/* * Copyright (c) 2015 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __ESP_H__ #define __ESP_H__ #include #include #include #include typedef struct { u32 spi; u32 seq; u8 data[0]; } esp_header_t; typedef struct { u8 pad_length; u8 next_header; } esp_footer_t; /* *INDENT-OFF* */ typedef CLIB_PACKED (struct { ip4_header_t ip4; esp_header_t esp; }) ip4_and_esp_header_t; /* *INDENT-ON* */ /* *INDENT-OFF* */ typedef CLIB_PACKED (struct { ip6_header_t ip6; esp_header_t esp; }) ip6_and_esp_header_t; /* *INDENT-ON* */ typedef struct { const EVP_CIPHER *type; } esp_crypto_alg_t; typedef struct { const EVP_MD *md; u8 trunc_size; } esp_integ_alg_t; typedef struct { CLIB_CACHE_LINE_ALIGN_MARK (cacheline0); EVP_CIPHER_CTX encrypt_ctx; CLIB_CACHE_LINE_ALIGN_MARK (cacheline1); EVP_CIPHER_CTX decrypt_ctx; CLIB_CACHE_LINE_ALIGN_MARK (cacheline2); HMAC_CTX hmac_ctx; ipsec_crypto_alg_t last_encrypt_alg; ipsec_crypto_alg_t last_decrypt_alg; ipsec_integ_alg_t last_integ_alg; } esp_main_per_thread_data_t; typedef struct { esp_crypto_alg_t *esp_crypto_algs; esp_integ_alg_t *esp_integ_algs; esp_main_per_thread_data_t *per_thread_data; } esp_main_t; esp_main_t odp_esp_main; #define ESP_WINDOW_SIZE (64) #define ESP_SEQ_MAX (4294967295UL) always_inline int esp_replay_check (ipsec_sa_t * sa, u32 seq) { u32 diff; if (PREDICT_TRUE (seq > sa->last_seq)) return 0; diff = sa->last_seq - seq; if (ESP_WINDOW_SIZE > diff) return (sa->replay_window & (1ULL << diff)) ? 1 : 0; else return 1; return 0; } always_inline int esp_replay_check_esn (ipsec_sa_t * sa, u32 seq) { u32 tl = sa->last_seq; u32 th = sa->last_seq_hi; u32 diff = tl - seq; if (PREDICT_TRUE (tl >= (ESP_WINDOW_SIZE - 1))) { if (seq >= (tl - ESP_WINDOW_SIZE + 1)) { sa->seq_hi = th; if (seq <= tl) return (sa->replay_window & (1ULL << diff)) ? 1 : 0; else return 0; } else { sa->seq_hi = th + 1; return 0; } } else { if (seq >= (tl - ESP_WINDOW_SIZE + 1)) { sa->seq_hi = th - 1; return (sa->replay_window & (1ULL << diff)) ? 1 : 0; } else { sa->seq_hi = th; if (seq <= tl) return (sa->replay_window & (1ULL << diff)) ? 1 : 0; else return 0; } } return 0; } /* TODO seq increment should be atomic to be accessed by multiple workers */ always_inline void esp_replay_advance (ipsec_sa_t * sa, u32 seq) { u32 pos; if (seq > sa->last_seq) { pos = seq - sa->last_seq; if (pos < ESP_WINDOW_SIZE) sa->replay_window = ((sa->replay_window) << pos) | 1; else sa->replay_window = 1; sa->last_seq = seq; } else { pos = sa->last_seq - seq; sa->replay_window |= (1ULL << pos); } } always_inline void esp_replay_advance_esn (ipsec_sa_t * sa, u32 seq) { int wrap = sa->seq_hi - sa->last_seq_hi; u32 pos; if (wrap == 0 && seq > sa->last_seq) { pos = seq - sa->last_seq; if (pos < ESP_WINDOW_SIZE) sa->replay_window = ((sa->replay_window) << pos) | 1; else sa->replay_window = 1; sa->last_seq = seq; } else if (wrap > 0) { pos = ~seq + sa->last_seq + 1; if (pos < ESP_WINDOW_SIZE) sa->replay_window = ((sa->replay_window) << pos) | 1; else sa->replay_window = 1; sa->last_seq = seq; sa->last_seq_hi = sa->seq_hi; } else if (wrap < 0) { pos = ~seq + sa->last_seq + 1; sa->replay_window |= (1ULL << pos); } else { pos = sa->last_seq - seq; sa->replay_window |= (1ULL << pos); } } always_inline int esp_seq_advance (ipsec_sa_t * sa) { if (PREDICT_TRUE (sa->use_esn)) { if (PREDICT_FALSE (sa->seq == ESP_SEQ_MAX)) { if (PREDICT_FALSE (sa->use_anti_replay && sa->seq_hi == ESP_SEQ_MAX)) return 1; sa->seq_hi++; } sa->seq++; } else { if (PREDICT_FALSE (sa->use_anti_replay && sa->seq == ESP_SEQ_MAX)) return 1; sa->seq++; } return 0; } always_inline void esp_init () { esp_main_t *em = &odp_esp_main; vlib_thread_main_t *tm = vlib_get_thread_main (); memset (em, 0, sizeof (em[0])); vec_validate (em->esp_crypto_algs, IPSEC_CRYPTO_N_ALG - 1); em->esp_crypto_algs[IPSEC_CRYPTO_ALG_AES_CBC_128].type = EVP_aes_128_cbc (); em->esp_crypto_algs[IPSEC_CRYPTO_ALG_AES_CBC_192].type = EVP_aes_192_cbc (); em->esp_crypto_algs[IPSEC_CRYPTO_ALG_AES_CBC_256].type = EVP_aes_256_cbc (); vec_validate (em->esp_integ_algs, IPSEC_INTEG_N_ALG - 1); esp_integ_alg_t *i; i = &em->esp_integ_algs[IPSEC_INTEG_ALG_SHA1_96]; i->md = EVP_sha1 (); i->trunc_size = 12; i = &em->esp_integ_algs[IPSEC_INTEG_ALG_SHA_256_96]; i->md = EVP_sha256 (); i->trunc_size = 12; i = &em->esp_integ_algs[IPSEC_INTEG_ALG_SHA_256_128]; i->md = EVP_sha256 (); i->trunc_size = 16; i = &em->esp_integ_algs[IPSEC_INTEG_ALG_SHA_384_192]; i->md = EVP_sha384 (); i->trunc_size = 24; i = &em->esp_integ_algs[IPSEC_INTEG_ALG_SHA_512_256]; i->md = EVP_sha512 (); i->trunc_size = 32; vec_validate_aligned (em->per_thread_data, tm->n_vlib_mains - 1, CLIB_CACHE_LINE_BYTES); int thread_id; for (thread_id = 0; thread_id < tm->n_vlib_mains - 1; thread_id++) { EVP_CIPHER_CTX_init (&(em->per_thread_data[thread_id].encrypt_ctx)); EVP_CIPHER_CTX_init (&(em->per_thread_data[thread_id].decrypt_ctx)); HMAC_CTX_init (&(em->per_thread_data[thread_id].hmac_ctx)); } } #endif /* __ESP_H__ */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */