescs = NULL; dlen = desc->len; descs = (struct vring_packed_desc *)(uintptr_t) vhost_iova_to_vva(dev, vq, desc->addr, &dlen, VHOST_ACCESS_RO); if (unlikely(!descs)) return -1; if (unlikely(dlen < desc->len)) { /* * The indirect desc table is not contiguous * in process VA space, we have to copy it. */ idescs = alloc_copy_ind_table(dev, vq, desc->addr, desc->len); if (unlikely(!idescs)) return -1; descs = idescs; } nr_descs = desc->len / sizeof(struct vring_packed_desc); if (unlikely(nr_descs >= vq->size)) { free_ind_table(idescs); return -1; } for (i = 0; i < nr_descs; i++) { if (unlikely(vec_id >= BUF_VECTOR_MAX)) { free_ind_table(idescs); return -1; } *len += descs[i].len; if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id, descs[i].addr, descs[i].len, perm))) return -1; } *vec_idx = vec_id; if (unlikely(!!idescs)) free_ind_table(idescs); return 0; } static __rte_always_inline int fill_vec_buf_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, uint16_t avail_idx, uint16_t *desc_count, struct buf_vector *buf_vec, uint16_t *vec_idx, uint16_t *buf_id, uint32_t *len, uint8_t perm) { bool wrap_counter = vq->avail_wrap_counter; struct vring_packed_desc *descs = vq->desc_packed; uint16_t vec_id = *vec_idx; if (avail_idx < vq->last_avail_idx) wrap_counter ^= 1; if (unlikely(!desc_is_avail(&descs[avail_idx], wrap_counter))) return -1; /* * The ordering between desc flags and desc * content reads need to be enforced. */ rte_smp_rmb(); *desc_count = 0; *len = 0; while (1) { if (unlikely(vec_id >= BUF_VECTOR_MAX)) return -1; if (unlikely(*desc_count >= vq->size)) return -1; *desc_count += 1; *buf_id = descs[avail_idx].id; if (descs[avail_idx].flags & VRING_DESC_F_INDIRECT) { if (unlikely(fill_vec_buf_packed_indirect(dev, vq, &descs[avail_idx], &vec_id, buf_vec, len, perm) < 0)) return -1; } else { *len += descs[avail_idx].len; if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id, descs[avail_idx].addr, descs[avail_idx].len, perm))) return -1; } if ((descs[avail_idx].flags & VRING_DESC_F_NEXT) == 0) break; if (++avail_idx >= vq->size) { avail_idx -= vq->size; wrap_counter ^= 1; } } *vec_idx = vec_id; return 0; } /* * Returns -1 on fail, 0 on success */ static inline int reserve_avail_buf_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, uint32_t size, struct buf_vector *buf_vec, uint16_t *nr_vec, uint16_t *num_buffers, uint16_t *nr_descs) { uint16_t avail_idx; uint16_t vec_idx = 0; uint16_t max_tries, tries = 0; uint16_t buf_id = 0; uint32_t len = 0; uint16_t desc_count; *num_buffers = 0; avail_idx = vq->last_avail_idx; if (rxvq_is_mergeable(dev)) max_tries = vq->size - 1; else max_tries = 1; while (size > 0) { /* * if we tried all available ring items, and still * can't get enough buf, it means something abnormal * happened. */ if (unlikely(++tries > max_tries)) return -1; if (unlikely(fill_vec_buf_packed(dev, vq, avail_idx, &desc_count, buf_vec, &vec_idx, &buf_id, &len, VHOST_ACCESS_RW) < 0)) return -1; len = RTE_MIN(len, size); update_shadow_used_ring_packed(vq, buf_id, len, desc_count); size -= len; avail_idx += desc_count; if (avail_idx >= vq->size) avail_idx -= vq->size; *nr_descs += desc_count; *num_buffers += 1; } *nr_vec = vec_idx; return 0; } static __rte_always_inline int copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *m, struct buf_vector *buf_vec, uint16_t nr_vec, uint16_t num_buffers) { uint32_t vec_idx = 0; uint32_t mbuf_offset, mbuf_avail; uint32_t buf_offset, buf_avail; uint64_t buf_addr, buf_iova, buf_len; uint32_t cpy_len; uint64_t hdr_addr; struct rte_mbuf *hdr_mbuf; struct batch_copy_elem *batch_copy = vq->batch_copy_elems; struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL; int error = 0; if (unlikely(m == NULL)) { error = -1; goto out; } buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; if (nr_vec > 1) rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr); if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) { error = -1; goto out; } hdr_mbuf = m; hdr_addr = buf_addr; if (unlikely(buf_len < dev->vhost_hlen)) hdr = &tmp_hdr; else hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr; VHOST_LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n", dev->vid, num_buffers); if (unlikely(buf_len < dev->vhost_hlen)) { buf_offset = dev->vhost_hlen - buf_len; vec_idx++; buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; buf_avail = buf_len - buf_offset; } else { buf_offset = dev->vhost_hlen; buf_avail = buf_len - dev->vhost_hlen; } mbuf_avail = rte_pktmbuf_data_len(m); mbuf_offset = 0; while (mbuf_avail != 0 || m->next != NULL) { /* done with current buf, get the next one */ if (buf_avail == 0) { vec_idx++; if (unlikely(vec_idx >= nr_vec)) { error = -1; goto out; } buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; /* Prefetch next buffer address. */ if (vec_idx + 1 < nr_vec) rte_prefetch0((void *)(uintptr_t) buf_vec[vec_idx + 1].buf_addr); buf_offset = 0; buf_avail = buf_len; } /* done with current mbuf, get the next one */ if (mbuf_avail == 0) { m = m->next; mbuf_offset = 0; mbuf_avail = rte_pktmbuf_data_len(m); } if (hdr_addr) { virtio_enqueue_offload(hdr_mbuf, &hdr->hdr); if (rxvq_is_mergeable(dev)) ASSIGN_UNLESS_EQUAL(hdr->num_buffers, num_buffers); if (unlikely(hdr == &tmp_hdr)) { uint64_t len; uint64_t remain = dev->vhost_hlen; uint64_t src = (uint64_t)(uintptr_t)hdr, dst; uint64_t iova = buf_vec[0].buf_iova; uint16_t hdr_vec_idx = 0; while (remain) { len = RTE_MIN(remain, buf_vec[hdr_vec_idx].buf_len); dst = buf_vec[hdr_vec_idx].buf_addr; rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len); PRINT_PACKET(dev, (uintptr_t)dst, (uint32_t)len, 0); vhost_log_cache_write(dev, vq, iova, len); remain -= len; iova += len; src += len; hdr_vec_idx++; } } else { PRINT_PACKET(dev, (uintptr_t)hdr_addr, dev->vhost_hlen, 0); vhost_log_cache_write(dev, vq, buf_vec[0].buf_iova, dev->vhost_hlen); } hdr_addr = 0; } cpy_len = RTE_MIN(buf_avail, mbuf_avail); if (likely(cpy_len > MAX_BATCH_LEN || vq->batch_copy_nb_elems >= vq->size)) { rte_memcpy((void *)((uintptr_t)(buf_addr + buf_offset)), rte_pktmbuf_mtod_offset(m, void *, mbuf_offset), cpy_len); vhost_log_cache_write(dev, vq, buf_iova + buf_offset, cpy_len); PRINT_PACKET(dev, (uintptr_t)(buf_addr + buf_offset), cpy_len, 0); } else { batch_copy[vq->batch_copy_nb_elems].dst = (void *)((uintptr_t)(buf_addr + buf_offset)); batch_copy[vq->batch_copy_nb_elems].src = rte_pktmbuf_mtod_offset(m, void *, mbuf_offset); batch_copy[vq->batch_copy_nb_elems].log_addr = buf_iova + buf_offset; batch_copy[vq->batch_copy_nb_elems].len = cpy_len; vq->batch_copy_nb_elems++; } mbuf_avail -= cpy_len; mbuf_offset += cpy_len; buf_avail -= cpy_len; buf_offset += cpy_len; } out: return error; } static __rte_always_inline uint32_t virtio_dev_rx_split(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint32_t count) { uint32_t pkt_idx = 0; uint16_t num_buffers; struct buf_vector buf_vec[BUF_VECTOR_MAX]; uint16_t avail_head; rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]); avail_head = *((volatile uint16_t *)&vq->avail->idx); /* * The ordering between avail index and * desc reads needs to be enforced. */ rte_smp_rmb(); for (pkt_idx = 0; pkt_idx < count; pkt_idx++) { uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen; uint16_t nr_vec = 0; if (unlikely(reserve_avail_buf_split(dev, vq, pkt_len, buf_vec, &num_buffers, avail_head, &nr_vec) < 0)) { VHOST_LOG_DEBUG(VHOST_DATA, "(%d) failed to get enough desc from vring\n", dev->vid); vq->shadow_used_idx -= num_buffers; break; } rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr); VHOST_LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n", dev->vid, vq->last_avail_idx, vq->last_avail_idx + num_buffers); if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx], buf_vec, nr_vec, num_buffers) < 0) { vq->shadow_used_idx -= num_buffers; break; } vq->last_avail_idx += num_buffers; } do_data_copy_enqueue(dev, vq); if (likely(vq->shadow_used_idx)) { flush_shadow_used_ring_split(dev, vq); vhost_vring_call_split(dev, vq); } return pkt_idx; } static __rte_always_inline uint32_t virtio_dev_rx_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf **pkts, uint32_t count) { uint32_t pkt_idx = 0; uint16_t num_buffers; struct buf_vector buf_vec[BUF_VECTOR_MAX]; for (pkt_idx = 0; pkt_idx < count; pkt_idx++) { uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen; uint16_t nr_vec = 0; uint16_t nr_descs = 0; if (unlikely(reserve_avail_buf_packed(dev, vq, pkt_len, buf_vec, &nr_vec, &num_buffers, &nr_descs) < 0)) { VHOST_LOG_DEBUG(VHOST_DATA, "(%d) failed to get enough desc from vring\n", dev->vid); vq->shadow_used_idx -= num_buffers; break; } rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr); VHOST_LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n", dev->vid, vq->last_avail_idx, vq->last_avail_idx + num_buffers); if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx], buf_vec, nr_vec, num_buffers) < 0) { vq->shadow_used_idx -= num_buffers; break; } vq->last_avail_idx += nr_descs; if (vq->last_avail_idx >= vq->size) { vq->last_avail_idx -= vq->size; vq->avail_wrap_counter ^= 1; } } do_data_copy_enqueue(dev, vq); if (likely(vq->shadow_used_idx)) { flush_shadow_used_ring_packed(dev, vq); vhost_vring_call_packed(dev, vq); } return pkt_idx; } static __rte_always_inline uint32_t virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id, struct rte_mbuf **pkts, uint32_t count) { struct vhost_virtqueue *vq; uint32_t nb_tx = 0; VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__); if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) { RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n", dev->vid, __func__, queue_id); return 0; } vq = dev->virtqueue[queue_id]; rte_spinlock_lock(&vq->access_lock); if (unlikely(vq->enabled == 0)) goto out_access_unlock; if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_lock(vq); if (unlikely(vq->access_ok == 0)) if (unlikely(vring_translate(dev, vq) < 0)) goto out; count = RTE_MIN((uint32_t)MAX_PKT_BURST, count); if (count == 0) goto out; if (vq_is_packed(dev)) nb_tx = virtio_dev_rx_packed(dev, vq, pkts, count); else nb_tx = virtio_dev_rx_split(dev, vq, pkts, count); out: if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_unlock(vq); out_access_unlock: rte_spinlock_unlock(&vq->access_lock); return nb_tx; } uint16_t rte_vhost_enqueue_burst(int vid, uint16_t queue_id, struct rte_mbuf **pkts, uint16_t count) { struct virtio_net *dev = get_device(vid); if (!dev) return 0; if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) { RTE_LOG(ERR, VHOST_DATA, "(%d) %s: built-in vhost net backend is disabled.\n", dev->vid, __func__); return 0; } return virtio_dev_rx(dev, queue_id, pkts, count); } static inline bool virtio_net_with_host_offload(struct virtio_net *dev) { if (dev->features & ((1ULL << VIRTIO_NET_F_CSUM) | (1ULL << VIRTIO_NET_F_HOST_ECN) | (1ULL << VIRTIO_NET_F_HOST_TSO4) | (1ULL << VIRTIO_NET_F_HOST_TSO6) | (1ULL << VIRTIO_NET_F_HOST_UFO))) return true; return false; } static void parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr) { struct ipv4_hdr *ipv4_hdr; struct ipv6_hdr *ipv6_hdr; void *l3_hdr = NULL; struct ether_hdr *eth_hdr; uint16_t ethertype; eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); m->l2_len = sizeof(struct ether_hdr); ethertype = rte_be_to_cpu_16(eth_hdr->ether_type); if (ethertype == ETHER_TYPE_VLAN) { struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1); m->l2_len += sizeof(struct vlan_hdr); ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto); } l3_hdr = (char *)eth_hdr + m->l2_len; switch (ethertype) { case ETHER_TYPE_IPv4: ipv4_hdr = l3_hdr; *l4_proto = ipv4_hdr->next_proto_id; m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4; *l4_hdr = (char *)l3_hdr + m->l3_len; m->ol_flags |= PKT_TX_IPV4; break; case ETHER_TYPE_IPv6: ipv6_hdr = l3_hdr; *l4_proto = ipv6_hdr->proto; m->l3_len = sizeof(struct ipv6_hdr); *l4_hdr = (char *)l3_hdr + m->l3_len; m->ol_flags |= PKT_TX_IPV6; break; default: m->l3_len = 0; *l4_proto = 0; *l4_hdr = NULL; break; } } static __rte_always_inline void vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m) { uint16_t l4_proto = 0; void *l4_hdr = NULL; struct tcp_hdr *tcp_hdr = NULL; if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE) return; parse_ethernet(m, &l4_proto, &l4_hdr); if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) { if (hdr->csum_start == (m->l2_len + m->l3_len)) { switch (hdr->csum_offset) { case (offsetof(struct tcp_hdr, cksum)): if (l4_proto == IPPROTO_TCP) m->ol_flags |= PKT_TX_TCP_CKSUM; break; case (offsetof(struct udp_hdr, dgram_cksum)): if (l4_proto == IPPROTO_UDP) m->ol_flags |= PKT_TX_UDP_CKSUM; break; case (offsetof(struct sctp_hdr, cksum)): if (l4_proto == IPPROTO_SCTP) m->ol_flags |= PKT_TX_SCTP_CKSUM; break; default: break; } } } if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) { switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: case VIRTIO_NET_HDR_GSO_TCPV6: tcp_hdr = l4_hdr; m->ol_flags |= PKT_TX_TCP_SEG; m->tso_segsz = hdr->gso_size; m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; break; case VIRTIO_NET_HDR_GSO_UDP: m->ol_flags |= PKT_TX_UDP_SEG; m->tso_segsz = hdr->gso_size; m->l4_len = sizeof(struct udp_hdr); break; default: RTE_LOG(WARNING, VHOST_DATA, "unsupported gso type %u.\n", hdr->gso_type); break; } } } static __rte_always_inline void put_zmbuf(struct zcopy_mbuf *zmbuf) { zmbuf->in_use = 0; } static __rte_always_inline int copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq, struct buf_vector *buf_vec, uint16_t nr_vec, struct rte_mbuf *m, struct rte_mempool *mbuf_pool) { uint32_t buf_avail, buf_offset; uint64_t buf_addr, buf_iova, buf_len; uint32_t mbuf_avail, mbuf_offset; uint32_t cpy_len; struct rte_mbuf *cur = m, *prev = m; struct virtio_net_hdr tmp_hdr; struct virtio_net_hdr *hdr = NULL; /* A counter to avoid desc dead loop chain */ uint16_t vec_idx = 0; struct batch_copy_elem *batch_copy = vq->batch_copy_elems; int error = 0; buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) { error = -1; goto out; } if (likely(nr_vec > 1)) rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr); if (virtio_net_with_host_offload(dev)) { if (unlikely(buf_len < sizeof(struct virtio_net_hdr))) { uint64_t len; uint64_t remain = sizeof(struct virtio_net_hdr); uint64_t src; uint64_t dst = (uint64_t)(uintptr_t)&tmp_hdr; uint16_t hdr_vec_idx = 0; /* * No luck, the virtio-net header doesn't fit * in a contiguous virtual area. */ while (remain) { len = RTE_MIN(remain, buf_vec[hdr_vec_idx].buf_len); src = buf_vec[hdr_vec_idx].buf_addr; rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len); remain -= len; dst += len; hdr_vec_idx++; } hdr = &tmp_hdr; } else { hdr = (struct virtio_net_hdr *)((uintptr_t)buf_addr); rte_prefetch0(hdr); } } /* * A virtio driver normally uses at least 2 desc buffers * for Tx: the first for storing the header, and others * for storing the data. */ if (unlikely(buf_len < dev->vhost_hlen)) { buf_offset = dev->vhost_hlen - buf_len; vec_idx++; buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; buf_avail = buf_len - buf_offset; } else if (buf_len == dev->vhost_hlen) { if (unlikely(++vec_idx >= nr_vec)) goto out; buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; buf_offset = 0; buf_avail = buf_len; } else { buf_offset = dev->vhost_hlen; buf_avail = buf_vec[vec_idx].buf_len - dev->vhost_hlen; } rte_prefetch0((void *)(uintptr_t) (buf_addr + buf_offset)); PRINT_PACKET(dev, (uintptr_t)(buf_addr + buf_offset), (uint32_t)buf_avail, 0); mbuf_offset = 0; mbuf_avail = m->buf_len - RTE_PKTMBUF_HEADROOM; while (1) { uint64_t hpa; cpy_len = RTE_MIN(buf_avail, mbuf_avail); /* * A desc buf might across two host physical pages that are * not continuous. In such case (gpa_to_hpa returns 0), data * will be copied even though zero copy is enabled. */ if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev, buf_iova + buf_offset, cpy_len)))) { cur->data_len = cpy_len; cur->data_off = 0; cur->buf_addr = (void *)(uintptr_t)(buf_addr + buf_offset); cur->buf_iova = hpa; /* * In zero copy mode, one mbuf can only reference data * for one or partial of one desc buff. */ mbuf_avail = cpy_len; } else { if (likely(cpy_len > MAX_BATCH_LEN || vq->batch_copy_nb_elems >= vq->size || (hdr && cur == m))) { rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *, mbuf_offset), (void *)((uintptr_t)(buf_addr + buf_offset)), cpy_len); } else { batch_copy[vq->batch_copy_nb_elems].dst = rte_pktmbuf_mtod_offset(cur, void *, mbuf_offset); batch_copy[vq->batch_copy_nb_elems].src = (void *)((uintptr_t)(buf_addr + buf_offset)); batch_copy[vq->batch_copy_nb_elems].len = cpy_len; vq->batch_copy_nb_elems++; } } mbuf_avail -= cpy_len; mbuf_offset += cpy_len; buf_avail -= cpy_len; buf_offset += cpy_len; /* This buf reaches to its end, get the next one */ if (buf_avail == 0) { if (++vec_idx >= nr_vec) break; buf_addr = buf_vec[vec_idx].buf_addr; buf_iova = buf_vec[vec_idx].buf_iova; buf_len = buf_vec[vec_idx].buf_len; /* * Prefecth desc n + 1 buffer while * desc n buffer is processed. */ if (vec_idx + 1 < nr_vec) rte_prefetch0((void *)(uintptr_t) buf_vec[vec_idx + 1].buf_addr); buf_offset = 0; buf_avail = buf_len; PRINT_PACKET(dev, (uintptr_t)buf_addr, (uint32_t)buf_avail, 0); } /* * This mbuf reaches to its end, get a new one * to hold more data. */ if (mbuf_avail == 0) { cur = rte_pktmbuf_alloc(mbuf_pool); if (unlikely(cur == NULL)) { RTE_LOG(ERR, VHOST_DATA, "Failed to " "allocate memory for mbuf.\n"); error = -1; goto out; } if (unlikely(dev->dequeue_zero_copy)) rte_mbuf_refcnt_update(cur, 1); prev->next = cur; prev->data_len = mbuf_offset; m->nb_segs += 1; m->pkt_len += mbuf_offset; prev = cur; mbuf_offset = 0; mbuf_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM; } } prev->data_len = mbuf_offset; m->pkt_len += mbuf_offset; if (hdr) vhost_dequeue_offload(hdr, m); out: return error; } static __rte_always_inline struct zcopy_mbuf * get_zmbuf(struct vhost_virtqueue *vq) { uint16_t i; uint16_t last; int tries = 0; /* search [last_zmbuf_idx, zmbuf_size) */ i = vq->last_zmbuf_idx; last = vq->zmbuf_size; again: for (; i < last; i++) { if (vq->zmbufs[i].in_use == 0) { vq->last_zmbuf_idx = i + 1; vq->zmbufs[i].in_use = 1; return &vq->zmbufs[i]; } } tries++; if (tries == 1) { /* search [0, last_zmbuf_idx) */ i = 0; last = vq->last_zmbuf_idx; goto again; } return NULL; } static __rte_always_inline bool mbuf_is_consumed(struct rte_mbuf *m) { while (m) { if (rte_mbuf_refcnt_read(m) > 1) return false; m = m->next; } return true; } static __rte_always_inline void restore_mbuf(struct rte_mbuf *m) { uint32_t mbuf_size, priv_size; while (m) { priv_size = rte_pktmbuf_priv_size(m->pool); mbuf_size = sizeof(struct rte_mbuf) + priv_size; /* start of buffer is after mbuf structure and priv data */ m->buf_addr = (char *)m + mbuf_size; m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size; m = m->next; } } static __rte_always_inline uint16_t