aboutsummaryrefslogtreecommitdiffstats
path: root/src/vnet/util/radix.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/vnet/util/radix.c')
-rw-r--r--src/vnet/util/radix.c1104
1 files changed, 1104 insertions, 0 deletions
diff --git a/src/vnet/util/radix.c b/src/vnet/util/radix.c
new file mode 100644
index 00000000..ff0b0f7b
--- /dev/null
+++ b/src/vnet/util/radix.c
@@ -0,0 +1,1104 @@
+/* $NetBSD: radix.c,v 1.47 2016/12/12 03:55:57 ozaki-r Exp $ */
+
+/*
+ * Copyright (c) 1988, 1989, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)radix.c 8.6 (Berkeley) 10/17/95
+ */
+
+/*
+ * Routines to build and maintain radix trees for routing lookups.
+ */
+
+#include <vnet/util/radix.h>
+
+typedef void (*rn_printer_t)(void *, const char *fmt, ...);
+
+static int max_keylen = 33; // me
+struct radix_mask *rn_mkfreelist;
+struct radix_node_head *mask_rnhead;
+static char *addmask_key;
+static const char normal_chars[] =
+ {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
+static char *rn_zeros, *rn_ones;
+
+#define rn_masktop (mask_rnhead->rnh_treetop)
+
+static int rn_satisfies_leaf(const char *, struct radix_node *, int);
+static int rn_lexobetter(const void *, const void *);
+static struct radix_mask *rn_new_radix_mask(struct radix_node *,
+ struct radix_mask *);
+static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
+ void *);
+static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
+ void *);
+static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
+ const char *);
+
+#define SUBTREE_OPEN "[ "
+#define SUBTREE_CLOSE " ]"
+
+#ifdef RN_DEBUG
+static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
+#endif /* RN_DEBUG */
+
+#define MIN(x,y) (((x)<(y))?(x):(y))
+
+static struct radix_mask*
+rm_alloc (void)
+{
+ struct radix_mask *rm = clib_mem_alloc(sizeof(struct radix_mask));
+
+ memset(rm, 0, sizeof(*rm));
+
+ return (rm);
+}
+
+static void
+rm_free (struct radix_mask *rm)
+{
+ clib_mem_free(rm);
+}
+
+#define R_Malloc(p, t, n) \
+{ \
+ p = (t) clib_mem_alloc((unsigned int)(n)); \
+ memset(p, 0, n); \
+}
+#define Free(p) clib_mem_free((p))
+#define log(a,b, c...)
+#define bool i32
+
+/*
+ * The data structure for the keys is a radix tree with one way
+ * branching removed. The index rn_b at an internal node n represents a bit
+ * position to be tested. The tree is arranged so that all descendants
+ * of a node n have keys whose bits all agree up to position rn_b - 1.
+ * (We say the index of n is rn_b.)
+ *
+ * There is at least one descendant which has a one bit at position rn_b,
+ * and at least one with a zero there.
+ *
+ * A route is determined by a pair of key and mask. We require that the
+ * bit-wise logical and of the key and mask to be the key.
+ * We define the index of a route to associated with the mask to be
+ * the first bit number in the mask where 0 occurs (with bit number 0
+ * representing the highest order bit).
+ *
+ * We say a mask is normal if every bit is 0, past the index of the mask.
+ * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
+ * and m is a normal mask, then the route applies to every descendant of n.
+ * If the index(m) < rn_b, this implies the trailing last few bits of k
+ * before bit b are all 0, (and hence consequently true of every descendant
+ * of n), so the route applies to all descendants of the node as well.
+ *
+ * Similar logic shows that a non-normal mask m such that
+ * index(m) <= index(n) could potentially apply to many children of n.
+ * Thus, for each non-host route, we attach its mask to a list at an internal
+ * node as high in the tree as we can go.
+ *
+ * The present version of the code makes use of normal routes in short-
+ * circuiting an explicit mask and compare operation when testing whether
+ * a key satisfies a normal route, and also in remembering the unique leaf
+ * that governs a subtree.
+ */
+
+struct radix_node *
+rn_search(
+ const void *v_arg,
+ struct radix_node *head)
+{
+ const u8 * const v = v_arg;
+ struct radix_node *x;
+
+ for (x = head; x->rn_b >= 0;) {
+ if (x->rn_bmask & v[x->rn_off])
+ x = x->rn_r;
+ else
+ x = x->rn_l;
+ }
+ return x;
+}
+
+struct radix_node *
+rn_search_m(
+ const void *v_arg,
+ struct radix_node *head,
+ const void *m_arg)
+{
+ struct radix_node *x;
+ const u8 * const v = v_arg;
+ const u8 * const m = m_arg;
+
+ for (x = head; x->rn_b >= 0;) {
+ if ((x->rn_bmask & m[x->rn_off]) &&
+ (x->rn_bmask & v[x->rn_off]))
+ x = x->rn_r;
+ else
+ x = x->rn_l;
+ }
+ return x;
+}
+
+int
+rn_refines(
+ const void *m_arg,
+ const void *n_arg)
+{
+ const char *m = m_arg;
+ const char *n = n_arg;
+ const char *lim = n + *(const u8 *)n;
+ const char *lim2 = lim;
+ int longer = (*(const u8 *)n++) - (int)(*(const u8 *)m++);
+ int masks_are_equal = 1;
+
+ if (longer > 0)
+ lim -= longer;
+ while (n < lim) {
+ if (*n & ~(*m))
+ return 0;
+ if (*n++ != *m++)
+ masks_are_equal = 0;
+ }
+ while (n < lim2)
+ if (*n++)
+ return 0;
+ if (masks_are_equal && (longer < 0))
+ for (lim2 = m - longer; m < lim2; )
+ if (*m++)
+ return 1;
+ return !masks_are_equal;
+}
+
+struct radix_node *
+rn_lookup(
+ const void *v_arg,
+ const void *m_arg,
+ struct radix_node_head *head)
+{
+ struct radix_node *x;
+ const char *netmask = NULL;
+
+ if (m_arg) {
+ if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
+ return NULL;
+ netmask = x->rn_key;
+ }
+ x = rn_match(v_arg, head);
+ if (x != NULL && netmask != NULL) {
+ while (x != NULL && x->rn_mask != netmask)
+ x = x->rn_dupedkey;
+ }
+ return x;
+}
+
+static int
+rn_satisfies_leaf(
+ const char *trial,
+ struct radix_node *leaf,
+ int skip)
+{
+ const char *cp = trial;
+ const char *cp2 = leaf->rn_key;
+ const char *cp3 = leaf->rn_mask;
+ const char *cplim;
+ int length = MIN(*(const u8 *)cp, *(const u8 *)cp2);
+
+ if (cp3 == 0)
+ cp3 = rn_ones;
+ else
+ length = MIN(length, *(const u8 *)cp3);
+ cplim = cp + length; cp3 += skip; cp2 += skip;
+ for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
+ if ((*cp ^ *cp2) & *cp3)
+ return 0;
+ return 1;
+}
+
+struct radix_node *
+rn_match(
+ const void *v_arg,
+ struct radix_node_head *head)
+{
+ const char * const v = v_arg;
+ struct radix_node *t = head->rnh_treetop;
+ struct radix_node *top = t;
+ struct radix_node *x;
+ struct radix_node *saved_t;
+ const char *cp = v;
+ const char *cp2;
+ const char *cplim;
+ int off = t->rn_off;
+ int vlen = *(const u8 *)cp;
+ int matched_off;
+ int test, b, rn_b;
+
+ /*
+ * Open code rn_search(v, top) to avoid overhead of extra
+ * subroutine call.
+ */
+ for (; t->rn_b >= 0; ) {
+ if (t->rn_bmask & cp[t->rn_off])
+ t = t->rn_r;
+ else
+ t = t->rn_l;
+ }
+ /*
+ * See if we match exactly as a host destination
+ * or at least learn how many bits match, for normal mask finesse.
+ *
+ * It doesn't hurt us to limit how many bytes to check
+ * to the length of the mask, since if it matches we had a genuine
+ * match and the leaf we have is the most specific one anyway;
+ * if it didn't match with a shorter length it would fail
+ * with a long one. This wins big for class B&C netmasks which
+ * are probably the most common case...
