// Copyright 2012 Google, Inc. All rights reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the LICENSE file in the root of the source // tree. // This binary provides sample code for using the gopacket TCP assembler raw, // without the help of the tcpreader library. It watches TCP streams and // reports statistics on completed streams. // // It also uses gopacket.DecodingLayerParser instead of the normal // gopacket.PacketSource, to highlight the methods, pros, and cons of this // approach. package main import ( "flag" "github.com/google/gopacket" "github.com/google/gopacket/examples/util" "github.com/google/gopacket/layers" "github.com/google/gopacket/pcap" "github.com/google/gopacket/tcpassembly" "log" "time" ) var iface = flag.String("i", "eth0", "Interface to get packets from") var snaplen = flag.Int("s", 65536, "SnapLen for pcap packet capture") var filter = flag.String("f", "tcp", "BPF filter for pcap") var logAllPackets = flag.Bool("v", false, "Log whenever we see a packet") var bufferedPerConnection = flag.Int("connection_max_buffer", 0, ` Max packets to buffer for a single connection before skipping over a gap in data and continuing to stream the connection after the buffer. If zero or less, this is infinite.`) var bufferedTotal = flag.Int("total_max_buffer", 0, ` Max packets to buffer total before skipping over gaps in connections and continuing to stream connection data. If zero or less, this is infinite`) var flushAfter = flag.String("flush_after", "2m", ` Connections which have buffered packets (they've gotten packets out of order and are waiting for old packets to fill the gaps) are flushed after they're this old (their oldest gap is skipped). Any string parsed by time.ParseDuration is acceptable here`) var packetCount = flag.Int("c", -1, ` Quit after processing this many packets, flushing all currently buffered connections. If negative, this is infinite`) // simpleStreamFactory implements tcpassembly.StreamFactory type statsStreamFactory struct{} // statsStream will handle the actual decoding of stats requests. type statsStream struct { net, transport gopacket.Flow bytes, packets, outOfOrder, skipped int64 start, end time.Time sawStart, sawEnd bool } // New creates a new stream. It's called whenever the assembler sees a stream // it isn't currently following. func (factory *statsStreamFactory) New(net, transport gopacket.Flow) tcpassembly.Stream { log.Printf("new stream %v:%v started", net, transport) s := &statsStream{ net: net, transport: transport, start: time.Now(), } s.end = s.start // ReaderStream implements tcpassembly.Stream, so we can return a pointer to it. return s } // Reassembled is called whenever new packet data is available for reading. // Reassembly objects contain stream data IN ORDER. func (s *statsStream) Reassembled(reassemblies []tcpassembly.Reassembly) { for _, reassembly := range reassemblies { if reassembly.Seen.Before(s.end) { s.outOfOrder++ } else { s.end = reassembly.Seen } s.bytes += int64(len(reassembly.Bytes)) s.packets += 1 if reassembly.Skip > 0 { s.skipped += int64(reassembly.Skip) } s.sawStart = s.sawStart || reassembly.Start s.sawEnd = s.sawEnd || reassembly.End } } // ReassemblyComplete is called when the TCP assembler believes a stream has // finished. func (s *statsStream) ReassemblyComplete() { diffSecs := float64(s.end.Sub(s.start)) / float64(time.Second) log.Printf("Reassembly of stream %v:%v complete - start:%v end:%v bytes:%v packets:%v ooo:%v bps:%v pps:%v skipped:%v", s.net, s.transport, s.start, s.end, s.bytes, s.packets, s.outOfOrder, float64(s.bytes)/diffSecs, float64(s.packets)/diffSecs, s.skipped) } func main() { defer util.Run()() flushDuration, err := time.ParseDuration(*flushAfter) if err != nil { log.Fatal("invalid flush duration: ", *flushAfter) } log.Printf("starting capture on interface %q", *iface) // Set up pcap packet capture handle, err := pcap.OpenLive(*iface, int32(*snaplen), true, flushDuration/2) if err != nil { log.Fatal("error opening pcap handle: ", err) } if err := handle.SetBPFFilter(*filter); err != nil { log.Fatal("error setting BPF filter: ", err) } // Set up assembly streamFactory := &statsStreamFactory{} streamPool := tcpassembly.NewStreamPool(streamFactory) assembler := tcpassembly.NewAssembler(streamPool) assembler.MaxBufferedPagesPerConnection = *bufferedPerConnection assembler.MaxBufferedPagesTotal = *bufferedTotal log.Println("reading in packets") // We use a DecodingLayerParser here instead of a simpler PacketSource. // This approach should be measurably faster, but is also more rigid. // PacketSource will handle any known type of packet safely and easily, // but DecodingLayerParser will only handle those packet types we // specifically pass in. This trade-off can be quite useful, though, in // high-throughput situations. var eth layers.Ethernet var dot1q layers.Dot1Q var ip4 layers.IPv4 var ip6 layers.IPv6 var ip6extensions layers.IPv6ExtensionSkipper var tcp layers.TCP var payload gopacket.Payload parser := gopacket.NewDecodingLayerParser(layers.LayerTypeEthernet, ð, &dot1q, &ip4, &ip6, &ip6extensions, &tcp, &payload) decoded := make([]gopacket.LayerType, 0, 4) nextFlush := time.Now().Add(flushDuration / 2) var byteCount int64 start := time.Now() loop: for ; *packetCount != 0; *packetCount-- { // Check to see if we should flush the streams we have // that haven't seen any new data in a while. Note we set a // timeout on our PCAP handle, so this should happen even if we // never see packet data. if time.Now().After(nextFlush) { stats, _ := handle.Stats() log.Printf("flushing all streams that haven't seen packets in the last 2 minutes, pcap stats: %+v", stats) assembler.FlushOlderThan(time.Now().Add(flushDuration)) nextFlush = time.Now().Add(flushDuration / 2) } // To speed things up, we're also using the ZeroCopy method for // reading packet data. This method is faster than the normal // ReadPacketData, but the returned bytes in 'data' are // invalidated by any subsequent ZeroCopyReadPacketData call. // Note that tcpassembly is entirely compatible with this packet // reading method. This is another trade-off which might be // appropriate for high-throughput sniffing: it avoids a packet // copy, but its cost is much more careful handling of the // resulting byte slice. data, ci, err := handle.ZeroCopyReadPacketData() if err != nil { log.Printf("error getting packet: %v", err) continue } err = parser.DecodeLayers(data, &decoded) if err != nil { log.Printf("error decoding packet: %v", err) continue } if *logAllPackets { log.Printf("decoded the following layers: %v", decoded) } byteCount += int64(len(data)) // Find either the IPv4 or IPv6 address to use as our network // layer. foundNetLayer := false var netFlow gopacket.Flow for _, typ := range decoded { switch typ { case layers.LayerTypeIPv4: netFlow = ip4.NetworkFlow() foundNetLayer = true case layers.LayerTypeIPv6: netFlow = ip6.NetworkFlow() foundNetLayer = true case layers.LayerTypeTCP: if foundNetLayer { assembler.AssembleWithTimestamp(netFlow, &tcp, ci.Timestamp) } else { log.Println("could not find IPv4 or IPv6 layer, inoring") } continue loop } } log.Println("could not find TCP layer") } assembler.FlushAll() log.Printf("processed %d bytes in %v", byteCount, time.Since(start)) }