/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include "test.h" #include #ifdef __INTEL_COMPILER #pragma warning(disable:2259) /* conversion may lose significant bits */ #pragma warning(disable:181) /* Arg incompatible with format string */ #endif #define TEST_HZ_PER_KHZ 1000 #define TEST_NSEC_MARGIN 500 /**< nanosecond margin when calculating clk freq */ #define MAX_QEMPTY_TIME_MSEC 50000 #define MSEC_PER_SEC 1000 /**< Milli-seconds per second */ #define USEC_PER_MSEC 1000 /**< Micro-seconds per milli-second */ #define USEC_PER_SEC 1000000 /**< Micro-seconds per second */ #define NSEC_PER_SEC (USEC_PER_SEC * 1000) /**< Nano-seconds per second */ /**< structures for testing rte_red performance and function */ struct test_rte_red_config { /**< Test structure for RTE_RED config */ struct rte_red_config *rconfig; /**< RTE_RED configuration parameters */ uint8_t num_cfg; /**< Number of RTE_RED configs to test */ uint8_t *wq_log2; /**< Test wq_log2 value to use */ uint32_t min_th; /**< Queue minimum threshold */ uint32_t max_th; /**< Queue maximum threshold */ uint8_t *maxp_inv; /**< Inverse mark probability */ }; struct test_queue { /**< Test structure for RTE_RED Queues */ struct rte_red *rdata; /**< RTE_RED runtime data */ uint32_t num_queues; /**< Number of RTE_RED queues to test */ uint32_t *qconfig; /**< Configuration of RTE_RED queues for test */ uint32_t *q; /**< Queue size */ uint32_t q_ramp_up; /**< Num of enqueues to ramp up the queue */ uint32_t avg_ramp_up; /**< Average num of enqueues to ramp up the queue */ uint32_t avg_tolerance; /**< Tolerance in queue average */ double drop_tolerance; /**< Drop tolerance of packets not enqueued */ }; struct test_var { /**< Test variables used for testing RTE_RED */ uint32_t wait_usec; /**< Micro second wait interval */ uint32_t num_iterations; /**< Number of test iterations */ uint32_t num_ops; /**< Number of test operations */ uint64_t clk_freq; /**< CPU clock frequency */ uint32_t sleep_sec; /**< Seconds to sleep */ uint32_t *dropped; /**< Test operations dropped */ uint32_t *enqueued; /**< Test operations enqueued */ }; struct test_config { /**< Master test structure for RTE_RED */ const char *ifname; /**< Interface name */ const char *msg; /**< Test message for display */ const char *htxt; /**< Header txt display for result output */ struct test_rte_red_config *tconfig; /**< Test structure for RTE_RED config */ struct test_queue *tqueue; /**< Test structure for RTE_RED Queues */ struct test_var *tvar; /**< Test variables used for testing RTE_RED */ uint32_t *tlevel; /**< Queue levels */ }; enum test_result { FAIL = 0, PASS }; /**< Test structure to define tests to run */ struct tests { struct test_config *testcfg; enum test_result (*testfn)(struct test_config *); }; struct rdtsc_prof { uint64_t clk_start; uint64_t clk_min; /**< min clocks */ uint64_t clk_max; /**< max clocks */ uint64_t clk_avgc; /**< count to calc average */ double clk_avg; /**< cumulative sum to calc average */ const char *name; }; static const uint64_t port_speed_bytes = (10ULL*1000ULL*1000ULL*1000ULL)/8ULL; static double inv_cycles_per_byte = 0; static double pkt_time_usec = 0; static void init_port_ts(uint64_t cpu_clock) { double cycles_per_byte = (double)(cpu_clock) / (double)(port_speed_bytes); inv_cycles_per_byte = 1.0 / cycles_per_byte; pkt_time_usec = 1000000.0 / ((double)port_speed_bytes / (double)RTE_RED_S); } static uint64_t get_port_ts(void) { return (uint64_t)((double)rte_rdtsc() * inv_cycles_per_byte); } static void rdtsc_prof_init(struct rdtsc_prof *p, const char *name) { p->clk_min = (uint64_t)(-1LL); p->clk_max = 0; p->clk_avg = 0; p->clk_avgc = 0; p->name = name; } static inline void rdtsc_prof_start(struct rdtsc_prof *p) { p->clk_start = rte_rdtsc_precise(); } static inline void rdtsc_prof_end(struct rdtsc_prof *p) { uint64_t clk_start = rte_rdtsc() - p->clk_start; p->clk_avgc++; p->clk_avg += (double) clk_start; if (clk_start > p->clk_max) p->clk_max = clk_start; if (clk_start < p->clk_min) p->clk_min = clk_start; } static void rdtsc_prof_print(struct rdtsc_prof *p) { if (p->clk_avgc>0) { printf("RDTSC stats for %s: n=%" PRIu64 ", min=%" PRIu64 ", max=%" PRIu64 ", avg=%.1f\n", p->name, p->clk_avgc, p->clk_min, p->clk_max, (p->clk_avg / ((double) p->clk_avgc))); } } static uint32_t rte_red_get_avg_int(const struct rte_red_config *red_cfg, struct rte_red *red) { /** * scale by 1/n and convert from fixed-point to integer */ return red->avg >> (RTE_RED_SCALING + red_cfg->wq_log2); } static double rte_red_get_avg_float(const struct rte_red_config *red_cfg, struct rte_red *red) { /** * scale by 1/n and convert from fixed-point to floating-point */ return ldexp((double)red->avg, -(RTE_RED_SCALING + red_cfg->wq_log2)); } static void rte_red_set_avg_int(const struct rte_red_config *red_cfg, struct rte_red *red, uint32_t avg) { /** * scale by n and convert from integer to fixed-point */ red->avg = avg << (RTE_RED_SCALING + red_cfg->wq_log2); } static double calc_exp_avg_on_empty(double avg, uint32_t n, uint32_t time_diff) { return avg * pow((1.0 - 1.0 / (double)n), (double)time_diff / pkt_time_usec); } static double calc_drop_rate(uint32_t enqueued, uint32_t dropped) { return (double)dropped / ((double)enqueued + (double)dropped); } /** * calculate the drop probability */ static double calc_drop_prob(uint32_t min_th, uint32_t max_th, uint32_t maxp_inv, uint32_t avg) { double drop_prob = 0.0; if (avg < min_th) { drop_prob = 0.0; } else if (avg < max_th) { drop_prob = (1.0 / (double)maxp_inv) * ((double)(avg - min_th) / (double)(max_th - min_th)); } else { drop_prob = 1.0; } return drop_prob; } /** * check if drop rate matches drop probability within tolerance */ static int check_drop_rate(double *diff, double drop_rate, double drop_prob, double tolerance) { double abs_diff = 0.0; int ret = 1; abs_diff = fabs(drop_rate - drop_prob); if ((int)abs_diff == 0) { *diff = 0.0; } else { *diff = (abs_diff / drop_prob) * 100.0; if (*diff > tolerance) { ret = 0; } } return ret; } /** * check if average queue size is within tolerance */ static int check_avg(double *diff, double avg, double exp_avg, double tolerance) { double abs_diff = 0.0; int ret = 1; abs_diff = fabs(avg - exp_avg); if ((int)abs_diff == 0) { *diff = 0.0; } else { *diff = (abs_diff / exp_avg) * 100.0; if (*diff > tolerance) { ret = 0; } } return ret; } /** * initialize the test rte_red config */ static enum test_result test_rte_red_init(struct test_config *tcfg) { unsigned i = 0; tcfg->tvar->clk_freq = rte_get_timer_hz(); init_port_ts( tcfg->tvar->clk_freq ); for (i = 0; i < tcfg->tconfig->num_cfg; i++) { if (rte_red_config_init(&tcfg->tconfig->rconfig[i], (uint16_t)tcfg->tconfig->wq_log2[i], (uint16_t)tcfg->tconfig->min_th, (uint16_t)tcfg->tconfig->max_th, (uint16_t)tcfg->tconfig->maxp_inv[i]) != 0) { return FAIL; } } *tcfg->tqueue->q = 0; *tcfg->tvar->dropped = 0; *tcfg->tvar->enqueued = 0; return PASS; } /** * enqueue until actual queue size reaches target level */ static int increase_actual_qsize(struct rte_red_config *red_cfg, struct rte_red *red, uint32_t *q, uint32_t level, uint32_t attempts) { uint32_t i = 0; for (i = 0; i < attempts; i++) { int ret = 0; /** * enqueue */ ret = rte_red_enqueue(red_cfg, red, *q, get_port_ts() ); if (ret == 0) { if (++(*q) >= level) break; } } /** * check if target actual queue size has been reached */ if (*q != level) return -1; /** * success */ return 0; } /** * enqueue until average queue size reaches target level */ static int increase_average_qsize(struct rte_red_config *red_cfg, struct rte_red *red, uint32_t *q, uint32_t level, uint32_t num_ops) { uint32_t avg = 0; uint32_t i = 0; for (i = 0; i < num_ops; i++) { /** * enqueue */ rte_red_enqueue(red_cfg, red, *q, get_port_ts()); } /** * check if target average queue size has been reached */ avg = rte_red_get_avg_int(red_cfg, red); if (avg != level) return -1; /** * success */ return 0; } /** * setup default values for the functional test structures */ static struct rte_red_config ft_wrconfig[1]; static struct rte_red ft_rtdata[1]; static uint8_t ft_wq_log2[] = {9}; static uint8_t ft_maxp_inv[] = {10}; static uint32_t ft_qconfig[] = {0, 0, 1, 1}; static uint32_t ft_q[] ={0}; static uint32_t ft_dropped[] ={0}; static uint32_t ft_enqueued[] ={0}; static struct test_rte_red_config ft_tconfig = { .rconfig = ft_wrconfig, .num_cfg = RTE_DIM(ft_wrconfig), .wq_log2 = ft_wq_log2, .min_th = 32, .max_th = 128, .maxp_inv = ft_maxp_inv, }; static struct test_queue ft_tqueue = { .rdata = ft_rtdata, .num_queues = RTE_DIM(ft_rtdata), .qconfig = ft_qconfig, .q = ft_q, .q_ramp_up = 1000000, .avg_ramp_up = 1000000, .avg_tolerance = 5, /* 5 percent */ .drop_tolerance = 50, /* 50 percent */ }; static struct test_var ft_tvar = { .wait_usec = 10000, .num_iterations = 5, .num_ops = 10000, .clk_freq = 0, .dropped = ft_dropped, .enqueued = ft_enqueued, .sleep_sec = (MAX_QEMPTY_TIME_MSEC / MSEC_PER_SEC) + 2, }; /** * functional test enqueue/dequeue packets */ static void enqueue_dequeue_func(struct rte_red_config *red_cfg, struct rte_red *red, uint32_t *q, uint32_t num_ops, uint32_t *enqueued, uint32_t *dropped) { uint32_t i = 0; for (i = 0; i < num_ops; i++) { int ret = 0; /** * enqueue */ ret = rte_red_enqueue(red_cfg, red, *q, get_port_ts()); if (ret == 0) (*enqueued)++; else (*dropped)++; } } /** * Test F1: functional test 1 */ static uint32_t ft1_tlevels[] = {6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144}; static struct test_config func_test1_config = { .ifname = "functional test 1 interface", .msg = "functional test 1 : use one rte_red configuration,\n" " increase average queue size to various levels,\n" " compare drop rate to drop probability\n\n", .htxt = " " "avg queue size " "enqueued " "dropped " "drop prob % " "drop rate % " "diff % " "tolerance % " "\n", .tconfig = &ft_tconfig, .tqueue = &ft_tqueue, .tvar = &ft_tvar, .tlevel = ft1_tlevels, }; static enum test_result func_test1(struct test_config *tcfg) { enum test_result result = PASS; uint32_t i = 0; printf("%s", tcfg->msg); if (test_rte_red_init(tcfg) != PASS) { result = FAIL; goto out; } printf("%s", tcfg->htxt); for (i = 0; i < RTE_DIM(ft1_tlevels); i++) { const char *label = NULL; uint32_t avg = 0; double drop_rate = 0.0; double drop_prob = 0.0; double diff = 0.0; /** * reset rte_red run-time data */ rte_red_rt_data_init(tcfg->tqueue->rdata); *tcfg->tvar->enqueued = 0; *tcfg->tvar->dropped = 0; if (increase_actual_qsize(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, tcfg->tqueue->q, tcfg->tlevel[i], tcfg->tqueue->q_ramp_up) != 0) { result = FAIL; goto out; } if (increase_average_qsize(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, tcfg->tqueue->q, tcfg->tlevel[i], tcfg->tqueue->avg_ramp_up) != 0) { result = FAIL; goto out; } enqueue_dequeue_func(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, tcfg->tqueue->q, tcfg->tvar->num_ops, tcfg->tvar->enqueued, tcfg->tvar->dropped); avg = rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); if (avg != tcfg->tlevel[i]) { fprintf(stderr, "Fail: avg != level\n"); result = FAIL; } drop_rate = calc_drop_rate(*tcfg->tvar->enqueued, *tcfg->tvar->dropped); drop_prob = calc_drop_prob(tcfg->tconfig->min_th, tcfg->tconfig->max_th, *tcfg->tconfig->maxp_inv, tcfg->tlevel[i]); if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance)) result = FAIL; if (tcfg->tlevel[i] == tcfg->tconfig->min_th) label = "min thresh: "; else if (tcfg->tlevel[i] == tcfg->tconfig->max_th) label = "max thresh: "; else label = " "; printf("%s%-15u%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf\n", label, avg, *tcfg->tvar->enqueued, *tcfg->tvar->dropped, drop_prob * 100.0, drop_rate * 100.0, diff, (double)tcfg->tqueue->drop_tolerance); } out: return result; } /** * Test F2: functional test 2 */ static uint32_t ft2_tlevel[] = {127}; static uint8_t ft2_wq_log2[] = {9, 9, 9, 9, 9, 9, 9, 9, 9, 9}; static uint8_t ft2_maxp_inv[] = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}; static struct rte_red_config ft2_rconfig[10]; static struct test_rte_red_config ft2_tconfig = { .rconfig = ft2_rconfig, .num_cfg = RTE_DIM(ft2_rconfig), .wq_log2 = ft2_wq_log2, .min_th = 32, .max_th = 128, .maxp_inv = ft2_maxp_inv, }; static struct test_config func_test2_config = { .ifname = "functional test 2 interface", .msg = "functional test 2 : use several RED configurations,\n" " increase average queue size to just below maximum threshold,\n" " compare drop rate to drop probability\n\n", .htxt = "RED config " "avg queue size " "min threshold " "max threshold " "drop prob % " "drop rate % " "diff % " "tolerance % " "\n", .tconfig = &ft2_tconfig, .tqueue = &ft_tqueue, .tvar = &ft_tvar, .tlevel = ft2_tlevel, }; static enum test_result func_test2(struct test_config *tcfg) { enum test_result result = PASS; double prev_drop_rate = 1.0; uint32_t i = 0; printf("%s", tcfg->msg); if (test_rte_red_init(tcfg) != PASS) { result = FAIL; goto out; } rte_red_rt_data_init(tcfg->tqueue->rdata); if (increase_actual_qsize(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, tcfg->tqueue->q, *tcfg->tlevel, tcfg->tqueue->q_ramp_up) != 0) { result = FAIL; goto out; } if (increase_average_qsize(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, tcfg->tqueue->q, *tcfg->tlevel, tcfg->tqueue->avg_ramp_up) != 0) { result = FAIL; goto out; } printf("%s", tcfg->htxt); for (i = 0; i < tcfg->tconfig->num_cfg; i++) { uint32_t avg = 0; double drop_rate = 0.0; double drop_prob = 0.0; double diff = 0.0; *tcfg->tvar->dropped = 0; *tcfg->tvar->enqueued = 0; enqueue_dequeue_func(&tcfg->tconfig->rconfig[i], tcfg->tqueue->rdata, tcfg->tqueue->q, tcfg->tvar->num_ops, tcfg->tvar->enqueued, tcfg->tvar->dropped); avg = rte_red_get_avg_int(&tcfg->tconfig->rconfig[i], tcfg->tqueue->rdata); if (avg != *tcfg->tlevel) result = FAIL; drop_rate = calc_drop_rate(*tcfg->tvar->enqueued, *tcfg->tvar->dropped); drop_prob = calc_drop_prob(tcfg->tconfig->min_th, tcfg->tconfig->max_th, tcfg->tconfig->maxp_inv[i], *tcfg->tlevel); if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance)) result = FAIL; /** * drop rate should decrease as maxp_inv increases */ if (drop_rate > prev_drop_rate) result = FAIL; prev_drop_rate = drop_rate; printf("%-15u%-15u%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf\n", i, avg, tcfg->tconfig->min_th, tcfg->tconfig->max_th, drop_prob * 100.0, drop_rate * 100.0, diff, (double)tcfg->tqueue->drop_tolerance); } out: return result; } /** * Test F3: functional test 3 */ static uint32_t ft3_tlevel[] = {1022}; static struct test_rte_red_config ft3_tconfig = { .rconfig = ft_wrconfig, .num_cfg = RTE_DIM(ft_wrconfig), .wq_log2 = ft_wq_log2, .min_th = 32, .max_th = 1023, .maxp_inv = ft_maxp_inv, }; static struct test_config func_test3_config = { .ifname = "functional test 3 interface", .msg = "functional test 3 : use one RED configuration,\n" " increase average queue size to target level,\n" " dequeue all packets until queue is empty,\n" " confirm that average queue size is computed correctly while queue is empty\n\n", .htxt = "q avg before " "q avg after " "expected " "difference % " "tolerance % " "result " "\n", .tconfig = &ft3_tconfig, .tqueue = &ft_tqueue, .tvar = &ft_tvar, .tlevel = ft3_tlevel, }; static enum test_result func_test3(struct test_config *tcfg) { enum test_result result = PASS; uint32_t i = 0; printf("%s", tcfg->msg); if (test_rte_red_init(tcfg) != PASS) { result = FAIL; goto out; } rte_red_rt_data_init(tcfg->tqueue->rdata); if (increase_actual_qsize(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, tcfg->tqueue->q, *tcfg->tlevel, tcfg->tqueue->q_ramp_up) != 0) { result = FAIL; goto out; } if (increase_average_qsize(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, tcfg->tqueue->q, *tcfg->tlevel, tcfg->tqueue->avg_ramp_up) != 0) { result = FAIL; goto out; } printf("%s", tcfg->htxt); for (i = 0; i < tcfg->tvar->num_iterations; i++) { double avg_before = 0; double avg_after = 0; double exp_avg = 0; double diff = 0.0; avg_before = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); /** * empty the queue */ *tcfg->tqueue->q = 0; rte_red_mark_queue_empty(tcfg->tqueue->rdata, get_port_ts()); rte_delay_us(tcfg->tvar->wait_usec); /** * enqueue one packet to recalculate average queue size */ if (rte_red_enqueue(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, *tcfg->tqueue->q, get_port_ts()) == 0) { (*tcfg->tqueue->q)++; } else { printf("%s:%d: packet enqueued on empty queue was dropped\n", __func__, __LINE__); result = FAIL; } exp_avg = calc_exp_avg_on_empty(avg_before, (1 << *tcfg->tconfig->wq_log2), tcfg->tvar->wait_usec); avg_after = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); if (!check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance)) result = FAIL; printf("%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n", avg_before, avg_after, exp_avg, diff, (double)tcfg->tqueue->avg_tolerance, diff <= (double)tcfg->tqueue->avg_tolerance ? "pass" : "fail"); } out: return result; } /** * Test F4: functional test 4 */ static uint32_t ft4_tlevel[] = {1022}; static uint8_t ft4_wq_log2[] = {11}; static struct test_rte_red_config ft4_tconfig = { .rconfig = ft_wrconfig, .num_cfg = RTE_DIM(ft_wrconfig), .min_th = 32, .max_th = 1023, .wq_log2 = ft4_wq_log2, .maxp_inv = ft_maxp_inv, }; static struct test_queue ft4_tqueue = { .rdata = ft_rtdata, .num_queues = RTE_DIM(ft_rtdata), .qconfig = ft_qconfig, .q = ft_q, .q_ramp_up = 1000000, .avg_ramp_up = 1000000, .avg_tolerance = 0, /* 0 percent */ .drop_tolerance = 50, /* 50 percent */ }; static struct test_config func_test4_config = { .ifname = "functional test 4 interface", .msg = "functional test 4 : use one RED configuration,\n" " increase average queue size to target level,\n" " dequeue all packets until queue is empty,\n" " confirm that average queue size is computed correctly while\n" " queue is empty for more than 50 sec,\n" " (this test takes 52 sec to run)\n\n", .htxt = "q avg before " "q avg after " "expected " "difference % " "tolerance % " "result " "\n", .tconfig = &ft4_tconfig, .tqueue = &ft4_tqueue, .tvar = &ft_tvar, .tlevel = ft4_tlevel, }; static enum test_result func_test4(struct test_config *tcfg) { enum test_result result = PASS; uint64_t time_diff = 0; uint64_t start = 0; double avg_before = 0.0; double avg_after = 0.0; double exp_avg = 0.0; double diff = 0.0; printf("%s", tcfg->msg); if (test_rte_red_init(tcfg) != PASS) { result = FAIL; goto out; } rte_red_rt_data_init(tcfg->tqueue->rdata); if (increase_actual_qsize(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, tcfg->tqueue->q, *tcfg->tlevel, tcfg->tqueue->q_ramp_up) != 0) { result = FAIL; goto out; } if (increase_average_qsize(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, tcfg->tqueue->q, *tcfg->tlevel, tcfg->tqueue->avg_ramp_up) != 0) { result = FAIL; goto out; } printf("%s", tcfg->htxt); avg_before = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); /** * empty the queue */ *tcfg->tqueue->q = 0; rte_red_mark_queue_empty(tcfg->tqueue->rdata, get_port_ts()); /** * record empty time locally */ start = rte_rdtsc(); sleep(tcfg->tvar->sleep_sec); /** * enqueue one packet to recalculate average queue size */ if (rte_red_enqueue(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, *tcfg->tqueue->q, get_port_ts()) != 0) { result = FAIL; goto out; } (*tcfg->tqueue->q)++; /** * calculate how long queue has been empty */ time_diff = ((rte_rdtsc() - start) / tcfg->tvar->clk_freq) * MSEC_PER_SEC; if (time_diff < MAX_QEMPTY_TIME_MSEC) { /** * this could happen if sleep was interrupted for some reason */ result = FAIL; goto out; } /** * confirm that average queue size is now at expected level */ exp_avg = 0.0; avg_after = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); if (!check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance)) result = FAIL; printf("%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n", avg_before, avg_after, exp_avg, diff, (double)tcfg->tqueue->avg_tolerance, diff <= (double)tcfg->tqueue->avg_tolerance ? "pass" : "fail"); out: return result; } /** * Test F5: functional test 5 */ static uint32_t ft5_tlevel[] = {127}; static uint8_t ft5_wq_log2[] = {9, 8}; static uint8_t ft5_maxp_inv[] = {10, 20}; static struct rte_red_config ft5_config[2]; static struct rte_red ft5_data[4]; static uint32_t ft5_q[4]; static uint32_t ft5_dropped[] = {0, 0, 0, 0}; static uint32_t ft5_enqueued[] = {0, 0, 0, 0}; static struct test_rte_red_config ft5_tconfig = { .rconfig = ft5_config, .num_cfg = RTE_DIM(ft5_config), .min_th = 32, .max_th = 128, .wq_log2 = ft5_wq_log2, .maxp_inv = ft5_maxp_inv, }; static struct test_queue ft5_tqueue = { .rdata = ft5_data, .num_queues = RTE_DIM(ft5_data), .qconfig = ft_qconfig, .q = ft5_q, .q_ramp_up = 1000000, .avg_ramp_up = 1000000, .avg_tolerance = 5, /* 10 percent */ .drop_tolerance = 50, /* 50 percent */ }; struct test_var ft5_tvar = { .wait_usec = 0, .num_iterations = 15, .num_ops = 10000, .clk_freq = 0, .dropped = ft5_dropped, .enqueued = ft5_enqueued, .sleep_sec = 0, }; static struct test_config func_test5_config = { .ifname = "functional test 5 interface", .msg = "functional test 5 : use several queues (each with its own run-time data),\n" " use several RED configurations (such that each configuration is shared by multiple queues),\n" " increase average queue size to just below maximum threshold,\n" " compare drop rate to drop probability,\n" " (this is a larger scale version of functional test 2)\n\n", .htxt = "queue " "config " "avg queue size " "min threshold " "max threshold " "drop prob % " "drop rate % " "diff % " "tolerance % " "\n", .tconfig = &ft5_tconfig, .tqueue = &ft5_tqueue, .tvar = &ft5_tvar, .tlevel = ft5_tlevel, }; static enum test_result func_test5(struct test_config *tcfg) { enum test_result result = PASS; uint32_t j = 0; printf("%s", tcfg->msg); if (test_rte_red_init(tcfg) != PASS) { result = FAIL; goto out; } printf("%s", tcfg->htxt); for (j = 0; j < tcfg->tqueue->num_queues; j++) { rte_red_rt_data_init(&tcfg->tqueue->rdata[j]); tcfg->tqueue->q[j] = 0; if (increase_actual_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], &tcfg->tqueue->rdata[j], &tcfg->tqueue->q[j], *tcfg->tlevel, tcfg->tqueue->q_ramp_up) != 