+ */
+ if (t->rn_mask)
+ vlen = *(const u8 *)t->rn_mask;
+ cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
+ for (; cp < cplim; cp++, cp2++)
+ if (*cp != *cp2)
+ goto on1;
+ /*
+ * This extra grot is in case we are explicitly asked
+ * to look up the default. Ugh!
+ */
+ if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
+ t = t->rn_dupedkey;
+ return t;
+on1:
+ test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
+ for (b = 7; (test >>= 1) > 0;)
+ b--;
+ matched_off = cp - v;
+ b += matched_off << 3;
+ rn_b = -1 - b;
+ /*
+ * If there is a host route in a duped-key chain, it will be first.
+ */
+ if ((saved_t = t)->rn_mask == 0)
+ t = t->rn_dupedkey;
+ for (; t; t = t->rn_dupedkey)
+ /*
+ * Even if we don't match exactly as a host,
+ * we may match if the leaf we wound up at is
+ * a route to a net.
+ */
+ if (t->rn_flags & RNF_NORMAL) {
+ if (rn_b <= t->rn_b)
+ return t;
+ } else if (rn_satisfies_leaf(v, t, matched_off))
+ return t;
+ t = saved_t;
+ /* start searching up the tree */
+ do {
+ struct radix_mask *m;
+ t = t->rn_p;
+ m = t->rn_mklist;
+ if (m) {
+ /*
+ * If non-contiguous masks ever become important
+ * we can restore the masking and open coding of
+ * the search and satisfaction test and put the
+ * calculation of "off" back before the "do".
+ */
+ do {
+ if (m->rm_flags & RNF_NORMAL) {
+ if (rn_b <= m->rm_b)
+ return m->rm_leaf;
+ } else {
+ off = MIN(t->rn_off, matched_off);
+ x = rn_search_m(v, t, m->rm_mask);
+ while (x && x->rn_mask != m->rm_mask)
+ x = x->rn_dupedkey;
+ if (x && rn_satisfies_leaf(v, x, off))
+ return x;
+ }
+ m = m->rm_mklist;
+ } while (m);
+ }
+ } while (t != top);
+ return NULL;
+}
+
+static void
+rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
+ const char *delim)
+{
+ (*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
+ delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
+ rn->rn_l, rn->rn_r);
+}
+
+#ifdef RN_DEBUG
+int rn_debug = 1;
+
+static void
+rn_dbg_print(void *arg, const char *fmt, ...)
+{
+ va_list ap;
+
+ va_start(ap, fmt);
+ vlog(LOG_DEBUG, fmt, ap);
+ va_end(ap);
+}
+
+static void
+rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
+{
+ struct radix_node *dup, *rn;
+ const char *delim;
+
+ if (printer == NULL)
+ return;
+
+ rn = rn_walkfirst(h->rnh_treetop, printer, arg);
+ for (;;) {
+ /* Process leaves */
+ delim = "";
+ for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
+ if ((dup->rn_flags & RNF_ROOT) != 0)
+ continue;
+ rn_nodeprint(dup, printer, arg, delim);
+ delim = ", ";
+ }
+ rn = rn_walknext(rn, printer, arg);
+ if (rn->rn_flags & RNF_ROOT)
+ return;
+ }
+ /* NOTREACHED */
+}
+
+#define traverse(__head, __rn) rn_treeprint((__head), rn_dbg_print, (__rn))
+#endif /* RN_DEBUG */
+
+struct radix_node *
+rn_newpair(
+ const void *v,
+ int b,
+ struct radix_node nodes[2])
+{
+ struct radix_node *tt = nodes;
+ struct radix_node *t = tt + 1;
+ t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
+ t->rn_l = tt; t->rn_off = b >> 3;
+ tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
+ tt->rn_flags = t->rn_flags = RNF_ACTIVE;