virtio_dev_tx_split(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count) { uint16_t i; uint16_t free_entries; if (unlikely(dev->dequeue_zero_copy)) { struct zcopy_mbuf *zmbuf, *next; for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list); zmbuf != NULL; zmbuf = next) { next = TAILQ_NEXT(zmbuf, next); if (mbuf_is_consumed(zmbuf->mbuf)) { update_shadow_used_ring_split(vq, zmbuf->desc_idx, 0); TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next); restore_mbuf(zmbuf->mbuf); rte_pktmbuf_free(zmbuf->mbuf); put_zmbuf(zmbuf); vq->nr_zmbuf -= 1; } } if (likely(vq->shadow_used_idx)) { flush_shadow_used_ring_split(dev, vq); vhost_vring_call_split(dev, vq); } } rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]); free_entries = *((volatile uint16_t *)&vq->avail->idx) - vq->last_avail_idx; if (free_entries == 0) return 0; /* * The ordering between avail index and * desc reads needs to be enforced. */ rte_smp_rmb(); VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__); count = RTE_MIN(count, MAX_PKT_BURST); count = RTE_MIN(count, free_entries); VHOST_LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n", dev->vid, count); for (i = 0; i < count; i++) { struct buf_vector buf_vec[BUF_VECTOR_MAX]; uint16_t head_idx; uint32_t dummy_len; uint16_t nr_vec = 0; int err; if (unlikely(fill_vec_buf_split(dev, vq, vq->last_avail_idx + i, &nr_vec, buf_vec, &head_idx, &dummy_len, VHOST_ACCESS_RO) < 0)) break; if (likely(dev->dequeue_zero_copy == 0)) update_shadow_used_ring_split(vq, head_idx, 0); rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr); pkts[i] = rte_pktmbuf_alloc(mbuf_pool); if (unlikely(pkts[i] == NULL)) { RTE_LOG(ERR, VHOST_DATA, "Failed to allocate memory for mbuf.\n"); break; } err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i], mbuf_pool); if (unlikely(err)) { rte_pktmbuf_free(pkts[i]); break; } if (unlikely(dev->dequeue_zero_copy)) { struct zcopy_mbuf *zmbuf; zmbuf = get_zmbuf(vq); if (!zmbuf) { rte_pktmbuf_free(pkts[i]); break; } zmbuf->mbuf = pkts[i]; zmbuf->desc_idx = head_idx; /* * Pin lock the mbuf; we will check later to see * whether the mbuf is freed (when we are the last * user) or not. If that's the case, we then could * update the used ring safely. */ rte_mbuf_refcnt_update(pkts[i], 1); vq->nr_zmbuf += 1; TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next); } } vq->last_avail_idx += i; if (likely(dev->dequeue_zero_copy == 0)) { do_data_copy_dequeue(vq); if (unlikely(i < count)) vq->shadow_used_idx = i; if (likely(vq->shadow_used_idx)) { flush_shadow_used_ring_split(dev, vq); vhost_vring_call_split(dev, vq); } } return i; } static __rte_always_inline uint16_t virtio_dev_tx_packed(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count) { uint16_t i; rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]); if (unlikely(dev->dequeue_zero_copy)) { struct zcopy_mbuf *zmbuf, *next; for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list); zmbuf != NULL; zmbuf = next) { next = TAILQ_NEXT(zmbuf, next); if (mbuf_is_consumed(zmbuf->mbuf)) { update_shadow_used_ring_packed(vq, zmbuf->desc_idx, 0, zmbuf->desc_count); TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next); restore_mbuf(zmbuf->mbuf); rte_pktmbuf_free(zmbuf->mbuf); put_zmbuf(zmbuf); vq->nr_zmbuf -= 1; } } if (likely(vq->shadow_used_idx)) { flush_shadow_used_ring_packed(dev, vq); vhost_vring_call_packed(dev, vq); } } VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__); count = RTE_MIN(count, MAX_PKT_BURST); VHOST_LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n", dev->vid, count); for (i = 0; i < count; i++) { struct buf_vector buf_vec[BUF_VECTOR_MAX]; uint16_t buf_id; uint32_t dummy_len; uint16_t desc_count, nr_vec = 0; int err; if (unlikely(fill_vec_buf_packed(dev, vq, vq->last_avail_idx, &desc_count, buf_vec, &nr_vec, &buf_id, &dummy_len, VHOST_ACCESS_RO) < 0)) break; if (likely(dev->dequeue_zero_copy == 0)) update_shadow_used_ring_packed(vq, buf_id, 0, desc_count); rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr); pkts[i] = rte_pktmbuf_alloc(mbuf_pool); if (unlikely(pkts[i] == NULL)) { RTE_LOG(ERR, VHOST_DATA, "Failed to allocate memory for mbuf.