0) { result = FAIL; goto out; } if (increase_average_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], &tcfg->tqueue->rdata[j], &tcfg->tqueue->q[j], *tcfg->tlevel, tcfg->tqueue->avg_ramp_up) != 0) { result = FAIL; goto out; } } for (j = 0; j < tcfg->tqueue->num_queues; j++) { uint32_t avg = 0; double drop_rate = 0.0; double drop_prob = 0.0; double diff = 0.0; tcfg->tvar->dropped[j] = 0; tcfg->tvar->enqueued[j] = 0; enqueue_dequeue_func(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], &tcfg->tqueue->rdata[j], &tcfg->tqueue->q[j], tcfg->tvar->num_ops, &tcfg->tvar->enqueued[j], &tcfg->tvar->dropped[j]); avg = rte_red_get_avg_int(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], &tcfg->tqueue->rdata[j]); if (avg != *tcfg->tlevel) result = FAIL; drop_rate = calc_drop_rate(tcfg->tvar->enqueued[j],tcfg->tvar->dropped[j]); drop_prob = calc_drop_prob(tcfg->tconfig->min_th, tcfg->tconfig->max_th, tcfg->tconfig->maxp_inv[tcfg->tqueue->qconfig[j]], *tcfg->tlevel); if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance)) result = FAIL; printf("%-15u%-15u%-15u%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf\n", j, tcfg->tqueue->qconfig[j], avg, tcfg->tconfig->min_th, tcfg->tconfig->max_th, drop_prob * 100.0, drop_rate * 100.0, diff, (double)tcfg->tqueue->drop_tolerance); } out: return result; } /** * Test F6: functional test 6 */ static uint32_t ft6_tlevel[] = {1022}; static uint8_t ft6_wq_log2[] = {9, 8}; static uint8_t ft6_maxp_inv[] = {10, 20}; static struct rte_red_config ft6_config[2]; static struct rte_red ft6_data[4]; static uint32_t ft6_q[4]; static struct test_rte_red_config ft6_tconfig = { .rconfig = ft6_config, .num_cfg = RTE_DIM(ft6_config), .min_th = 32, .max_th = 1023, .wq_log2 = ft6_wq_log2, .maxp_inv = ft6_maxp_inv, }; static struct test_queue ft6_tqueue = { .rdata = ft6_data, .num_queues = RTE_DIM(ft6_data), .qconfig = ft_qconfig, .q = ft6_q, .q_ramp_up = 1000000, .avg_ramp_up = 1000000, .avg_tolerance = 5, /* 10 percent */ .drop_tolerance = 50, /* 50 percent */ }; static struct test_config func_test6_config = { .ifname = "functional test 6 interface", .msg = "functional test 6 : use several queues (each with its own run-time data),\n" " use several RED configurations (such that each configuration is sharte_red by multiple queues),\n" " increase average queue size to target level,\n" " dequeue all packets until queue is empty,\n" " confirm that average queue size is computed correctly while queue is empty\n" " (this is a larger scale version of functional test 3)\n\n", .htxt = "queue " "config " "q avg before " "q avg after " "expected " "difference % " "tolerance % " "result ""\n", .tconfig = &ft6_tconfig, .tqueue = &ft6_tqueue, .tvar = &ft_tvar, .tlevel = ft6_tlevel, }; static enum test_result func_test6(struct test_config *tcfg) { enum test_result result = PASS; uint32_t j = 0; printf("%s", tcfg->msg); if (test_rte_red_init(tcfg) != PASS) { result = FAIL; goto out; } printf("%s", tcfg->htxt); for (j = 0; j < tcfg->tqueue->num_queues; j++) { rte_red_rt_data_init(&tcfg->tqueue->rdata[j]); tcfg->tqueue->q[j] = 0; if (increase_actual_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], &tcfg->tqueue->rdata[j], &tcfg->tqueue->q[j], *tcfg->tlevel, tcfg->tqueue->q_ramp_up) != 0) { result = FAIL; goto out; } if (increase_average_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], &tcfg->tqueue->rdata[j], &tcfg->tqueue->q[j], *tcfg->tlevel, tcfg->tqueue->avg_ramp_up) != 0) { result = FAIL; goto out; } } for (j = 0; j < tcfg->tqueue->num_queues; j++) { double avg_before = 0; double avg_after = 0; double exp_avg = 0; double diff = 0.0; avg_before = rte_red_get_avg_float(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], &tcfg->tqueue->rdata[j]); /** * empty the queue */ tcfg->tqueue->q[j] = 0; rte_red_mark_queue_empty(&tcfg->tqueue->rdata[j], get_port_ts()); rte_delay_us(tcfg->tvar->wait_usec); /** * enqueue one packet to recalculate average queue size */ if (rte_red_enqueue(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], &tcfg->tqueue->rdata[j], tcfg->tqueue->q[j], get_port_ts()) == 0) { tcfg->tqueue->q[j]++; } else { printf("%s:%d: packet enqueued on empty queue was dropped\n", __func__, __LINE__); result = FAIL; } exp_avg = calc_exp_avg_on_empty(avg_before, (1 << tcfg->tconfig->wq_log2[tcfg->tqueue->qconfig[j]]), tcfg->tvar->wait_usec); avg_after = rte_red_get_avg_float(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], &tcfg->tqueue->rdata[j]); if (!check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance)) result = FAIL; printf("%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n", j, tcfg->tqueue->qconfig[j], avg_before, avg_after, exp_avg, diff, (double)tcfg->tqueue->avg_tolerance, diff <= tcfg->tqueue->avg_tolerance ? "pass" : "fail"); } out: return result; } /** * setup default values for the performance test structures */ static struct rte_red_config pt_wrconfig[1]; static struct rte_red pt_rtdata[1]; static uint8_t pt_wq_log2[] = {9}; static uint8_t pt_maxp_inv[] = {10}; static uint32_t pt_qconfig[] = {0}; static uint32_t pt_q[] = {0}; static uint32_t pt_dropped[] = {0}; static uint32_t pt_enqueued[] = {0}; static struct test_rte_red_config pt_tconfig = { .rconfig = pt_wrconfig, .num_cfg = RTE_DIM(pt_wrconfig), .wq_log2 = pt_wq_log2, .min_th = 32, .max_th = 128, .maxp_inv = pt_maxp_inv, }; static struct test_queue pt_tqueue = { .rdata = pt_rtdata, .num_queues = RTE_DIM(pt_rtdata), .qconfig = pt_qconfig, .q = pt_q, .q_ramp_up = 1000000, .avg_ramp_up = 1000000, .avg_tolerance = 5, /* 10 percent */ .drop_tolerance = 50, /* 50 percent */ }; /** * enqueue/dequeue packets */ static void enqueue_dequeue_perf(struct rte_red_config *red_cfg, struct rte_red *red, uint32_t *q, uint32_t num_ops, uint32_t *enqueued, uint32_t *dropped, struct rdtsc_prof *prof) { uint32_t i = 0; for (i = 0; i < num_ops; i++) { uint64_t ts = 0; int ret = 0; /** * enqueue */ ts = get_port_ts(); rdtsc_prof_start(prof); ret = rte_red_enqueue(red_cfg, red, *q, ts ); rdtsc_prof_end(prof); if (ret == 0) (*enqueued)++; else (*dropped)++; } } /** * Setup test structures for tests P1, P2, P3 * performance tests 1, 2 and 3 */ static uint32_t pt1_tlevel[] = {16}; static uint32_t pt2_tlevel[] = {80}; static uint32_t pt3_tlevel[] = {144}; static struct test_var perf1_tvar = { .wait_usec = 0, .num_iterations = 15, .num_ops = 50000000, .clk_freq = 0, .dropped = pt_dropped, .enqueued = pt_enqueued, .sleep_sec = 0 }; static struct test_config perf1_test1_config = { .ifname = "performance test 1 interface", .msg = "performance test 1 : use one RED configuration,\n" " set actual and average queue sizes to level below min threshold,\n" " measure enqueue performance\n\n", .tconfig = &pt_tconfig, .tqueue = &pt_tqueue, .tvar = &perf1_tvar, .tlevel = pt1_tlevel, }; static struct test_config perf1_test2_config = { .ifname = "performance test 2 interface", .msg = "performance test 2 : use one RED configuration,\n" " set actual and average queue sizes to level in between min and max thresholds,\n" " measure enqueue performance\n\n", .tconfig = &pt_tconfig, .tqueue = &pt_tqueue, .tvar = &perf1_tvar, .tlevel = pt2_tlevel, }; static struct test_config perf1_test3_config = { .ifname = "performance test 3 interface", .msg = "performance test 3 : use one RED configuration,\n" " set actual and average queue sizes to level above max threshold,\n" " measure enqueue performance\n\n", .tconfig = &pt_tconfig, .tqueue = &pt_tqueue, .tvar = &perf1_tvar, .tlevel = pt3_tlevel, }; /** * Performance test function to measure enqueue performance. * This runs performance tests 1, 2 and 3 */ static enum test_result perf1_test(struct test_config *tcfg) { enum test_result result = PASS; struct rdtsc_prof prof = {0, 0, 0, 0, 0.0, NULL}; uint32_t total = 0; printf("%s", tcfg->msg); rdtsc_prof_init(&prof, "enqueue"); if (test_rte_red_init(tcfg) != PASS) { result = FAIL; goto out; } /** * set average queue size to target level */ *tcfg->tqueue->q = *tcfg->tlevel; /** * initialize the rte_red run time data structure */ rte_red_rt_data_init(tcfg->tqueue->rdata); /** * set the queue average */ rte_red_set_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, *tcfg->tlevel); if (rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata) != *tcfg->tlevel) { result = FAIL; goto out; } enqueue_dequeue_perf(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, tcfg->tqueue->q, tcfg->tvar->num_ops, tcfg->tvar->enqueued, tcfg->tvar->dropped, &prof); total = *tcfg->tvar->enqueued + *tcfg->tvar->dropped; printf("\ntotal: %u, enqueued: %u (%.2lf%%), dropped: %u (%.2lf%%)\n", total, *tcfg->tvar->enqueued, ((double)(*tcfg->tvar->enqueued) / (double)total) * 100.0, *tcfg->tvar->dropped, ((double)(*tcfg->tvar->dropped) / (double)total) * 100.0); rdtsc_prof_print(&prof); out: return result; } /** * Setup test structures for tests P4, P5, P6 * performance tests 4, 5 and 6 */ static uint32_t pt4_tlevel[] = {16}; static uint32_t pt5_tlevel[] = {80}; static uint32_t pt6_tlevel[] = {144}; static struct test_var perf2_tvar = { .wait_usec = 500, .num_iterations = 10000, .num_ops = 10000, .dropped = pt_dropped, .enqueued = pt_enqueued, .sleep_sec = 0 }; static struct test_config perf2_test4_config = { .ifname = "performance test 4 interface", .msg = "performance test 4 : use one RED configuration,\n" " set actual and average queue sizes to level below min threshold,\n" " dequeue all packets until queue is empty,\n" " measure enqueue performance when queue is empty\n\n", .htxt = "iteration " "q avg before " "q avg after " "expected " "difference % " "tolerance % " "result ""\n", .tconfig = &pt_tconfig, .tqueue = &pt_tqueue, .tvar = &perf2_tvar, .tlevel = pt4_tlevel, }; static struct test_config perf2_test5_config = { .ifname = "performance test 5 interface", .msg = "performance test 5 : use one RED configuration,\n" " set actual and average queue sizes to level in between min and max thresholds,\n" " dequeue all packets until queue is empty,\n" " measure enqueue performance when queue is empty\n\n", .htxt = "iteration " "q avg before " "q avg after " "expected " "difference " "tolerance " "result ""\n", .tconfig = &pt_tconfig, .tqueue = &pt_tqueue, .tvar = &perf2_tvar, .tlevel = pt5_tlevel, }; static struct test_config perf2_test6_config = { .ifname = "performance test 6 interface", .msg = "performance test 6 : use one RED configuration,\n" " set actual and average queue sizes to level above max threshold,\n" " dequeue all packets until queue is empty,\n" " measure enqueue performance when queue is empty\n\n", .htxt = "iteration " "q avg before " "q avg after " "expected " "difference % " "tolerance % " "result ""\n", .tconfig = &pt_tconfig, .tqueue = &pt_tqueue, .tvar = &perf2_tvar, .tlevel = pt6_tlevel, }; /** * Performance test function to measure enqueue performance when the * queue is empty. This runs performance tests 4, 5 and 6 */ static enum test_result perf2_test(struct test_config *tcfg) { enum test_result result = PASS; struct rdtsc_prof prof = {0, 0, 0, 0, 0.0, NULL}; uint32_t total = 0; uint32_t i = 0; printf("%s", tcfg->msg); rdtsc_prof_init(&prof, "enqueue"); if (test_rte_red_init(tcfg) != PASS) { result = FAIL; goto out; } printf("%s", tcfg->htxt); for (i = 0; i < tcfg->tvar->num_iterations; i++) { uint32_t count = 0; uint64_t ts = 0; double avg_before = 0; int ret = 0; /** * set average queue size to target level */ *tcfg->tqueue->q = *tcfg->tlevel; count = (*tcfg->tqueue->rdata).count; /** * initialize the rte_red run time data structure */ rte_red_rt_data_init(tcfg->tqueue->rdata); (*tcfg->tqueue->rdata).count = count; /** * set the queue average */ rte_red_set_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, *tcfg->tlevel); avg_before = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); if ((avg_before < *tcfg->tlevel) || (avg_before > *tcfg->tlevel)) { result = FAIL; goto out; } /** * empty the queue */ *tcfg->tqueue->q = 0; rte_red_mark_queue_empty(tcfg->tqueue->rdata, get_port_ts()); /** * wait for specified period of time */ rte_delay_us(tcfg->tvar->wait_usec); /** * measure performance of enqueue operation while queue is empty */ ts = get_port_ts(); rdtsc_prof_start(&prof); ret = rte_red_enqueue(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, *tcfg->tqueue->q, ts ); rdtsc_prof_end(&prof); /** * gather enqueued/dropped statistics */ if (ret == 0) (*tcfg->tvar->enqueued)++; else (*tcfg->tvar->dropped)++; /** * on first and last iteration, confirm that * average queue size was computed correctly */ if ((i == 0) || (i == tcfg->tvar->num_iterations - 1)) { double avg_after = 0; double exp_avg = 0; double diff = 0.0; int ok = 0; avg_after = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); exp_avg = calc_exp_avg_on_empty(avg_before, (1 << *tcfg->tconfig->wq_log2), tcfg->tvar->wait_usec); if (check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance)) ok = 1; printf("%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n", i, avg_before, avg_after, exp_avg, diff, (double)tcfg->tqueue->avg_tolerance, ok ? "pass" : "fail"); if (!ok) { result = FAIL; goto out; } } } total = *tcfg->tvar->enqueued + *tcfg->tvar->dropped; printf("\ntotal: %u, enqueued: %u (%.2lf%%), dropped: %u (%.2lf%%)\n", total, *tcfg->tvar->enqueued, ((double)(*tcfg->tvar->enqueued) / (double)total) * 100.0, *tcfg->tvar->dropped, ((double)(*tcfg->tvar->dropped) / (double)total) * 100.0); rdtsc_prof_print(&prof); out: return result; } /** * setup default values for overflow test structures */ static uint32_t avg_max = 0; static uint32_t avg_max_bits = 0; static struct rte_red_config ovfl_wrconfig[1]; static struct rte_red ovfl_rtdata[1]; static uint8_t ovfl_maxp_inv[] = {10}; static uint32_t ovfl_qconfig[] = {0, 0, 1, 1}; static uint32_t ovfl_q[] ={0}; static uint32_t ovfl_dropped[] ={0}; static uint32_t ovfl_enqueued[] ={0}; static uint32_t ovfl_tlevel[] = {1023}; static uint8_t ovfl_wq_log2[] = {12}; static struct test_rte_red_config ovfl_tconfig = { .rconfig = ovfl_wrconfig, .num_cfg = RTE_DIM(ovfl_wrconfig), .wq_log2 = ovfl_wq_log2, .min_th = 32, .max_th = 1023, .maxp_inv = ovfl_maxp_inv, }; static struct test_queue ovfl_tqueue = { .rdata = ovfl_rtdata, .num_queues = RTE_DIM(ovfl_rtdata), .qconfig = ovfl_qconfig, .q = ovfl_q, .q_ramp_up = 1000000, .avg_ramp_up = 1000000, .avg_tolerance = 5, /* 10 percent */ .drop_tolerance = 50, /* 50 percent */ }; static struct test_var ovfl_tvar = { .wait_usec = 10000, .num_iterations = 1, .num_ops = 10000, .clk_freq = 0, .dropped = ovfl_dropped, .enqueued = ovfl_enqueued, .sleep_sec = 0 }; static void ovfl_check_avg(uint32_t avg) { if (avg > avg_max) { double avg_log = 0; uint32_t bits = 0; avg_max = avg; avg_log = log(((double)avg_max)); avg_log = avg_log / log(2.0); bits = (uint32_t)ceil(avg_log); if (bits > avg_max_bits) avg_max_bits = bits; } } static struct test_config ovfl_test1_config = { .ifname = "queue avergage overflow test interface", .msg = "overflow test 1 : use one RED configuration,\n" " increase average queue size to target level,\n" " check maximum number of bits requirte_red to represent avg_s\n\n", .htxt = "avg queue size " "wq_log2 " "fraction bits " "max queue avg " "num bits " "enqueued " "dropped " "drop prob % " "drop rate % " "\n", .tconfig = &ovfl_tconfig, .tqueue = &ovfl_tqueue, .tvar = &ovfl_tvar, .tlevel = ovfl_tlevel, }; static enum test_result ovfl_test1(struct test_config *tcfg) { enum test_result result = PASS; uint32_t avg = 0; uint32_t i = 0; double drop_rate = 0.0; double drop_prob = 0.0; double diff = 0.0; int ret = 0; printf("%s", tcfg->msg); if (test_rte_red_init(tcfg) != PASS) { result = FAIL; goto out; } /** * reset rte_red run-time data */ rte_red_rt_data_init(tcfg->tqueue->rdata); /** * increase actual queue size */ for (i = 0; i < tcfg->tqueue->q_ramp_up; i++) { ret = rte_red_enqueue(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, *tcfg->tqueue->q, get_port_ts()); if (ret == 0) { if (++(*tcfg->tqueue->q) >= *tcfg->tlevel) break; } } /** * enqueue */ for (i = 0; i < tcfg->tqueue->avg_ramp_up; i++) { ret = rte_red_enqueue(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, *tcfg->tqueue->q, get_port_ts()); ovfl_check_avg((*tcfg->tqueue->rdata).avg); avg = rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); if (avg == *tcfg->tlevel) { if (ret == 0) (*tcfg->tvar->enqueued)++; else (*tcfg->tvar->dropped)++; } } /** * check if target average queue size has been reached */ avg = rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); if (avg != *tcfg->tlevel) { result = FAIL; goto out; } /** * check drop rate against drop probability */ drop_rate = calc_drop_rate(*tcfg->tvar->enqueued, *tcfg->tvar->dropped); drop_prob = calc_drop_prob(tcfg->tconfig->min_th, tcfg->tconfig->max_th, *tcfg->tconfig->maxp_inv, *tcfg->tlevel); if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance)) result = FAIL; printf("%s", tcfg->htxt); printf("%-16u%-9u%-15u0x%08x %-10u%-10u%-10u%-13.2lf%-13.2lf\n", avg, *tcfg->tconfig->wq_log2, RTE_RED_SCALING, avg_max, avg_max_bits, *tcfg->tvar->enqueued, *tcfg->tvar->dropped, drop_prob * 100.0, drop_rate * 100.0); out: return result; } /** * define the functional and performance tests to be executed */ struct tests func_tests[] = { { &func_test1_config, func_test1 }, { &func_test2_config, func_test2 }, { &func_test3_config, func_test3 }, { &func_test4_config, func_test4 }, { &func_test5_config, func_test5 }, { &func_test6_config, func_test6 }, { &ovfl_test1_config, ovfl_test1 }, }; struct tests func_tests_quick[] = { { &func_test1_config, func_test1 }, { &func_test2_config, func_test2 }, { &func_test3_config, func_test3 }, /* no test 4 as it takes a lot of time */ { &func_test5_config, func_test5 }, { &func_test6_config, func_test6 }, { &ovfl_test1_config, ovfl_test1 }, }; struct tests perf_tests[] = { { &perf1_test1_config, perf1_test }, { &perf1_test2_config, perf1_test }, { &perf1_test3_config, perf1_test }, { &perf2_test4_config, perf2_test }, { &perf2_test5_config, perf2_test }, { &perf2_test6_config, perf2_test }, }; /** * function to execute the required_red tests */ static void run_tests(struct tests *test_type, uint32_t test_count, uint32_t *num_tests, uint32_t *num_pass) { enum test_result result = PASS; uint32_t i = 0; for (i = 0; i < test_count; i++) { printf("\n--------------------------------------------------------------------------------\n"); result = test_type[i].testfn(test_type[i].testcfg); (*num_tests)++; if (result == PASS) { (*num_pass)++; printf("--------------------------------------------------------------------------\n"); } else { printf("--------------------------------------------------------------------------\n"); } } return; } /** * check if functions accept invalid parameters * * First, all functions will be called without initialized RED * Then, all of them will be called with NULL/invalid parameters * * Some functions are not tested as they are performance-critical and thus * don't do any parameter checking. */ static int test_invalid_parameters(void) { struct rte_red_config config; if (rte_red_rt_data_init(NULL) == 0) { printf("rte_red_rt_data_init should have failed!\n"); return -1; } if (rte_red_config_init(NULL, 0, 0, 0, 0) == 0) { printf("rte_red_config_init should have failed!\n"); return -1; } if (rte_red_rt_data_init(NULL) == 0) { printf("rte_red_rt_data_init should have failed!\n"); return -1; } /* NULL config */ if (rte_red_config_init(NULL, 0, 0, 0, 0) == 0) { printf("%i: rte_red_config_init should have failed!\n", __LINE__); return -1; } /* min_treshold == max_treshold */ if (rte_red_config_init(&config, 0, 1, 1, 0) == 0) { printf("%i: rte_red_config_init should have failed!\n", __LINE__); return -1; } /* min_treshold > max_treshold */ if (rte_red_config_init(&config, 0, 2, 1, 0) == 0) { printf("%i: rte_red_config_init should have failed!\n", __LINE__); return -1; } /* wq_log2 > RTE_RED_WQ_LOG2_MAX */ if (rte_red_config_init(&config, RTE_RED_WQ_LOG2_MAX + 1, 1, 2, 0) == 0) { printf("%i: rte_red_config_init should have failed!\n", __LINE__); return -1; } /* wq_log2 < RTE_RED_WQ_LOG2_MIN */ if (rte_red_config_init(&config, RTE_RED_WQ_LOG2_MIN - 1, 1, 2, 0) == 0) { printf("%i: rte_red_config_init should have failed!\n", __LINE__); return -1; } /* maxp_inv > RTE_RED_MAXP_INV_MAX */ if (rte_red_config_init(&config, RTE_RED_WQ_LOG2_MIN, 1, 2, RTE_RED_MAXP_INV_MAX + 1) == 0) { printf("%i: rte_red_config_init should have failed!\n", __LINE__); return -1; } /* maxp_inv < RTE_RED_MAXP_INV_MIN */ if (rte_red_config_init(&config, RTE_RED_WQ_LOG2_MIN, 1, 2, RTE_RED_MAXP_INV_MIN - 1) == 0) { printf("%i: rte_red_config_init should have failed!\n", __LINE__); return -1; } return 0; } static void show_stats(const uint32_t num_tests, const uint32_t num_pass) { if (num_pass == num_tests) printf("[total: %u, pass: %u]\n", num_tests, num_pass); else printf("[total: %u, pass: %u, fail: %u]\n", num_tests, num_pass, num_tests - num_pass); } static int tell_the_result(const uint32_t num_tests, const uint32_t num_pass) { return (num_pass == num_tests) ? 0 : 1; } static int test_red(void) { uint32_t num_tests = 0; uint32_t num_pass = 0; if (test_invalid_parameters() < 0) return -1; run_tests(func_tests_quick, RTE_DIM(func_tests_quick), &num_tests, &num_pass); show_stats(num_tests, num_pass); return tell_the_result(num_tests, num_pass); } static int test_red_perf(void) { uint32_t num_tests = 0; uint32_t num_pass = 0; run_tests(perf_tests, RTE_DIM(perf_tests), &num_tests, &num_pass); show_stats(num_tests, num_pass); return tell_the_result(num_tests, num_pass); } static int test_red_all(void) { uint32_t num_tests = 0; uint32_t num_pass = 0; if (test_invalid_parameters() < 0) return -1; run_tests(func_tests, RTE_DIM(func_tests), &num_tests, &num_pass); run_tests(perf_tests, RTE_DIM(perf_tests), &num_tests, &num_pass); show_stats(num_tests, num_pass); return tell_the_result(num_tests, num_pass); } REGISTER_TEST_COMMAND(red_autotest, test_red); REGISTER_TEST_COMMAND(red_perf, test_red_perf); REGISTER_TEST_COMMAND(red_all, test_red_all);