+ return t;
+}
+
+struct radix_node *
+rn_insert(
+ const void *v_arg,
+ struct radix_node_head *head,
+ int *dupentry,
+ struct radix_node nodes[2])
+{
+ struct radix_node *top = head->rnh_treetop;
+ struct radix_node *t = rn_search(v_arg, top);
+ struct radix_node *tt;
+ const char *v = v_arg;
+ int head_off = top->rn_off;
+ int vlen = *((const u8 *)v);
+ const char *cp = v + head_off;
+ int b;
+ /*
+ * Find first bit at which v and t->rn_key differ
+ */
+ {
+ const char *cp2 = t->rn_key + head_off;
+ const char *cplim = v + vlen;
+ int cmp_res;
+
+ while (cp < cplim)
+ if (*cp2++ != *cp++)
+ goto on1;
+ *dupentry = 1;
+ return t;
+on1:
+ *dupentry = 0;
+ cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
+ for (b = (cp - v) << 3; cmp_res; b--)
+ cmp_res >>= 1;
+ }
+ {
+ struct radix_node *p, *x = top;
+ cp = v;
+ do {
+ p = x;
+ if (cp[x->rn_off] & x->rn_bmask)
+ x = x->rn_r;
+ else x = x->rn_l;
+ } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
+#ifdef RN_DEBUG
+ if (rn_debug)
+ log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
+#endif
+ t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
+ if ((cp[p->rn_off] & p->rn_bmask) == 0)
+ p->rn_l = t;
+ else
+ p->rn_r = t;
+ x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
+ if ((cp[t->rn_off] & t->rn_bmask) == 0) {
+ t->rn_r = x;
+ } else {
+ t->rn_r = tt; t->rn_l = x;
+ }
+#ifdef RN_DEBUG
+ if (rn_debug) {
+ log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
+ traverse(head, p);
+ }
+#endif /* RN_DEBUG */
+ }
+ return tt;
+}
+
+struct radix_node *
+rn_addmask(
+ const void *n_arg,
+ int search,
+ int skip)
+{
+ const char *netmask = n_arg;
+ const char *cp;
+ const char *cplim;
+ struct radix_node *x;
+ struct radix_node *saved_x;
+ int b = 0, mlen, j;
+ int maskduplicated, m0, isnormal;
+ static int last_zeroed = 0;
+
+ if ((mlen = *(const u8 *)netmask) > max_keylen)
+ mlen = max_keylen;
+ if (skip == 0)
+ skip = 1;
+ if (mlen <= skip)
+ return mask_rnhead->rnh_nodes;
+ if (skip > 1)
+ memmove(addmask_key + 1, rn_ones + 1, skip - 1);
+ if ((m0 = mlen) > skip)
+ memmove(addmask_key + skip, netmask + skip, mlen - skip);
+ /*
+ * Trim trailing zeroes.
+ */
+ for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
+ cp--;
+ mlen = cp - addmask_key;
+ if (mlen <= skip) {
+ if (m0 >= last_zeroed)
+ last_zeroed = mlen;
+ return mask_rnhead->rnh_nodes;
+ }
+ if (m0 < last_zeroed)
+ memset(addmask_key + m0, 0, last_zeroed - m0);
+ *addmask_key = last_zeroed = mlen;
+ x = rn_search(addmask_key, rn_masktop);
+ if (memcmp(addmask_key, x->rn_key, mlen) != 0)
+ x = 0;
+ if (x || search)
+ return x;
+ R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
+ if ((saved_x = x) == NULL)
+ return NULL;
+ memset(x, 0, max_keylen + 2 * sizeof (*x));
+ cp = netmask = (void *)(x + 2);
+ memmove(x + 2, addmask_key, mlen);
+ x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
+ if (maskduplicated) {
+ log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
+ Free(saved_x);
+ return x;
+ }
+ /*
+ * Calculate index of mask, and check for normalcy.