\n"); break; } err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i], mbuf_pool); if (unlikely(err)) { rte_pktmbuf_free(pkts[i]); break; } if (unlikely(dev->dequeue_zero_copy)) { struct zcopy_mbuf *zmbuf; zmbuf = get_zmbuf(vq); if (!zmbuf) { rte_pktmbuf_free(pkts[i]); break; } zmbuf->mbuf = pkts[i]; zmbuf->desc_idx = buf_id; zmbuf->desc_count = desc_count; /* * Pin lock the mbuf; we will check later to see * whether the mbuf is freed (when we are the last * user) or not. If that's the case, we then could * update the used ring safely. */ rte_mbuf_refcnt_update(pkts[i], 1); vq->nr_zmbuf += 1; TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next); } vq->last_avail_idx += desc_count; if (vq->last_avail_idx >= vq->size) { vq->last_avail_idx -= vq->size; vq->avail_wrap_counter ^= 1; } } if (likely(dev->dequeue_zero_copy == 0)) { do_data_copy_dequeue(vq); if (unlikely(i < count)) vq->shadow_used_idx = i; if (likely(vq->shadow_used_idx)) { flush_shadow_used_ring_packed(dev, vq); vhost_vring_call_packed(dev, vq); } } return i; } uint16_t rte_vhost_dequeue_burst(int vid, uint16_t queue_id, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count) { struct virtio_net *dev; struct rte_mbuf *rarp_mbuf = NULL; struct vhost_virtqueue *vq; dev = get_device(vid); if (!dev) return 0; if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) { RTE_LOG(ERR, VHOST_DATA, "(%d) %s: built-in vhost net backend is disabled.\n", dev->vid, __func__); return 0; } if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) { RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n", dev->vid, __func__, queue_id); return 0; } vq = dev->virtqueue[queue_id]; if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0)) return 0; if (unlikely(vq->enabled == 0)) { count = 0; goto out_access_unlock; } if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_lock(vq); if (unlikely(vq->access_ok == 0)) if (unlikely(vring_translate(dev, vq) < 0)) { count = 0; goto out; } /* * Construct a RARP broadcast packet, and inject it to the "pkts" * array, to looks like that guest actually send such packet. * * Check user_send_rarp() for more information. * * broadcast_rarp shares a cacheline in the virtio_net structure * with some fields that are accessed during enqueue and * rte_atomic16_cmpset() causes a write if using cmpxchg. This could * result in false sharing between enqueue and dequeue. * * Prevent unnecessary false sharing by reading broadcast_rarp first * and only performing cmpset if the read indicates it is likely to * be set. */ if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) && rte_atomic16_cmpset((volatile uint16_t *) &dev->broadcast_rarp.cnt, 1, 0))) { rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac); if (rarp_mbuf == NULL) { RTE_LOG(ERR, VHOST_DATA, "Failed to make RARP packet.\n"); count = 0; goto out; } count -= 1; } if (vq_is_packed(dev)) count = virtio_dev_tx_packed(dev, vq, mbuf_pool, pkts, count); else count = virtio_dev_tx_split(dev, vq, mbuf_pool, pkts, count); out: if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) vhost_user_iotlb_rd_unlock(vq); out_access_unlock: rte_spinlock_unlock(&vq->access_lock); if (unlikely(rarp_mbuf != NULL)) { /* * Inject it to the head of "pkts" array, so that switch's mac * learning table will get updated first. */ memmove(&pkts[1], pkts, count * sizeof(struct rte_mbuf *)); pkts[0] = rarp_mbuf; count += 1; } return count; }