+ */
+ cplim = netmask + mlen; isnormal = 1;
+ for (cp = netmask + skip; (cp < cplim) && *(const u8 *)cp == 0xff;)
+ cp++;
+ if (cp != cplim) {
+ for (j = 0x80; (j & *cp) != 0; j >>= 1)
+ b++;
+ if (*cp != normal_chars[b] || cp != (cplim - 1))
+ isnormal = 0;
+ }
+ b += (cp - netmask) << 3;
+ x->rn_b = -1 - b;
+ if (isnormal)
+ x->rn_flags |= RNF_NORMAL;
+ return x;
+}
+
+static int /* XXX: arbitrary ordering for non-contiguous masks */
+rn_lexobetter(
+ const void *m_arg,
+ const void *n_arg)
+{
+ const u8 *mp = m_arg;
+ const u8 *np = n_arg;
+ const u8 *lim;
+
+ if (*mp > *np)
+ return 1; /* not really, but need to check longer one first */
+ if (*mp == *np)
+ for (lim = mp + *mp; mp < lim;)
+ if (*mp++ > *np++)
+ return 1;
+ return 0;
+}
+
+static struct radix_mask *
+rn_new_radix_mask(
+ struct radix_node *tt,
+ struct radix_mask *next)
+{
+ struct radix_mask *m;
+
+ m = rm_alloc();
+ if (m == NULL) {
+ log(LOG_ERR, "Mask for route not entered\n");
+ return NULL;
+ }
+ memset(m, 0, sizeof(*m));
+ m->rm_b = tt->rn_b;
+ m->rm_flags = tt->rn_flags;
+ if (tt->rn_flags & RNF_NORMAL)
+ m->rm_leaf = tt;
+ else
+ m->rm_mask = tt->rn_mask;
+ m->rm_mklist = next;
+ tt->rn_mklist = m;
+ return m;
+}
+
+struct radix_node *
+rn_addroute(
+ const void *v_arg,
+ const void *n_arg,
+ struct radix_node_head *head,
+ struct radix_node treenodes[2])
+{
+ const char *v = v_arg, *netmask = n_arg;
+ struct radix_node *t, *x = NULL, *tt;
+ struct radix_node *saved_tt, *top = head->rnh_treetop;
+ short b = 0, b_leaf = 0;
+ int keyduplicated;
+ const char *mmask;
+ struct radix_mask *m, **mp;
+
+ /*
+ * In dealing with non-contiguous masks, there may be
+ * many different routes which have the same mask.
+ * We will find it useful to have a unique pointer to
+ * the mask to speed avoiding duplicate references at
+ * nodes and possibly save time in calculating indices.
+ */
+ if (netmask != NULL) {
+ if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL)
+ return NULL;
+ b_leaf = x->rn_b;
+ b = -1 - x->rn_b;
+ netmask = x->rn_key;
+ }
+ /*
+ * Deal with duplicated keys: attach node to previous instance
+ */
+ saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
+ if (keyduplicated) {
+ for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) {
+ if (tt->rn_mask == netmask)
+ return NULL;
+ if (netmask == NULL ||
+ (tt->rn_mask != NULL &&
+ (b_leaf < tt->rn_b || /* index(netmask) > node */
+ rn_refines(netmask, tt->rn_mask) ||
+ rn_lexobetter(netmask, tt->rn_mask))))
+ break;
+ }
+ /*
+ * If the mask is not duplicated, we wouldn't
+ * find it among possible duplicate key entries
+ * anyway, so the above test doesn't hurt.
+ *
+ * We sort the masks for a duplicated key the same way as
+ * in a masklist -- most specific to least specific.
+ * This may require the unfortunate nuisance of relocating
+ * the head of the list.
+ *
+ * We also reverse, or doubly link the list through the
+ * parent pointer.
+ */
+ if (tt == saved_tt) {
+ struct radix_node *xx = x;
+ /* link in at head of list */
+ (tt = treenodes)->rn_dupedkey = t;
+ tt->rn_flags = t->rn_flags;
+ tt->rn_p = x = t->rn_p;
+ t->rn_p = tt;
+ if (x->rn_l == t)
+ x->rn_l = tt;
+ else
+ x->rn_r = tt;
+ saved_tt = tt;
+ x = xx;
+ } else {
+ (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
+ t->rn_dupedkey = tt;
+ tt->rn_p = t;
+ if (tt->rn_dupedkey)
+ tt->rn_dupedkey->rn_p = tt;
+ }
+ tt->rn_key = v;
+ tt->rn_b = -1;
+ tt->rn_flags = RNF_ACTIVE;
+ }
+ /*
+ * Put mask in tree.
+ */
+ if (netmask != NULL) {
+ tt->rn_mask = netmask;
+ tt->rn_b = x->rn_b;
+ tt->rn_flags |= x->rn_flags & RNF_NORMAL;
+ }
+ t = saved_tt->rn_p;
+ if (keyduplicated)
+ goto on2;
+ b_leaf = -1 - t->rn_b;
+ if (t->rn_r == saved_tt)
+ x = t->rn_l;
+ else
+ x = t->rn_r;
+ /* Promote general routes from below */
+ if (x->rn_b < 0) {
+ for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) {
+ if (x->rn_mask != NULL && x->rn_b >= b_leaf &&
+ x->rn_mklist == NULL) {
+ *mp = m = rn_new_radix_mask(x, NULL);
+ if (m != NULL)
+ mp = &m->rm_mklist;
+ }
+ }
+ } else if (x->rn_mklist != NULL) {
+ /*
+ * Skip over masks whose index is > that of new node
+ */
+ for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
+ if (m->rm_b >= b_leaf)
+ break;
+ t->rn_mklist = m;
+ *mp = NULL;
+ }
+on2:
+ /* Add new route to highest possible ancestor's list */
+ if (netmask == NULL || b > t->rn_b)
+ return tt; /* can't lift at all */
+ b_leaf = tt->rn_b;
+ do {
+ x = t;
+ t = t->rn_p;
+ } while (b <= t->rn_b && x != top);
+ /*
+ * Search through routes associated with node to
+ * insert new route according to index.
+ * Need same criteria as when sorting dupedkeys to avoid
+ * double loop on deletion.
+ */
+ for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
+ if (m->rm_b < b_leaf)
+ continue;
+ if (m->rm_b > b_leaf)
+ break;
+ if (m->rm_flags & RNF_NORMAL) {
+ mmask = m->rm_leaf->rn_mask;
+ if (tt->rn_flags & RNF_NORMAL) {
+ log(LOG_ERR, "Non-unique normal route,"
+ " mask not entered\n");
+ return tt;
+ }
+ } else
+ mmask = m->rm_mask;
+ if (mmask == netmask) {
+ m->rm_refs++;
+ tt->rn_mklist = m;
+ return tt;
+ }
+ if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
+ break;
+ }
+ *mp = rn_new_radix_mask(tt, *mp);
+ return tt;
+}
+
+struct radix_node *
+rn_delete1(
+ const void *v_arg,
+ const void *netmask_arg,
+ struct radix_node_head *head,
+ struct radix_node *rn)
+{
+ struct radix_node *t, *p, *x, *tt;
+ struct radix_mask *m, *saved_m, **mp;
+ struct radix_node *dupedkey, *saved_tt, *top;
+ const char *v, *netmask;
+ int b, head_off, vlen;
+
+ v = v_arg;
+ netmask = netmask_arg;
+ x = head->rnh_treetop;
+ tt = rn_search(v, x);
+ head_off = x->rn_off;
+ vlen = *(const u8 *)v;
+ saved_tt = tt;
+ top = x;
+ if (tt == NULL ||
+ memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0)
+ return NULL;
+ /*
+ * Delete our route from mask lists.
+ */
+ if (netmask != NULL) {
+ if ((x = rn_addmask(netmask, 1, head_off)) == NULL)
+ return NULL;
+ netmask = x->rn_key;
+ while (tt->rn_mask != netmask)
+ if ((tt = tt->rn_dupedkey) == NULL)
+ return NULL;
+ }
+ if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
+ goto on1;
+ if (tt->rn_flags & RNF_NORMAL) {
+ if (m->rm_leaf != tt || m->rm_refs > 0) {
+ log(LOG_ERR, "rn_delete: inconsistent annotation\n");
+ return NULL; /* dangling ref could cause disaster */
+ }
+ } else {
+ if (m->rm_mask != tt->rn_mask) {
+ log(LOG_ERR, "rn_delete: inconsistent annotation\n");
+ goto on1;
+ }
+ if (--m->rm_refs >= 0)
+ goto on1;
+ }
+ b = -1 - tt->rn_b;
+ t = saved_tt->rn_p;
+ if (b > t->rn_b)
+ goto on1; /* Wasn't lifted at all */
+ do {
+ x = t;
+ t = t->rn_p;
+ } while (b <= t->rn_b && x != top);
+ for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
+ if (m == saved_m) {
+ *mp = m->rm_mklist;
+ rm_free(m);
+ break;
+ }
+ }
+ if (m == NULL) {
+ log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
+ if (tt->rn_flags & RNF_NORMAL)
+ return NULL; /* Dangling ref to us */
+ }
+on1:
+ /*
+ * Eliminate us from tree
+ */
+ if (tt->rn_flags & RNF_ROOT)
+ return NULL;
+#ifdef RN_DEBUG
+ if (rn_debug)
+ log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
+#endif
+ t = tt->rn_p;
+ dupedkey = saved_tt->rn_dupedkey;
+ if (dupedkey != NULL) {
+ /*
+ * Here, tt is the deletion target, and
+ * saved_tt is the head of the dupedkey chain.
+ */
+ if (tt == saved_tt) {
+ x = dupedkey;
+ x->rn_p = t;
+ if (t->rn_l == tt)
+ t->rn_l = x;
+ else
+ t->rn_r = x;
+ } else {
+ /* find node in front of tt on the chain */
+ for (x = p = saved_tt;
+ p != NULL && p->rn_dupedkey != tt;)
+ p = p->rn_dupedkey;
+ if (p != NULL) {
+ p->rn_dupedkey = tt->rn_dupedkey;
+ if (tt->rn_dupedkey != NULL)
+ tt->rn_dupedkey->rn_p = p;
+ } else
+ log(LOG_ERR, "rn_delete: couldn't find us\n");
+ }
+ t = tt + 1;
+ if (t->rn_flags & RNF_ACTIVE) {
+ *++x = *t;
+ p = t->rn_p;
+ if (p->rn_l == t)
+ p->rn_l = x;
+ else
+ p->rn_r = x;
+ x->rn_l->rn_p = x;
+ x->rn_r->rn_p = x;
+ }
+ goto out;
+ }
+ if (t->rn_l == tt)
+ x = t->rn_r;
+ else
+ x = t->rn_l;
+ p = t->rn_p;
+ if (p->rn_r == t)
+ p->rn_r = x;
+ else
+ p->rn_l = x;
+ x->rn_p = p;
+ /*
+ * Demote routes attached to us.
+ */
+ if (t->rn_mklist == NULL)
+ ;
+ else if (x->rn_b >= 0) {
+ for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
+ ;
+ *mp = t->rn_mklist;
+ } else {
+ /* If there are any key,mask pairs in a sibling
+ duped-key chain, some subset will appear sorted
+ in the same order attached to our mklist */
+ for (m = t->rn_mklist;
+ m != NULL && x != NULL;
+ x = x->rn_dupedkey) {
+ if (m == x->rn_mklist) {
+ struct radix_mask *mm = m->rm_mklist;
+ x->rn_mklist = NULL;
+ if (--(m->rm_refs) < 0)
+ rm_free(m);
+ m = mm;
+ }
+ }
+ if (m != NULL) {
+ log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n",
+ m, x);
+ }
+ }
+ /*
+ * We may be holding an active internal node in the tree.
+ */
+ x = tt + 1;
+ if (t != x) {
+ *t = *x;
+ t->rn_l->rn_p = t;
+ t->rn_r->rn_p = t;
+ p = x->rn_p;
+ if (p->rn_l == x)
+ p->rn_l = t;
+ else
+ p->rn_r = t;
+ }
+out:
+#ifdef RN_DEBUG
+ if (rn_debug) {
+ log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
+ traverse(head, tt);
+ }
+#endif /* RN_DEBUG */
+ tt->rn_flags &= ~RNF_ACTIVE;
+ tt[1].rn_flags &= ~RNF_ACTIVE;
+ return tt;
+}
+
+struct radix_node *
+rn_delete(
+ const void *v_arg,
+ const void *netmask_arg,
+ struct radix_node_head *head)
+{
+ return rn_delete1(v_arg, netmask_arg, head, NULL);
+}
+
+static struct radix_node *
+rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
+{
+ /* If at right child go back up, otherwise, go right */
+ while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
+ if (printer != NULL)
+ (*printer)(arg, SUBTREE_CLOSE);
+ rn = rn->rn_p;
+ }
+ if (printer)
+ rn_nodeprint(rn->rn_p, printer, arg, "");
+ /* Find the next *leaf* since next node might vanish, too */
+ for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
+ if (printer != NULL)
+ (*printer)(arg, SUBTREE_OPEN);
+ rn = rn->rn_l;
+ }
+ return rn;
+}
+
+static struct radix_node *
+rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
+{
+ /* First time through node, go left */
+ while (rn->rn_b >= 0) {
+ if (printer != NULL)
+ (*printer)(arg, SUBTREE_OPEN);
+ rn = rn->rn_l;
+ }
+ return rn;
+}
+
+int
+rn_walktree(
+ struct radix_node_head *h,
+ int (*f)(struct radix_node *, void *),
+ void *w)
+{
+ int error;
+ struct radix_node *base, *next, *rn;
+ /*
+ * This gets complicated because we may delete the node
+ * while applying the function f to it, so we need to calculate
+ * the successor node in advance.
+ */
+ rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
+ for (;;) {
+ base = rn;
+ next = rn_walknext(rn, NULL, NULL);
+ /* Process leaves */
+ while ((rn = base) != NULL) {
+ base = rn->rn_dupedkey;
+ if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
+ return error;
+ }
+ rn = next;
+ if (rn->rn_flags & RNF_ROOT)
+ return 0;
+ }
+ /* NOTREACHED */
+}
+
+struct radix_node *
+rn_search_matched(struct radix_node_head *h,
+ int (*matcher)(struct radix_node *, void *), void *w)
+{
+ bool matched;
+ struct radix_node *base, *next, *rn;
+ /*
+ * This gets complicated because we may delete the node
+ * while applying the function f to it, so we need to calculate
+ * the successor node in advance.
+ */
+ rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
+ for (;;) {
+ base = rn;
+ next = rn_walknext(rn, NULL, NULL);
+ /* Process leaves */
+ while ((rn = base) != NULL) {
+ base = rn->rn_dupedkey;
+ if (!(rn->rn_flags & RNF_ROOT)) {
+ matched = (*matcher)(rn, w);
+ if (matched)
+ return rn;
+ }
+ }
+ rn = next;
+ if (rn->rn_flags & RNF_ROOT)
+ return NULL;
+ }
+ /* NOTREACHED */
+}
+
+int
+rn_inithead(void **head, int off)
+{
+ struct radix_node_head *rnh;
+
+ if (*head != NULL)
+ return 1;
+ R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
+ if (rnh == NULL)
+ return 0;
+ *head = rnh;
+ return rn_inithead0(rnh, off);
+}
+
+int
+rn_inithead0(struct radix_node_head *rnh, int off)
+{
+ struct radix_node *t;
+ struct radix_node *tt;
+ struct radix_node *ttt;
+
+ memset(rnh, 0, sizeof(*rnh));
+ t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
+ ttt = rnh->rnh_nodes + 2;
+ t->rn_r = ttt;
+ t->rn_p = t;
+ tt = t->rn_l;
+ tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
+ tt->rn_b = -1 - off;
+ *ttt = *tt;
+ ttt->rn_key = rn_ones;
+ rnh->rnh_addaddr = rn_addroute;
+ rnh->rnh_deladdr = rn_delete;
+ rnh->rnh_matchaddr = rn_match;
+ rnh->rnh_lookup = rn_lookup;
+ rnh->rnh_treetop = t;
+ return 1;
+}
+
+static clib_error_t *
+rn_module_init (vlib_main_t * vm)
+{
+ char *cp, *cplim;
+
+ R_Malloc(rn_zeros, char *, 3 * max_keylen);
+ if (rn_zeros == NULL)
+ return (clib_error_return (0, "RN Zeros..."));
+
+ memset(rn_zeros, 0, 3 * max_keylen);
+ rn_ones = cp = rn_zeros + max_keylen;
+ addmask_key = cplim = rn_ones + max_keylen;
+ while (cp < cplim)
+ *cp++ = -1;
+ if (rn_inithead((void *)&mask_rnhead, 0) == 0)
+ return (clib_error_return (0, "RN Init 2"));
+
+ return (NULL);
+}
+
+VLIB_INIT_FUNCTION(rn_module_init);